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Abstract

Initial Coin Offerings (ICOs) are an emerging form of fundraising for Blockchain-based star-
tups. We propose a simple model of matching supply with demand with ICOs by companies
involved in production of physical products. We examine how ICOs should be designed—
including optimal token floating and pricing for both the utility tokens and the equity tokens
(aka, security token offerings, STOs)—in the presence of product risk and demand uncertainty,
make predictions on ICO failure, and discuss the implications on firm operational decisions and
profits. We show that in the current unregulated environment, ICOs lead to risk-shifting incen-
tives (moral hazard), and hence to underproduction, agency costs, and loss of firm value. These
inefficiencies, however, fade as product margin increases and market conditions improve, and
are less severe under equity (rather than utility) token issuance. Importantly, the advantage of
equity tokens stems from their inherent ability to better align incentives, and hence continues
to hold even in unregulated environments.

Keywords: Initial Coin Offering (ICO), Security Token Offering (STO), Inventory, Strategic
Agents, Moral Hazard, Crowdfunding, Firm Operations

1 Introduction

Initial Coin Offerings (ICOs) are an emerging form of fundraising for blockchain-based startups

in which either utility and/or equity tokens are issued to investors in exchange for funds to help

finance business1. This new way of crowdfunding2 startup projects has gained a lot of momentum

since 2017 with the total amount raised skyrocketing to form a ten-billion-dollar market as of

November 2018 (Coinschedule 2018). The growth of ICOs is also challenging the dominance of

traditional means of raising capital. During Q2 2018, ICO projects raised a total volume of $9.0

billion (Coinschedule 2018), which is 56% of the amount raised by the US IPO market ($16.0

billion) or 39% of the amount raised by the US venture capital markets ($23 billion) during the

same period, as reported by CB Insights (CB Insights 2018) and PwC (Thomson 2018).

∗This project is funded by the Ripple Research Fund at the Wharton School and the Mack Institute Research
Fellowship.
†OID Department, The Wharton School, University of Pennsylvania, Philadelphia, PA 19104. Gan:

ganj@wharton.upenn.edu, Tsoukalas: gtsouk@wharton.upenn.edu, Netessine: netessin@wharton.upenn.edu.
1In many cases, tokens are created on existing blockchains and their core value is backed by the firm’s products

or services.
2We discuss differences between token offerings and other early-stage financing methods in Appendix A.2.
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Following this trend, the academic literature on ICOs is also rapidly growing, particularly in

finance and economics, where the focus has been on topics such as empirically characterizing the

drivers of ICO success or on comparing this new form of financing to more traditional financing

methods (see literature review). There is also a growing literature in operations management

studying the interplay between firm operations and financing decisions, though the focus here

has been mostly on more traditional financing methods, such as debt and equity (Xu and Birge

2004). This paper seeks to contribute to these literatures by focusing on the largely unexplored

implications of ICOs for product market firms facing demand uncertainty, in unregulated markets.

In particular, we ask: How should ICOs be designed as a function of product, firm and demand

characteristics? That is, what type of tokens, and how many of them should be issued, and how

should they be priced? Further, how do these choices affect firm inventory decisions, and the odds

of ICO failure or success? Finally, what are some of the salient features distinguishing ICOs from

other forms of financing?

A typical ICO proceeds as follows. A startup first publishes a white paper with or without a

minimum viable product for demonstration and then issues its platform-specific tokens. The typical

white paper usually delivers the key information of the project, including the token sale model that

specifies the token price, the sale period, the sales cap (if any), etc.3 The tokens can have a variety

of uses, but most commonly, they are either used for consumption of the company’s goods and

services (utility tokens), or offered as shares of the company’s future profit (equity tokens). During

the crowdsale, investors purchase tokens using either fiat currencies, or, more commonly, digital

currencies such as Bitcoin and Ether.

While some successful ICOs were conducted by service platforms such as Ethereum and NEO,

in this paper we focus on ICO projects that involve the delivery of physical products instead; these

types of ICOs are just now starting to emerge, and hence, are less well-understood. One striking

example is that of Sirin Labs (Sirin Labs 2019): a startup that produces smartphones and other

types of hardware systems. In 2017, Sirin Labs was able to raise over $150 million from investors

by offering them Sirin tokens (SRN). These tokens could subsequently be used to purchase the

company’s products and participate in its ecosystem, or be sold in the secondary market. Perhaps

one of the reasons that the ICO raised such a staggering amount was that the startup had secured

Foxconn as a major supplier, and hence, risk of product failure was arguably low. But while Sirin

Labs indeed went on to successfully manufacture its product, its market cap fell drastically in the

months and years post its ICO, as demand for the phones fell well short of expectations. Other

3We provide a condensed example of a white paper in Appendix A.3.
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relevant examples include Honeypod (Honeypod 2018) that develops hardware serving as the main

hub interconnecting various devices and providing traffic filtering, and Bananacoin (Bananacoin

2018) which grows bananas in Laos.

ICOs can have multiple benefits. First, both the startup founders and investors have the

opportunity of high financial gains from the potential appreciation of the tokens. Second, ICOs

allow for faster and easier execution of business ideas because the ICO tokens generally have

secondary-market liquidity, and require far less paperwork and bureaucratic processes, than the

regulated capital-raising processes do. Third, ICOs provide the project team with access to a

larger investor base as the participants (typically) face less location restrictions.

On the other hand, just like the underlying blockchain technology, ICOs are still in their infancy

and have some downsides. First, for the project teams, the failure rate of ICOs is high and

increasing. Despite a rise in the total investment volume, nearly half of all ICOs in 2017 and 2018

failed to raise any money at all (Seth 2018) and 76% of ICOs ending before September 2018 did

not get past their soft cap (Pozzi 2018), i.e., the minimum amount of funds that a project aims

to raise. Benedetti and Kostovetsky (2018) claim that only 44.2% of the projects remain active

on social media into the fifth month after the ICO. Second, the aspect of quick and easy access

to funding with loose regulation attracts unvetted projects and even utter scams, making ICO

investments risky. Some entrepreneurs portray deceiving platform prospects in the white papers in

an attempt to raise as much money as they can before gradually abandoning their projects. In a

review of 1450 ICO cases by the Wall Street Journal, 271 were susceptible to plagiarism or fraud.

The profit-seeking yet ill-informed investors can become easy prey and have claimed losses of up

to $273 million (Shifflett and Jones 2018). Other disadvantages of ICOs include technical concerns

such as the potential theft of tokens through hacks (Memoria 2018).

To study some of these issues we use a game-theoretic approach and construct a three-period

ICO model with stochastic demand for a product, adapting the classical newsvendor inventory

model (Arrow et al. 1951). There are three types of players in the game: a firm (token issuer),

speculators (token traders) and customers (who buy the product). As in the Sirin Labs example

mentioned earlier, the firm seeks to raise funds through an ICO to support the launch of a physical

product it wishes to sell to customers, and the main source of risk is that of future demand

uncertainty. In the first period, the firm announces the total number of tokens available, the sales

cap and the ICO token price, and sells tokens (up to the cap) to speculators who make purchase

decisions strategically4. In the second period, the firm, facing uncertain customer demand, can put

4The literature on operational decisions in the presence of strategic agents includes Dana Jr and Petruzzi (2001),
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the funds raised in the ICO towards production of a single product. Importantly, to reflect the lack

of intermediaries and the lax regulatory environment, we leave the firm with full discretion over

what to do with the raised funds, including the option of fully shirking production and diverting

raised funds to its pockets (moral hazard). In the final period, demand for the product is realized

and customers buy tokens either directly from the firm (if the firm has any tokens remaining) or

from the speculators in the secondary market, and redeem these tokens for the product, if available,

at the equilibrium token price. To incorporate additional salient features, we extend the model by

considering risks of production failure and speculator outside investment options in §5.

Using this relatively simple and flexible model, we derive the optimal ICO price, ICO token

cap and production quantity as a function of operational and demand characteristics. We examine

two types of tokens—the utility tokens and the equity tokens (more commonly known as security

token offerings—STOs).5 We find that despite rampant moral hazard, both product-based utility

and equity ICOs can be successful under the right conditions. The existence of a secondary market

is crucial to this end, as it provides incentives for speculators to participate in the ICO, even when

they might otherwise not be interested in consuming the firm’s product. Of course, moral hazard

understandably leads to agency costs, and hence underproduction and lower-than-optimal profits

versus first best, especially when the demand distribution of the product has large variance. For

ICOs to be able to overcome these inefficiencies, we show that they require high price-cost ratios

of the product and a minimum fraction of tokens sold during the first round of sale. Interestingly,

excessive funds raised from over-optimistic investors (e.g., when more than half of all tokens are sold

during the first round) may directly discourage production after funds are raised. Our comparative-

statics analysis suggests that these inefficiencies can be further reduced when the demand for the

product is higher, less volatile or (and) when the customers’ willingness-to-pay is higher. Moreover,

we find such inefficiencies to be less prominent for ICO’s with equity tokens (STOs) as these almost

achieve the first-best outcome under favorable market conditions.

Our model distinguishes ICOs from other early-stage financing methods by capturing several

unique features of ICOs, including the fundraising mechanism and the issuance of tokens, the

existence of a peer-to-peer secondary market, and the nature of the investors. In contrast to

reward-based crowdfunding, for instance, there is no intermediary platform imposing an all-or-

nothing mechanism. Rather, firms running ICOs have to determine how many tokens to issue/sell

during the first round in addition to how many products to make. In the case of utility tokens, we

Cachon and Swinney (2009), Papanastasiou and Savva (2016), etc. Su (2010) and Milner and Kouvelis (2007) consider
similar speculative behavior yet with no financing aspect.

5Throughout the paper, we use “STOs” and “ICOs with equity tokens” interchangeably.
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show this is akin to deciding how much of the firm’s future revenues to share with speculators. In

the case of equity tokens, this is akin to deciding how much of the firm’s future profits to share.

Another important difference that we highlight is that tokens allow the firm to disperse downside

risks of future demand among the token holders, whereas in crowdfunding, campaign backers share

downside risk only in terms of product failure (not in terms of future demand uncertainty). Finally,

we show that the existence of the secondary market for the tokens is crucial in incentivizing investors

to participate in ICOs, an important feature missing from crowdfunding. We refer the readers to

Appendix A.2 for a more detailed discussion and Table 1 for a summary comparison to other

financing methods.

Literature Review Broadly speaking, this paper contributes to the strand of literature at

the interface of operations and finance that studies, among other things, different ways of financing

inventory. Earlier works include Babich and Sobel (2004), Buzacott and Zhang (2004), Boyabatlı

and Toktay (2011), Kouvelis and Zhao (2012), and Yang and Birge (2013), see Kouvelis et al.

(2011) for a review of this literature. More recent papers include Boyabatlı et al. (2015), Yang

et al. (2016), Iancu et al. (2016), Alan and Gaur (2018), Chod et al. (2019).

As an alternative to traditional crowdfunding,6 ICOs are understudied in the operations man-

agement literature. However, there are several recent theoretical studies in the finance literature

that examine the economics of ICOs and cryptocurrencies. Most of them focus on peer-to-peer

service platforms that allow decentralized trading. For example, Li and Mann (2018) and Bakos

and Halaburda (2018) demonstrate that ICOs can serve as a coordination device among platform

users. In a dynamic setting, Cong et al. (2018) consider token pricing and user adoption with

inter-temporal feedback effects.

More closely related to our work are papers that model ICOs in business-to-customer settings.

Catalini and Gans (2018) propose analysis of an ICO mechanism whereby the token value is de-

rived from buyer competition. Chod and Lyandres (2018) study the extent to which risk-averse

entrepreneurs can transfer venture risk to fully diversified investors under ICO financing. These

papers also analyze the distinctions between the economics of ICO financing and those of traditional

equity financing. We adopt a similar approach modeling an ICO as a presale of the platform’s par-

tial future revenue, yet with an emphasis on operational details including demand uncertainty and

inventory considerations. In particular, we incorporate stochastic demand of the products, rather

than assuming that demand is observable before production (Catalini and Gans 2018) or infinite

6Refer to Section A.2 for a discussion on the differences. For recent papers on crowdfunding, see Alaei et al.
(2016), Babich et al. (2019), Belavina et al. (2019), Chakraborty and Swinney (2017), Chakraborty and Swinney
(2018), Fatehi et al. (2017), Xu and Zhang (2018), Xu et al. (2018).
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(Chod and Lyandres 2018). We believe ours is the first study to jointly optimize the operational

decisions including sales cap, token pricing and production quantity, in the presence of strategic

investors under demand uncertainty, and compare utility and equity (STO) token issuance in this

context.

Here and below, we first develop in §2 and solve in §3 the case of utility tokens, before examining

equity tokens as an extension in §4.

2 Model: Utility Tokens

Consider an economy with three types of agents: i) a monopolist firm, ii) investors termed specula-

tors, and iii) firm’s customers. The economy has three periods: i) The first period, termed “ICO”,

is the fundraising phase containing the firm’s white paper that includes contract terms and the

token crowdsale; ii) the second period, termed “production”, covers firm’s production decisions in

the face of uncertain customer demand; iii) the third period, termed “market”, covers the real-

ization of customer demand, and market clearing for the product and any remaining tokens. The

firm participates in all three periods. Speculators participate in the ICO and the market periods.

Customers participate only in the market period.

Firm The firm has no initial wealth and seeks to finance production through a “capped” ICO.

The firm has a finite supply of m total tokens that are redeemable against its future output (if

any). In the ICO period, the firm maximizes its profits by choosing i) the ICO “cap”, n ≤ m,

that is, the number of tokens to sell to speculators in the ICO period, and ii) the ICO token price

τ (in dollars per token). Subsequently, in the production period, the firm has the option to use

any amount of funds raised through the ICO to finance the production of its output. To this end,

the firm maximizes its total wealth, through a newsvendor-type production function (Arrow et al.

1951), by choosing quantity Q ≥ 0 of a product with unit cost c (in dollars per unit) that it can

later sell in the market period at a price p (in tokens per unit), in the face of uncertain customer

demand D. To capture the lack of regulation in the current environment, we assume that the firm

could divert all or a portion of the funds raised through the ICO, rather than engage in production

(moral hazard).

In the final market period, demand is realized and the product is launched. The product can

only be purchased using the firm’s tokens—a restriction that has two consequences: i) it endows

tokens with (potential) value ii) it implies price p represents the exchange rate between tokens

and units (which departs from the traditional newsvendor (Arrow et al. 1951) setting). The firm
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competes with speculators to sell any remaining tokens it has post-ICO to product customers, e.g.,

through a “secondary” offering round. As opposed to the ICO round, there is no uncertainty in the

secondary offering round as production is finished and demand is already realized. The equilibrium

token price τeq (in dollars per token) as well as the product price p (in tokens per unit) are then

derived through a market clearing condition, described below. Once the market clears, tokens have

no residual value (since there is only a single production round and the tokens have no use on any

other platform) and the game ends. We provide more details of the tokens’ features and discuss

their implications for speculators and customers in Appendix A.1.

To recap, the firm’s decisions are the number of tokens to make available in the ICO to specu-

lators n, the ICO token price τ , and production quantity Q.

Speculators Let z denote the total number of speculators with z � m reflecting that ICOs

have low barriers to entry. Speculators are risk-neutral, arrive simultaneously, and can each try to

purchase a single token in the ICO at the price set by the firm, τ , that they expect to subsequently

sell in the market period at an equilibrium price E[τeq], where E is the expectation operator. If

demand for tokens exceeds token supply in the ICO, speculators are randomly allocated token

purchase rights. Speculators’ expected profit u depends, among other things, on the expected price

difference E[τeq] − τ , denoted ∆, and on the total number of speculators that purchase tokens in

the ICO, denoted s; formally:

u(s) =
s

z
∆(s), with ∆(s) = E[τeq(s)]− τ, (1)

where the ratio s/z reflects random assignment of token purchase rights. We emphasize that the

number of speculators s will be determined endogenously in equilibrium, and as we shall show later

on, this number depends on the ICO cap n and the ICO token price τ . A necessary condition for

s(τ, n) > 0 speculators to participate in the ICO is

u(s(τ, n)) ≥ 0 (participation constraint). (2)

Note, as we show in Appendix B.3, assuming sequential rather that simultaneous arrival of specula-

tors does not impact the results of the paper. The proofs are written to cover both cases. Also note

that the model readily extends to the case in which speculators are given the additional option

of using their tokens to purchase the firm’s product rather than selling their tokens to product

customers.
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Product Customers Customers who join the market after the product launch have a homo-

geneous willingness-to-pay v (dollars per unit) for the product that is strictly greater than the

production cost c. As we shall see later on, v plays a critical role in the market clearing condition.

Customers can buy tokens directly from the firm (if it has any tokens remaining in the market

period) or from speculators, and they can redeem the tokens for the products. The demand for

the product D is stochastic and we denote the cumulative distribution function of demand by F (·).

For ease of analysis, we assume that F (·) is continuous and F−1(0) = 0.

We summarize the timeline in Figure 1 below.

Figure 1: Sequence of Events

Time

Firm decides τ, n Firm decides Q
Demand realized

buy tokens buy products

White Paper ICO Production Product
Published Starts Starts Launch

Speculators Customers

ICO Period Production Period Market Period

Market clearing Clearing occurs in the market period. Recall that the customers have a constant

willingness-to-pay v (dollars per unit). This means that the dollar-denominated price of the product

charged by the firm, which is equal to the product of the token-denominated price of the product

p (tokens per unit) and the equilibrium market token price τeq (dollars per token), is at most v.

Since the firm is a monopolist, it sets the dollar-denominated price to be exactly v, i.e., p · τeq = v.

Therefore, p and τeq have an inverse relationship, and we have the following lemma due to the law

of supply and demand.

Lemma 1. (Equilibrium Prices)

i) The equilibrium token-denominated price of the product is p = m/min {Q,D}.

ii) The equilibrium token price in the market period is given by τeq = v
m min {Q,D}.

Part (i) of Lemma 1 suggests that there is no idle token in the market period—all m tokens are re-

deemed for min {Q,D} products. Therefore, customers’ valuation of all tokens is equivalent to their

willingness-to-pay for all products that are purchased by these tokens, i.e., τeqm = vmin {Q,D}.

Part (ii) addresses one of the most frequently asked questions regarding ICOs—what gives tokens

their ultimate value. In our model, the value of platform-specific tokens depends positively on

three factors: the quality of the product reflected by the customers’ willingness-to-pay, the sales
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volume determined by the supply and demand for the products and the scarcity of tokens inversely

determined by the total supply, m.

Note, the term v E[min {Q,D}] resembles the revenue term in the traditional newsvendor setup

(Arrow et al. 1951) where v corresponds to the fixed price. While a traditional newsvendor sells

a quantity of products at a fixed price, the firm in our model sells a fixed number of tokens at

(or below, to satisfy the participation constraint) a market equilibrium token price. However, the

newsvendor form emerges from the fact that τeq is tied to the product sales volume min {Q,D} via

the market clearing condition.7

Firm’s optimization problem The firm maximizes its expected dollar-denominated wealth

at the end of the market period, denoted by Π, which consists of three terms: i) the total funds

raised during the ICO, τs(τ, n), plus ii) the expected total funds raised in the secondary offering,

(m− s)E[τeq], minus iii) production costs cQ. The constraints are i) that production is funded by

funds raised in the ICO, i.e., cQ ≤ τs(τ, n) and ii) that speculators participate in the ICO, i.e.,

u(s(τ, n)) ≥ 0. Using the market clearing condition Lemma 1(ii), which ties token value τeq to sales

min {Q,D}, the firm’s optimization problem can be formally written as:

max
τ, n

{
τ s(τ, n) + max

Q

[
(m− s(τ, n))

v

m
E[min {Q,D}]− cQ

]}
(3)

subject to

τ s(τ, n)− cQ ≥ 0, (ICO funds cover production costs)

u(s(τ, n)) ≥ 0. (speculators’ participation constraint)

Recall that s(τ, n) is an equilibrium quantity, and we will show later how it depends on the firm’s

decisions variables, τ and n, and on Q (which itself depends on s, and hence τ and n).

3 Analysis: Utility Tokens

In this section, we find the subgame perfect equilibrium using backward induction. We first consider

(§3.1) the firm’s last decision, the production quantity for fixed token price τ and ICO cap n, based

on which we examine the speculators’ equilibrium behavior (Appendix B.1). We then calculate

the optimal token price τ∗ and ICO cap n∗ (§3.2). Lastly, we present and discuss the equilibrium

results in §3.3.

7Note, if the product had salvage value, this value would need to be included in the market clearing condition.
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3.1 Optimal Production Quantity

We first consider the firm’s last decision—the production quantity Q(τ, n, s(τ, n)), for fixed token

price τ and ICO cap n. Here and below, we drop when possible the fixed arguments τ and n to

ease exposition.

Proposition 1. (Optimal Production Quantity)

For a fixed token price τ , ICO cap n and number of speculators s, the firm’s optimal production

quantity Q∗(s) is as follows.

i) If 0 < s < m
(
1− c

v

)
, then Q∗(s) = min

{
F−1

(
1− cm

(m−s)v

)
, τ sc

}
.

ii) If s = 0 or s ≥ m
(
1− c

v

)
, then Q∗(s) = 0.

Part (i) of Proposition 1 shows that production can occur only if the number of speculators that

purchased tokens in the ICO, is below a fraction
(
1− c

v

)
of all available tokens m. The first term

inside the minimum operator, F−1
(

1− cm
(m−s)v

)
, is the unconstrained optimal production quantity;

interestingly, this term decreases in s. The second term, τ s
c , captures the firm’s budget constraint,

i.e., the production costs cannot exceed funds raised in the ICO, and this term is increasing in s.

Part (ii) of Proposition 1 shows that if more than a fraction
(
1− c

v

)
of all tokens have been sold

in the ICO, the firm prefers not to use any of the funds raised for production, meaning, the firm

“diverts” the money raised to its own pocket. We refer to this fraction as the firm’s misconduct

fraction,

1− c/v. (4)

Clearly, as the willingness-to-pay v increases relative to the production cost c, the misconduct

fraction increases, making the abandonment of production less likely.

We emphasize that this analysis does not suggest all crypto startups are scammers that would

run away with any amount. Rather, it provides an explanation for the loss of motivation or

productivity of some well-funded startups based on pure profit maximization reasoning, due to

moral hazard absent regulatory controls.

3.2 Optimal Token Price and ICO Cap

Given the optimal production quantity (§3.1) and speculators’ equilibrium behavior (Appendix

B.1), we now examine how the firm sets the profit-maximizing ICO token cap n∗ and initial token

price τ∗.

We show in Lemma 2 in Appendix B.1 that the number of speculators s∗(τ, n) ≤ m
(
1− c

v

)
.
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Given the speculators participating in the ICO buy 1 token each, we need not consider the case

in which tokens n > m
(
1− c

v

)
. We will first find the token price τ∗(n) for a given token cap

n ≤ m
(
1− c

v

)
and then maximize profit over the token cap n. The following Proposition guarantees

the existence of a nonzero equilibrium token price τ∗.

Proposition 2. (Conditions for ICO Success)

The ICO succeeds if and only if

i) (critical mass condition) the firm sells more than mc
v tokens in the ICO and,

ii) (price-cost ratio requirement) customers have a high willingness-to-pay such that v > 2c.

Part (i) of Proposition 2 shows that the firm should not set the ICO cap too low. Speculators

expect positive returns only when a critical mass of tokens, mc
v , are sold in the ICO. This quantity

increases in the production cost and decreases in customer willingness-to-pay. Recall from Appendix

B.1 that speculators would not invest more than the misconduct fraction. Combining these two

results, we have that the ICO will only be successful when the misconduct fraction m
(
1− c

v

)
is

above the lower bound mc
v . This simplifies to the condition in Part (ii) of Proposition 2, v > 2c.

Next we find the optimal ICO token price τ∗(n) and the optimal ICO cap n∗ assuming these

two conditions are met. We show that for any fixed ICO cap n in the appropriate range (n ∈

(mc
v ,m

(
1− c

v

)
)), there exists a unique, positive and finite ICO token price τ∗(n) that maximizes

(5) by extracting all utility from the speculators who participate strategically.

Given this result, we obtain a semi-closed-form solution of the optimal ICO cap n∗, and show

that neither a small ICO cap that suppresses the production quantity nor a large cap that induces

idle cash is profit-maximizing for the firm. The optimal ICO cap n∗ allows the firm to raise

just enough funds that can be credibly committed to production. We point interested readers to

Appendix B.2 for detailed technical results.

3.3 The Equilibrium

Proposition 3. (Equilibrium Results)

i) If v ≤ 2c, then the ICO fails.

ii) If v > 2c, then there exists a unique equilibrium where

(a) the ICO cap n∗ satisfies n∗ ∈ (mc
v ,

m
2 ) and

v n∗

cm E[min
{
D,F−1(1− cm

(m−n∗)v )
}

] = F−1(1− cm
(m−n∗)v ),

(b) the number of speculators is s∗ = n∗,

(c) the ICO token price is τ∗ = v
m E[min

{
D,F−1(1− cm

(m−n∗)v )
}

],
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(d) the production quantity is Q∗ = F−1(1− cm
(m−n∗)v ),

(e) the token price in the market period equals the ICO token price, i.e., E[τeq] = τ∗.

iii) When v > 2c, the firm spends all funds raised through the ICO on production in equilibrium.

Several results are of interest here, starting with the condition v > 2c, which implies that ICOs

may be best suited for products with relatively high willingness-to-pay.8

Part (ii) summarizes the characteristics of the unique equilibrium when v > 2c. Part (a) links

the ICO cap to operational and demand parameters. Although we do not have a closed-form

expression for n∗, our model suggests that it is optimal for the firm to save a substantial portion

of tokens (more than a half) to the market period. When more than m/2 tokens are sold, the firm

raises more money than what is needed for the unconstrained optimal production quantity. The

firm then produces at the unconstrained optimal level and, as a result, is left with some idle funds.

However, these idle funds are gained at the expense of its share of the future revenue. As a result,

the firm produces less and collects less money. We show in Appendix D that the decrease in money

raised has a bigger effect on the firms final wealth, which results in non-optimal profit.

The rest of the equilibrium quantities depend on the optimal ICO cap n∗. Note that, since the

total number of tokens available is kept constant, the ICO cap n∗ is a proxy for the fraction of

tokens sold during the ICO period. Part (b) shows that the ICO cap directly controls the number

of speculators that will take part in the ICO. From parts (c) and (d), we can see that token prices

and production quantity both decrease in the ICO cap, implying also a decrease of these quantities

in the number of speculators. The latter interpretation may be more counterintuitive, but follows

from the fact that ICO cap and speculator numbers are interchangeable. Note that, since the total

number of tokens available is kept constant, the ICO cap n∗ is a proxy for the fraction of tokens

sold during the ICO period. Part (e) shows that in equilibrium, speculators’ expected utility is

zero because the expected market token price is equal to the ICO token price.

Part (iii) shows that the firm is incentivized to produce as much as possible in equilibrium.

Note that we model an unregulated environment where the firm has the option to divert the funds

raised (moral hazard), and the high margin condition prevents the firm from doing this. In fact,

in the absence of moral hazard, first best can be achieved without the high margin condition. Part

(iii) also implies that since production cost is fixed, the total funds raised s∗ · τ∗ follows the same

8It is interesting to note this condition does not depend on demand characteristics. This is because this condition
stems from the presence of moral hazard: it simply defines the cutoff between an ICO that will never be able to raise
any cash (even when demand risk is low) to one that will raise some cash in equilibrium (epsilon or more) depending
on demand risk, among other things. From that cutoff point onward, how successful the ICO will be (e.g. how much
money it will raise) depends critically on demand characteristics.
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trend as the equilibrium production quantity Q∗. We provide more insights on the equilibrium

based on the numerical experiments in Appendix C.1.

Having analyzed the ICO equilibrium, we compare it to the first-best outcome so as to quantity

agency costs. In this case, the first best refers to ICOs without frictions, i.e., ICOs with no

cash diversion by the firm. While such “first-best” ICOs do not exist given the loose regulatory

environment, by the Modigliani-Miller theorem, they are equivalent to a traditional newsvendor

firm that invests its own money and faces no financial constraint.

Proposition 4. (ICO vs First Best)

i) A traditional newsvendor firm invests when v > c whereas an ICO is only viable when v > 2c.

ii) A firm who finances through an ICO produces less than first best.

iii) A firm who finances through an ICO makes less profit than first best.

iv) In case of low demand realization, a traditional newsvendor risks loss whereas a firm who

finances through an ICO always earns non-negative profit.

By Proposition 4, ICOs have the great advantage of being a low-risk means of financing for firms,

but this comes at a cost of production quantity, profit and flexibility in terms of margin. We

evaluate the extent of these benefits and inefficiencies numerically in Appendix C.1. Our numerical

results show that in general, the production and profit gaps between the ICO firm and first best

can reach up to 40% and up to 50%, respectively, but these gaps shrink when the market is bigger,

more stable or (and) with a higher willingness-to-pay. Under the same market conditions, ICOs

lead to lower profit variance, rendering firm profits less sensitive to demand uncertainty.

4 ICOs with Equity Tokens (STOs)

In this section, we consider a different type of ICO—one with equity, rather than utility, tokens (also

referred to as STOs as mentioned). The fund-raising mechanism with equity tokens follows that

with utility tokens (Figure 1) but with two main differences. First, the fundamental value of the

equity tokens and the utility tokens are backed by the firm’s future revenue and profit respectively.

To see this, recall from Lemma 1 that the value of the utility tokens is equal to the worth of all

products sold. The equity tokens, by definition, entitle the token holders to a pre-specified share

of the firm’s profit as long as the firm is profit-making. Second, the equity tokens have no utility

purposes—in the market period, the firm sells its products for cash and distributes its profit among

the equity token holders in proportion to their token holdings. As a result, the firm, unlike a

13

 Electronic copy available at: https://ssrn.com/abstract=3361121 



utility-token-issuing firm, does not need to sell the remaining tokens (i.e., tokens unsold in the ICO

period) in the market period.

Our analytical results identify two differences and two similarities between ICOs and STOs:

1) STOs are associated with lower agency costs; 2) STOs require a larger ICO cap to be success-

ful; 3) both require the same high-margin condition; 4) both leave no arbitrage opportunities for

speculators. We discuss the intuition behind these results below and leave the technical results to

Appendix B.4.

1) Lower agency costs. Recall that the misconduct fraction with utility tokens is 1 − c/v.

In the case of equity tokens, the misconduct fraction is 1. This shows that as long as the firm does

not sell out all the tokens during the ICO, i.e., s 6= m, it always produces some product if it raises

money. Since 1 > 1− c/v, we argue that with equity tokens, the firm’s incentives are better aligned

with the speculators’, making the firm less likely to divert cash from funds raised to its own pocket.

In other words, STOs reduce moral hazard, thus having lower agency costs than utility ICOs.

2) Larger ICO cap. Consider a firm that aims to produce a certain quantity and could finance

through issuing either utility tokens or equity tokens. By the nature of the two (revenue-sharing

vs profit-sharing), we know that the market equilibrium price of the utility token will be higher

than that of the equity token, i.e., τeq > τeq,e. We know by Proposition 5(i) (Appendix B.2) that

for the utility tokens, the firm sets the ICO token price to be exactly equal to the expected market

equilibrium token price, i.e., τ = E[τeq]. For the equity tokens, since the speculators would only

purchase the tokens when the ICO token price does not exceed the expected market equilibrium

token value, we must have τe ≤ E[τeq,e]. Therefore, the optimal ICO price of the equity token, τe,

must be less than that of the utility token, τ . As a result, to meet the same production goal, the

firm will have to sell more equity tokens than utility tokens. Similar intuition and reasoning lead

to a more stringent critical mass condition, which translates into a higher ICO cap.

3) Same high-margin condition. The function of the high-margin condition is to keep the

feasible range of the ICO cap nonempty. By parts 1) and 2), with equity tokens, the fraction of

tokens to be sold during the ICO has both a higher upper bound (misconduct fraction) and a higher

lower bound (critical mass condition). As a result, the high-margin condition remains the same.

4) No arbitrage opportunities. In both ICOs and STOs, the ICO token price does not

affect decisions or outcomes in the production or market periods. Therefore, the firm is able to set

the ICO token price to the highest possible, leaving the speculators with zero expected profit.

We study the rest of the equilibrium results numerically in Appendix C.2. Through numerical

experiments, we find that issuing equity tokens incentivizes the firm to produce more products,
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ceteris paribus. While good market conditions (high mean, low variance, high willingness-to-pay)

reduce the extent of underproduction in both cases, they push the production level of the firm that

issues equity tokens even closer to first best. This suggests that the first-best is almost achievable

with equity tokens.

5 Extensions and Future Opportunities

5.1 Extensions

While our core model (ICO with utility tokens) is relatively basic, it is flexible enough to be

extended in many ways to fit a variety of practical situations.

Risk of Product Failure Motivated by the Sirin Labs example discussed in the introduction,

our base model assumes that the firm is able to successfully produce its product when it incurs

the necessary production cost. In Appendix B.5 we relax this assumption, and introduce the risk

of production failure. We find that the firm’s optimal strategy can qualitatively change depending

on the amount of production risk and customer willingness-to-pay. Recall that in Proposition 3

(iii), we show that when there is no risk, the firm invests all money raised into production. In

the presence of production risk, in many cases, we find that the firm spends only part of the ICO

funds raised on production, and saves the rest. Such practice guarantees that the firm ends up

with positive final wealth even if production fails. We refer interested readers to Appendices B.5

and C.3 for more details.

Speculators with Outside Investment Options We can account for the existence of other

investment options (e.g., a savings account) by adding a generic investment option that returns

k > 0 dollars per dollar investment. We show that a higher return of the outside option makes

ICOs harder to succeed and creates a wedge between the token price in the ICO and the expected

token price post ICO. Moreover, in equilibrium, the expected return of the tokens is equal to that

of the outside option. More details can be found in Appendices B.6 and C.4.

5.2 Future Opportunities

As one of the first papers to study the implications of ICOs for operations management, the model

we develop has of course some limitations that could represent interesting research opportunities.

For example, it could be interesting to study the multi-period production setting, which could

also involve issues of token resale and inflation control. In practice, many projects keep a portion

of ICO funds and/or tokens to maintain price stability in the future and protect against negative
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shocks. Moreover, some entrepreneurs need initial funds for the design and preparation of an

ICO, which requires a different ICO design or even other financing solutions. Another interesting

direction would be to expand the firm’s decision space in terms of where it can spend the raised

funds, to include other business functions such as marketing, human capital, etc.

Lastly, several assumptions in our model could be relaxed to capture more realistic settings. For

instance, the tokens could be used for purposes other than to purchase physical goods; customer

willingness-to-pay and demand could be affected by quite a few factors that we do not capture,

including network effects; the success of the ICO could be informative about future demand in a

multi-period setting; investors could have heterogeneous beliefs about product quality; customers

could have different valuations for the product; firms, investors and/or customers could be risk

averse or risk seeking, etc.

We believe these to be promising directions for future research.
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Appendix

A Additional Discussions and Results

A.1 Utility Tokens and the Token Buyers

In this section, we elaborate on two important features of tokens and the role of the token buyers

(the speculators and the customers).

First, tokens play a dual role: as of today, most tokens in the market have been considered as

both utility and security.9 The security aspect results from the tradable feature of the tokens. The

utility aspect comes from the fact that the fundamental value of these tokens lies in the economic

value of the products or services that they are redeemable for. However, most projects do not have

any products at the time of the ICO. In 2017, for instance, 87% of ICOs did not yet have a running

product (CryptoGlobe 2018). To capture these features, we model tokens that start out as pure

securities and only after product launch become utility tokens. Such tokens appeal to two groups

of token buyers: those who see tokens as securities purchase the tokens in the ICO period (before

product launch),10 whereas those who wish to consume the products buy tokens in the market

period (after product launch). Therefore, we refer to the token buyers in the ICO period and those

in the market period as speculators and customers respectively.

The second feature is that the tokens issued by the firm can only be redeemed on the firm’s

own platform and are the only viable method of payment for the its products. By restricting the

method of payment, the firm ties the value of the tokens to the economic value of the products.

This, together with the existence of a secondary market to trade the tokens, incentivize speculators

to purchase tokens in the ICO, even if they are not interested in subsequently consuming the

product themselves.

At the same time, the fact that the tokens have no use on other platforms has a few implications.

First, it means that the token value solely depends on the consumption of products of this particular

platform. Second, after the firm ends production, the speculators have no reason to hold the tokens

and the customers do not buy more tokens than needed. Third, redeemed tokens retain no value

if no further production is planned. Last, since we only consider one round of production, this

suggests that the tokens are for one-time use only and the firm cannot resell the redeemed tokens

9The regulatory environment is still uncertain but efforts are being made to pass bills that would distinguish
tokens from securities like stocks (Khatri 2019).

10Technically, those who see tokens as securities may purchase tokens whenever they feel optimistic about the
potential return. However, we model a firm that plans one round of production and product sale and the market
token price in the market period is an equilibrium quantity that does not change during that period. Therefore, it
only makes sense for this group of token buyers to come in the ICO period.
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for more cash.

A.2 ICOs vs Other Early-Stage Financing Methods

In this section, we summarize important structural differences between ICOs and their alternatives

in Table 1. We also discuss in more detail two particular aspects that distinguish ICOs from other

early-stage financing methods: the existence of a secondary market and the issuance of tokens.

Table 1: Comparison of Early-Stage Financing Methods. (A checkmark 3 indicates the feature is
prominent, while 7 indicates it is of second-order or non-existent. The dual notation 37 indicates that the
feature may or may not be of first order, depending on circumstance.)

Bank VC
Crowdfunding Coin Offering
Reward Equity Utility Equity

Upside through Profit Sharing 7 3 7 3 7 3

Upside through Revenue Sharing 7 7 7 7 3 7

Downside Demand Risk Sharing 3 3 7 3 3 3

Heavily Regulated 3 3 7 3 7 37

Voting/Control Rights 37 3 7 7 7 37

Funds from Retail Speculators 7 7 7 3 3 3

Funds from Retail Consumers 7 7 3 3 3 3

Secondary Trading 7 7 7 7 3 3

Table 1 contains a large amount of information, and we recommend it be read through bilateral

column comparisons. The high-level takeaway from the table is that ICOs, be it utility or equity

offerings, differ from each of the other alternative forms of financing in at least one crucial dimension

(and more often than not, in several dimensions). We highlight two of these aspects next.

1. Implications of the existence of a secondary market

ICOs differ from all other financing methods by their reliance on a secondary market for the tokens.

This difference has two important implications.

1) Mitigation of Moral hazard.

The alternative financing methods listed in Table 1 address moral hazard in different ways.

Banks, for instance, use interest rates and covenants (Iancu et al. 2016) and/or leverage

collateral. VC firms directly monitor the progress of the funded company and invest in stages

to keep the company under control (Cherif and Elouaer (2008); Wang and Zhou (2004)). In

crowdfunding, moral hazard is often left unadressed, though more recently, some platforms

like Indiegogo have started to use escrow accounts to mitigate it (Belavina et al. 2019).

In the case of ICOs, there typically exists no third party between the fundraising firm and

its investors. Instead, moral hazard is addressed, among other things, via the existence of
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a peer-to-peer secondary market for the tokens. To see this, consider that in our model,

the fraction of tokens sold during the ICO, in equilibrium, is below the misconduct fraction,

motivating the firm to produce at a level that leads to the highest expected equilibrium token

price. Thus, in contrast to the alternative financing methods mentioned above, ICOs fight

moral hazard without the need for an intermediary.

2) Nature of Investors.

The ICO secondary market is a peer-to-peer market that allows all token owners to jointly

sell the tokens to those who desire them. As discussed in Appendix A.1, this suggests that the

investors (speculators) do not have to be the consumers of the firms products. In contrast, en-

trepreneurs running traditional crowdfunding campaigns (e.g., on Kickstarter), pre-sell their

products directly to early adopting customers during the fundraising stage. This implies that

the majority, if not all, of the backers in crowdfunding campaigns are the actual product

consumers. Given the different nature of investors, it is reasonable to argue that ICOs have

access to a larger investor pool than the crowdfunding projects. Indeed, an average ICO

project in 2018 was able to raise $11.52 million (Cointelegraph 2019), which is closer to the

average VC deal value in the same year ($14.6 million) (PitchBook 2019) and far exceeded

the crowdfunding average ($10k) (Kickstarter 2019).

2. Implications of the issuance of tokens

While both ICOs and crowdfunding raise funds through retail investors, the issuance of tokens

further differentiates ICOs from crowdfunding. Our model shows that the utility tokens allow

revenue sharing and the equity tokens allow profit sharing among all token holders. In addition,

the tokens dilute the impact of future demand on the firm by allowing the firm to disperse the

downside risks of low demand realization among the investors. On the contrary, the backers of

a crowdfunding campaign do not share such risks because a low demand in the crowdfunding

aftermarket would only hurt the firm’s profit.

A.3 Example: Honeypod Whitepaper

Honeypod (Honeypod 2018) aims to produce a hardware that serves as the main hub that inter-

connects various devices and provides traffic filtering. The company claims that they have mature

products that are ready for mass production before token crowdsale.

Parameters captured by our model include

1. Hard cap (m = 200, 000, 000).

2. ICO sales cap/soft cap (n = 40, 000, 000).
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3. Fixed token price of during public token sale (τ = $0.05).

4. Customers’ willingness to pay (v = $99).

5. Manufacturing cost (c = $32).

6. Production quantity over 12 months (Q = 50, 000).

Parameters not captured by our model include

1. Four tiers of fixed token prices during private token sale ($0.02, $0.025, $0.03, $0.035).

2. Other use of funds from the token sale (e.g. 25% on maintenance, R&D).

Parameters in our model that are not mentioned in the white paper include

1. Aggregate demand (D).

B Technical Results

B.1 Equilibrium Number of Speculators and Participation Constraint

Having derived the firm’s optimal production quantity for a given ICO design τ, n, we next examine

the implications on speculators.

Lemma 2. (Speculator Equilibrium Properties) Given initial token price τ and the sales cap n,

i) The number of speculators who purchase tokens is s∗(τ, n) = n · 1{u(n)≥0},

ii) s∗(τ, n) ∈
[
0,m

(
1− c

v

)]
, i.e., there is no fund diversion in equilibrium,

iii) Define s0(τ) = max {0 < s ≤ m : u(s) = 0}. If s0(τ) exists, s0(τ) < m
(
1− c

v

)
and u(s) < 0

for all s > s0(τ).

Lemma 2, part i) is a compact way to write that in equilibrium, the number of speculators pur-

chasing tickets is equal to the ICO cap, as long as speculators’ participation constraint is satisfied.

This is because all speculators have the same expected profit, and hence, either n speculators will

purchase tokens (if this expected profit is ≥ 0), or none will. Note, this result holds for sequential

arrivals as well.

Lemma 2, part ii) defines a lower and upper bound on the number of speculators that arises

in equilibrium. The lower bound is trivial. The upper bound is a consequence of the firm’s

misconduct threshold derived in Proposition 1, and captures the fact that in any equilibrium,

speculators strategically prevent their funds from being diverted.

Lemma 2, part iii) is a necessary technical condition ensuring speculator participation constraint

holds, and hence, the success of the ICO. In the Sections 3.2 and B.2, we show that the existence

of s0(τ) depends on τ , which in turn depends on n, and discuss the implications.
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B.2 Optimal Token Price and ICO Cap

Given the optimal production quantity and speculators’ equilibrium behavior, we now examine how

the firm sets the profit-maximizing ICO token cap n∗ and initial token price τ∗.

From Lemma 2, the number of speculators s∗(τ, n) ≤ m
(
1− c

v

)
, and given speculators partici-

pating in the ICO buy 1 token each, we need not consider the case in which tokens n > m
(
1− c

v

)
.

We will first find the token price τ∗(n) for a given token cap n ≤ m
(
1− c

v

)
and then maximize

profit over the token cap n.

For a fixed n, the platform’s optimization problem (3) can be written as a maximization problem

over τ subject to speculators’ participation constraint. In particular, the optimization problem is

max
τ≥0

Π = τ(n) s∗(τ, n)− cQ∗(s∗(τ, n)) + (m− s∗(τ, n))E[τeq(s
∗(τ, n))], (5)

subject to u(s∗(τ, n)) ≥ 0 and Q∗(s∗(τ, n)) = min
{
F−1

(
1− cm

(m−s∗(τ,n))v

)
, τ s

∗(τ,n)
c

}
(from Propo-

sition 1). Proposition 2 (see Section 3.2) guarantees the existence of a nonzero equilibrium token

price τ∗.

Next we find the optimal ICO token price τ∗(n) assuming the two conditions in Proposition 2

are met. Before stating the proposition, we impose an additional technical condition on the demand

distribution to guarantee equilibrium uniqueness11: f ′(F−1(y)
(f(F−1(y))2

> −3v
c ·k ·

1−k
2k−1 where k = 1− c

(1−y)v

and y ∈ [0, 1− 2c
v ).

Proposition 5. (Optimal ICO Token Price)

When v > 2c,

i) For a given n ∈ (mc
v , m

(
1− c

v

)
], there exists a finite positive τ∗(n) uniquely determined by

u(s∗(τ∗(n))) = 0.

ii) There exists a unique n̂ ∈ (mc
v ,

m
2 ) such that

• for n ∈
[
mc
v , n̂

)
, τ∗(n) is the unique solution of τ∗(n) = v

m E
[
min

{
D, τ

∗(n)n
c

}]
;

• for n ∈
[
n̂,m

(
1− c

v

)]
, τ∗(n) = v

m E
[
min

{
D,F−1

(
1− cm

(m−n)v

)}]
.

Part (i) of Proposition 5 shows that when the price-cost ratio is high enough, for any fixed ICO cap

n in the appropriate range as suggested by Proposition 2 (i), there exists a unique, positive and

finite ICO token price τ∗(n) that maximizes (5) by extracting all utility from the speculators who

participate strategically according to Lemma 2. By (1), this implies that the expected equilibrium

11One can readily check analytically or numerically) that this sufficient condition is generally satisfied for some
common distributions such as uniform and normal. All numerical results presented in the paper satisfy this condition.
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token price in the market period is equal to the optimal ICO token price, i.e., E[τeq(s(τ
∗(n), n)] =

τ∗(n). We then solve u(s∗(τ∗(n))) = 0 using Lemma 1 (ii) and Proposition 1 (i) and obtain part (ii)

of Proposition 5. Recall that the term τ∗(n)n
c reflects the budget constraint and F−1

(
1− cm

(m−n)v

)
is the constrained optimal production quantity. Therefore, part (ii) of Proposition 5 suggests that

the firm, upon setting the optimal ICO token price, spends all funds raised on production when

the ICO cap n is small but produces an optimal quantity without using all the funds when n is

large or n
m is closer to the misconduct fraction.

Knowing τ∗(n), s∗(τ∗(n), n) and Q∗(s∗(τ∗(n), n)), the firm’s optimization problem reduces to

a maximization problem over the ICO cap n given by

max
mc
v
<n≤m(1− c

v )
Π = τ∗(n) s∗(τ∗(n), n) − cQ∗(s∗(τ∗(n), n))

+ (m− s∗(τ∗(n), n))E[τeq(s
∗(τ∗(n), n))] (6)

where s∗(τ(n), n) = n, Q∗(s∗(τ(n), n)) = min
{
F−1(1− cm

(m−n)v ), τ
∗(n)n
c

}
and τ∗(n) is given by

Proposition 5 part ii).

This leads to the following result.

Proposition 6. (Equilibrium ICO Cap) When v > 2c, the unique optimal ICO cap n∗ ∈ (mc
v ,

m
2 )

equals the threshold n̂ in Proposition 5 ii), and is the solution to the following equation:

v n∗

cm
E
[
min

{
D,F−1(1− cm

(m− n∗)v
)

}]
= F−1

(
1− cm

(m− n∗)v

)
.

Proposition 6 tells us that neither a small ICO cap that suppresses the production quantity

nor a large cap that induces idle cash is profit-maximizing for the firm. The optimal ICO cap n∗

allows the firm to raise just enough funds that can be credibly committed to production, and here

we provide a semi-closed-form solution of n∗.

B.3 Sequential Arrival of Speculators

In this section, we assume that the z speculators arrive sequentially during the ICO period and

observe the number of tokens sold before their arrival, rather than showing up simultaneously.

Tokens are sold on a first-come, first-served basis and each speculator buys either zero or one token

based on the expected profit of their purchase. We will show that while this alternative assumption

on the speculators’ arrival changes one of the intermediate results, it leads to the same equilibrium

results as in the rest of the paper.
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Suppose the first s speculators will buy one token each. Then anyone who arrives later than

the s− th speculator will not buy any token and thus obtains zero utility. In this section, we focus

on the earliest s arrivers. The expected profit of such a speculator given there s tokens will be sold

by the end of the ICO is given by

u(s) = ∆(s)1{s>0}, (7)

where ∆(s), by (1), Lemma 1 and Proposition 1, is

∆(s) =
v

m
E
[
min

{
D,F−1

(
1− cm

(m− s)v

)
,
τ s

c

}
· 1{s<m(1− c

v )}

]
− τ. (8)

The participation constraint requires that u(s) ≥ 0. From (8) we immediately know that the

equilibrium number of speculators will never be m
(
1− c

v

)
or beyond because u(s) = −τ < 0 for

s ≥ m
(
1− c

v

)
. Therefore, the speculators who arrive sequentially would collectively buy under the

misconduct fraction.

Since u(s) and ∆(s) have the same sign for s > 0, Lemma 2 part iii) still holds. Lemma 2 part

iii) tells us that when the speculators arrive sequentially, there will be exactly s0(τ) speculators

without the sales cap n. However, note that s0(τ) is not necessarily the utility-maximizing s because

the early speculators cannot stop those who arrive later from buying more tokens unless it is no

longer profitable to do so.

So far there are two upper bounds of the equilibrium number of speculators s∗: the sales cap,

n, and s0(τ)12. We express s∗ in terms of these two upper bounds in the following proposition.

Proposition 7. (Equilibrium Number of Sequentially Arriving Speculators)

Given initial token price τ and the sales cap n, the equilibrium number of speculators is given by

s∗(τ, n) = min {s0(τ), n} (9)

provided that s0(τ) exists and

u(s∗) ≥ 0. (10)

If s0(τ) does not exist or u(min {s0(τ), n}) < 0, then there will be no speculators and thus ICO

fails.

Note that the expression of u(s) with simultaneous arrivals given by (1) and that with sequential

12In this section, we assume that s0(τ) exists because its existence is necessary for u(s∗) ≥ 0 for some s > 0. We
show that the existence of s0(τ) depends on both τ and n and discuss the conditions (the critical mass condition and
a high willingness-to-pay) in Section 3.2.
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arrivals given by (7) have the same sign, albeit differing by a scale of s/z for s > 0. Since the

magnitude of the speculators’ utility does not affect their purchase decision or the firm’s profit,

Propositions 2 - 4 and Proposition 3 (iii) hold for both arrival assumptions. Details can be found

in Appendix D.

Moreover, following Proposition 3, we can show that setting a sales cap is not needed when the

customers observe their arrival sequence.

Corollary 1. When v > 2c, in equilibrium we have n∗ = s0(τ∗(n∗)).

By Corollary 1, the optimal ICO sales cap is equal to the equilibrium number of speculators

who would participate even when the cap is unannounced. Therefore, to reach the target level of

token sales n∗ that eventually induces maximum expected profit, it suffices to set the ICO token

price to be τ∗(n∗).

B.4 Equity Tokens

This section contains the technical analysis for ICOs with equity tokens. By definition, in the

market period, the realized value of each equity token is

τeq,e =
1

m
· (v min{D,Qe} − cQe)

+ . (11)

The firm maximizes its expected dollar-denominated wealth at the end of the market period,

denoted by Πe, which consists of three terms: i) the total funds raised during the ICO, τe s(τe, ne),

plus ii) the expected total profit, v E [min{D,Q}] − cQ, minus iii) total payout to other token

holders, s(τe, ne)E [τeq,e]. The objective function is as follows.

max
τe, ne

{
τe s(τe, ne) + max

Qe

{
(v E [min{D,Qe}] − cQe)−

s(τe, ne)

m
E [v min{D,Qe} − cQe]

+

}}
(12)

subject to

τe s(τe, ne)− cQe ≥ 0, (ICO funds cover production costs)

u(s(τe, ne)) ≥ 0. (speculators’ participation constraint)

Again, we will find the subgame perfect equilibrium using backward induction.

First, we consider the optimal production quantity Q∗e given fixed token price τe and ICO cap

ne. Let Q∗u(s) denote the optimal production quantity unconstrained by the budget.
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Proposition 8. (Optimal Production Quantity with Equity Tokens)

For a fixed token price τe, ICO cap ne and number of speculators s ∈ (0,m), the firm’s optimal

production quantity is Q∗e(s) = min
{
Q∗u(s), τe sc

}
, where Q∗u(s) > 0 is the unique solution of

(m− s)[(1− F (Q∗u(s)) v − c] = s c F
( c
v
Q∗u(s)

)
. (13)

We show in the proof of Proposition 8 that Q∗u(s) decreases monotonically in s and the firm,

ignoring the budget constraint, would produce at the first best production when s = 0 as Q∗u(0) =

F−1
(
v−c
v

)
. Therefore, for any positive number of speculators, the firm produces less than the

first-best quantity. The other boundary case is Q∗u(m) = 0. Since Q∗e(m) = min
{
Q∗u(m), τemc

}
=

min
{

0, τemc
}

= 0, the firm produces nothing when s = m. Therefore, in the case of equity tokens,

the misconduct fraction is 1.

At this point, we make a regularity assumption on the demand distribution13: f(x) < a2 ·f(ax)

for a > 2. Using the result of Proposition 8, we show next that successful ICOs with equity tokens

require a larger fraction of the tokens to be sold during the ICO than those with utility tokens.

Proposition 9. (Conditions for ICO Success with Equity Tokens)

An ICO that issues equity tokens succeeds if and only if

i) (critical mass condition) the firm sells more than c
v−c m tokens in the ICO and,

ii) (price-cost ratio requirement) customers have a high willingness-to-pay such that v > 2c.

Recall from Proposition 2 part (i) that with utility tokens, the minimum number of tokens

needed for production is c
v m. Since c

v−c m > c
v m, part (i) suggests a more stringent critical mass

condition for equity tokens. Following part (i) and Proposition 8 that the firm should not sell

all of its equity tokens, we need c
v−c m < m for the existence of feasible n, which leads to part

(ii). Comparing with Proposition 2 part (ii), we see that the price-cost ratio requirement is the

same for both types of tokens. Therefore, while intuitively the equity tokens put an emphasis on

“profit” by definition, they do not require a higher or lower profit margin of the product than the

revenue-sharing utility tokens.

Lastly, we show that when the two conditions given by Proposition 9 are met, the firm sets the

ICO token price such that the speculators’ expected utility is zero—a similar result to Proposition

5(i).

13This assumption is satisfied by distributions that do not contain sharp peaks such as uniform distributions and
most normal distributions.
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Proposition 10. (Optimal ICO Equity Token Price)

When v > 2c, for a given ne ∈ ( c
v−c m, m), there exists a finite positive τ∗e (ne) uniquely determined

by u(s∗(τ∗e (ne))) = 0.

B.5 Extension: Risk of Production Failure

In this section, we provide technical details for the extension with risks of production failure in

Section 5. Let α ∈ (0, 1] denote the probability that the firm’s technology leads to successful

production and suppose that the value of α is common knowledge. The firm either successfully

produces the decided quantity or ends up with zero acceptable products. We also assume that the

firm finds out whether production has been successful at the end of the production period, after

it has paid the necessary production cost for the decided quantity. In other words, the production

cost is sunk regardless of the outcome of production.

Given such risks, the equilibrium token price is given by τeq = (1 − α) · vm min {0, D} + α ·
v
m min {Q,D}, and thus E[τeq] = α · vmE[min {Q,D}]. The firm solves a modified objective function

max
τ, n

{
τ s(τ, n) + max

Q

[
α (m− s(τ, n))

v

m
E[min {Q,D}]− cQ

]}
(14)

subject to

τ s(τ, n)− cQ ≥ 0, (ICO funds cover production costs)

u(s(τ, n)) ≥ 0. (speculators’ participation constraint)

We show next that riskier production intensifies the moral hazard problem.

Proposition 11. (Optimal Production Quantity under Risks of Production Failure)

Suppose the firm’s production is successful with probability α ∈ (0, 1]. For a fixed token price τ ,

ICO cap n and number of speculators s, the firm’s optimal production quantity Q∗(s) is as follows.

i) If 0 < s < m(1− c
αv ), then Q∗(s) = min

{
F−1

(
1− cm

α(m−s)v

)
, τ sc

}
.

ii) If s = 0 or s ≥ m(1− c
αv ), then Q∗(s) = 0.

Proposition 11 shows that given the same ICO token price and ICO cap, a lower success prob-

ability leads to lower production quantity. The firm is also more likely to give up production and

run away when α is smaller because the misconduct fraction, 1− c
αv , is lower. As a result, we show

in Proposition 12 that ICOs are harder to succeed under greater production risks.

Proposition 12. (Conditions for ICO Success under Risks of Production Failure)
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Suppose the firm’s production is successful with probability α ∈ (0, 1]. Then, the ICO succeeds if

and only if

i) (critical mass condition) the firm sells more than mc
αv tokens in the ICO and,

ii) (price-cost ratio requirement) customers have a high willingness-to-pay such that v > 2c
α .

B.6 Extension: Speculators with Outside Investment Options

In this section, we provide technical details for the extension with outisde investment options in

Section 5. Suppose there exists a generic outside investment option that returns k > 0 dollars per

dollar investment. The outside option provides a new reference point when the speculators evaluate

their ICO return. Let ∆i(s) denote the expected profit improvement by investing in an ICO with

utility tokens. Then,

∆i(s) = E[τeq(s)]− τ − τ k = E[τeq(s)]− (k + 1) τ, (15)

and the speculators expected utility is u(s) = s
z∆i(s). The firm solves the same objective function

as in (3). Therefore, the misconduct fraction is unaffected by the presence of the outside option,

and the optimal production quantity in the subgame still follows that in Proposition 1. However,

we show below that a higher return of the outside option makes ICOs harder to succeed as it leads

to more stringent success conditions.

Proposition 13. (Conditions for ICO Success with an Outside Investment Option)

In the presence of an outside investment option with return k per dollar invested, the ICO succeeds

if and only if

i) (critical mass condition) the firm sells more than (1 + k)mc
v tokens in the ICO and,

ii) (price-cost ratio requirement) customers have a high willingness-to-pay such that v > (2+k)c.

Next, we show that the optimal ICO token price makes the expected return of the tokens equal

to that of the outside option.

Proposition 14. (Optimal ICO Token Price with an Outside Investment Option)

When v > (2 + k) c, For a given n ∈ ((1 + k)mc
v ,m

(
1− c

v

)
), there exists a finite positive τ∗(n)

uniquely determined by u(s∗(τ∗(n))) = 0.
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Figure 2: Impact of Mean of Demand

C Numerical Experiments

C.1 Numerical Experiments: ICOs with Utility Tokens

In this section, we provide a comparative-statics analysis through numerical experiments14. In

particular, we focus on the impact of the mean and variance of demand and customers’ willingness-

to-pay.

When demand of the product is higher on average, the tokens, with a fixed supply, become more

valuable (Figure 2 (a)). Therefore, the token price increases, allowing the firm to raise more capital

in the ICO and produce a larger quantity to meet the demand (which can be readily checked). Note

that the increase in product demand does not mean higher participation of speculators—in fact, we

find the firm is incentivized to put a stricter cap on the ICO token sales and save more tokens to the

secondary offering round (Figure 2 (b)). This is consistent with the inverse relationship between

the cap n∗ and the other equilibrium quantities including Q∗ and τ suggested by Proposition 3.

Interestingly, the effect of the appreciation in the token price dominates that of the reduction in

the proportion of tokens sold in the ICO.

We see different trends with respect to demand variability of the two firms—when demand

fluctuates more, the ICO newsvendor reduces production whereas the traditional newsvendor may

stock up (Figure 3 (a)). Such distinction could well come from the fact that higher uncertainty

in the market adversely affects speculators’ confidence in the token, driving the token price down

(Figure 3 (b)). When facing high demand variability, it is also in the firm’s best interest to sell

more tokens in the ICO (Figure 3 (c)). However, as suggested by Proposition 3, the firm, to

14In all of our numerical experiments throughout the paper, demand follows a truncated normal distribution
distributed with mean µ, standard deviation σ, lower bound 1, upper bound 2µ. By default, the parameters are
assigned values µ = 500, σ = 166, m = 1000, c = 1 and v = 3. Note that while we don’t use the parameters in
the Honeypod example, the default price-cost ratio in our numerical experiments is very close to Honeypod’s (3 vs
99/32).
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Figure 3: Impact of Standard Deviation (Std) of Demand

guarantee the success of the ICO, needs to save at least half of all tokens for the market period.

As a result, the decrease in the token price has a dominating effect on the funds raised. We find

that greater demand uncertainty hurts both the firm’s ability to raise capital (Figure 3 (a)) and its

profit (Figure 3 (d)). Moreover, the profit gap between ICO financing and first best widens (Figure

3 (e)) as demand variability increases, suggesting that ICOs are better suited for products with a

more predictable or stable market.

Similar to a higher mean demand, a higher willingness-to-pay boosts the token value (Figure 4

(a)) and allows the firm to raise more funds (Figure 4 (b)) in the ICO while saving a larger fraction

of tokens for the secondary offering (Figure 4 (c)). However, the rate of increase in funds raised

due to a higher v decreases in v whereas that due to a higher mean demand is almost constant.

This is because the equilibrium cap on ICO token sales n decreases drastically in v and the reason

the firm is motivated to save that many tokens for the secondary offering is that the firm mainly

takes advantage of the higher profit margin rather than the higher sales volume. Moreover, while

a higher willingness-to-pay incentivizes both the traditional newsvendor and the ICO newsvendor

to produce more, it reduces the extent of underproduction by the ICO newsvendor (Figure 4 (b)).

Lastly, it can be readily checked that either a larger demand or a higher willingness-to-pay lead

to a higher expected profit and reduce the profit gap between ICO financing and the first best
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(Figure 4 (d)). Our numerical results also show that financing through an ICO leads to a lower

variance of the expected profits (Figure 2 (c), 3 (f)).

C.2 Numerical Experiments: ICOs with Equity Tokens

In Sections 4 and B.4, we show analytically that ICOs with either type of token lead to underpro-

duction. Through numerical experiments, we find that issuing equity tokens incentivizes the firm

to produce more products (Figure 5), ceteris paribus. While good market conditions (high mean,

low variance, high willingness-to-pay) reduce the extent of underproduction in both cases, they

push the production level of the firm that issues equity tokens even closer to that of a traditional

newsvendor. This suggests that the first-best is almost achievable with equity tokens.

Another immediate implication of a higher production level with the issuance of equity tokens,

by Proposition 3 (iii), is that the funds raised through the equity token ICO must surpass that

through the utility token ICO, because s(n∗e, τ
∗
e ) · τ∗e ≥ c ·Q∗e > c ·Q∗ = s(n∗, τ∗) · τ∗.

Figure 6 shows that the revenue-sharing utility tokens have a higher market value than the

equity tokens as the prices of the equity tokens (both the ICO token price and the expected market

equilibrium token price) are consistently lower. Figure 7 shows that more equity tokens will be

sold than utility tokens, although the gap diminishes under better market conditions. Since the
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total ICO proceeds, which equals the product of price and ICO cap, is higher with equity tokens,

the effect of a larger ICO cap outweighs that of lower prices. Moreover, it can be readily checked

that the firm spends all ICO proceeds on production rather than leaving any funds idle, i.e.,

s(n∗e, τ
∗
e ) · τ∗e = n∗e · τ∗e = c · Q∗e. Note that this result with equity tokens echoes that with utility

tokens (Proposition 3 (iii)).

Finally, with a closer-to-optimal production quantity, the firm obtains a higher total wealth

with equity tokens than with utility tokens (Figure 8). In particular, when market conditions are
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Figure 9: Firm’s Final Wealth under Risks of Production Failure

better, equity tokens allow the firm to achieve near-the-first-best outcome.

C.3 Numerical Experiments: Risk of Production Failure

Numerically, we show that the firm’s final wealth increases in the success probability (Figure 9

(a)) and customers’ willingness-to-pay (Figure 9 (b)). Interestingly, the optimal strategy varies for

different values of α and v. Recall that we show in Proposition 3 (iii) that when there is no risk

(α = 1), the firm invests all money raised on production. Now, for α < 1, the firm does the same

if either the risks are high or the willingness-to-pay is low (Figure 10 (a,b)). Under more favorable

conditions, i.e. low risk (α < 1 but close to 1) and high willingness-to-pay, the firm spends part

of its funds raised on production and saves the rest (Figure 10 (c)). Such practice guarantees that

the firm ends up with positive final wealth even if production fails.

C.4 Numerical Experiments: Speculators with Outside Investment Options

Intuitively, a better-paying outside option makes ICOs less attractive in comparison. To incentivize

the speculators’ to participate, the firm needs to make token trading more lucrative by either raising
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Figure 11: Impact of Outside Investment Return on ICOs

the expected market token price or reducing the ICO token price. Since the former is difficult to

achieve given that the demand distribution remains unchanged, the firm has to do the latter. Our

numerical results show that as k increases, the token prices drop (Figure 11 (a)) and the firm sells

more tokens during the ICO (Figure 11 (b)) to mitigate the loss in funds raised. A higher k also

discourages production (Figure 11 (c)) and hurts the firm’s final wealth (Figure 11 (d)).

In Appendix B.6, we show that the optimal ICO token price makes the expected return of the

tokens equal to that of the outside option. This result can be readily checked in Figure 11 (a),

where for any value of k, the difference of the token prices divided by the ICO token price is exactly
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k.

D Proofs

Proof of Lemma 1

i) First note that the customers have a fixed willingness-to-pay v that is equal to p · τeq. Suppose

p > m/min {Q,D}, then the demand of tokens p · min {Q,D} exceeds the supply of tokens, m.

This will drive the price of the token up, resulting in a decrease in the token-denominated price.

In other words, τeq will increase and p will decrease. Similarly, if p < m/min {Q,D}, then the

demand of tokens is less than the supply of tokens, which induces an increase in p. Therefore, in

equilibrium, demand of tokens is equal to its supply, i.e., p ·min {Q,D} = m.

ii) The result follows immediately from τeq = v/p and Part (i).

Proof of Proposition 1

Taking derivative with respect to Q and applying Lemma 1,

dΠ

dQ
= − c+ (m− s) d

dQ

vE[min {Q,D}]
m

= − c+ (m− s) v
m

(1− F (Q))

= [(m− s) v
m
− c ] − (m− s) v

m
F (Q) (16)

By (16), dΠ
dQ < 0 when (m − s) v

m − c < 0, i.e., s > m
(
1− c

v

)
. On the other hand, when s ≤

m
(
1− c

v

)
, ignoring the budget constraint and setting dΠ

dQ = 0, we get Q∗unconstrained(s) = F−1(1−
cm

(m−s)v ). Since d2Π
dQ2 = − (m− s) v

mf(Q) < 0, the profit function is concave in Q and Q∗unconstrained

is a maximum. Hence the firm’s optimal production quantity is given by

Q∗(s) = min

{
F−1(1− cm

(m− s)v
),
τ s

c

}
· 1{s≤m(1− c

v )}. (17)

Proof of Proposition 2

i) For an ICO to succeed, there must be a positive number of speculators who invest. Therefore,

the firm needs to set a (τ, n) pair that satisfies the speculators’ participation constraint.

Consider a fixed n > 0. A necessary condition for this n to induce a successful ICO is that

there exists τ > 0 such that s∗(τ, n) > 0 and u(s∗(τ, n)) ≥ 0, which is a necessary condition

for the existence of s0(τ). Therefore, we will characterize such n while assuming the existence
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of s0(τ).

Now, for the fixed n > 0, we divide the space of possible τ into two partitions, T1 = {τ ≥ 0 :

s0(τ) < n} and T2 = {τ ≥ 0 : s0(τ) ≥ n}, and in each partition look for eligible τ > 0, i.e.,

s∗(τ, n) > 0 and u(s∗(τ, n)) ≥ 0.

(Simultaneous, T1) When n > s0(τ), with simultaneous arrival s∗ = 0. Therefore, there is no

eligible τ > 0 in T1.

(Simultaneous, T2) Now we consider T2 where 0 < n ≤ s0(τ). First note that when τ = 0, the

firm raises no money and thus produces Q∗ = 0. Therefore u(s∗(0, n)) = 0 and 0 ∈ T2. To

find out if an eligible τ > 0 exists in T2, we need to know how u(s∗(τ, n)) changes in τ ∈ T2.

Under simultaneous arrivals, by (1) and (8) we have

du(s∗(τ, n))

dτ

∣∣∣∣
τ∈T2

=
d

dτ

[n
z

∆(n)
]

=
n

z

[
v

m

d

dτ
E[min

{
D,F−1(1− cm

(m− n)v
),
τ n

c

}
]− 1

]
=

n

z

[
v

m

d

dτ
E[min

{
D,

τ n

c

}
] · 1{F−1(1− cm

(m−n)v )≥ τ n
c
}

]
+
n

z

[
v

m

d

dτ
E[min

{
D,F−1(1− cm

(m− n)v
)

}
] · 1{F−1(1− cm

(m−n)v )< τ n
c
} − 1

]
=

n

z

[ v
m

(1− F (
τ n

c
))
n

c
· 1{τ≤ c

n
F−1(1− cm

(m−n)v )}

]
+
n

z

[
v

m
(1− F (F−1(1− cm

(m− n)v
))) · 0 · 1{τ> c

n
F−1(1− cm

(m−n)v )} − 1

]
=

n

z

[ v
m

(1− F (
τ n

c
))
n

c
· 1{τ≤ c

n
F−1(1− cm

(m−n)v )} − 1
]
. (18)

By the analysis of T1 and (18), for τ > c
nF
−1(1− cm

(m−n)v ), the speculators’ utility would either

remain the same (if τ ∈ T1) or keep decreasing in τ (if τ ∈ T2) as du(s∗(τ,n))
dτ |τ∈T2 = −n

z < 0.

For τ ≤ c
nF
−1(1 − cm

(m−n)v ), u(s∗(τ, n) is either zero (if τ ∈ T1) or keeps decreasing in τ (if

τ ∈ T2) as (1 − F ( τ nc ) decreases in τ . Hence, to guarantee a positive number of speculators

and thus non-negative profit, it is necessary and sufficient for the platform to set n such

that du(s∗(τ,n))
dτ

∣∣
τ=0

= n
z

[
v
m (1− F (0·n

c )) nc − 1
]
> 0, i.e., n > mc

v . In this case, ∃τ > 0 s.t.

u(s∗(τ, n)) > 0. Note that by definition of s0(τ), it must be that s∗(τ, n) < s0(τ) and thus

n < s0(τ), which means that this τ is indeed in T2.

(Sequential) Consider the sequential arrivals assumption.

When n > s0(τ), s∗(τ, n) = min {s0(τ), n} = s0(τ) and u(s∗(τ, n)) = 0. Ostensibly, there

exists eligible τ ’s in T1. However, we have assumed the existence of s0(τ) and we need to
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make sure that it still holds. The existence of s0(τ) depends on the behavior of u(s∗(τ, n))

for τ ∈ T2. By (8) and (7), we have

du(s∗(τ, n))

dτ

∣∣∣∣
τ∈T2

=
d

dτ
∆(n)

=
v

m
(1− F (

τ n

c
))
n

c
· 1{τ≤ c

n
F−1(1− cm

(m−n)v )} − 1. (19)

Note that (19) only differs from (18) by a scale of n
z . We then follow a similar argument as

in part (Simultaneous, T2) to show that s0(τ) exists if and only if n > mc
v .

ii) By Part (i), s∗ ≥ mc
v . On the other hand, we showed in Section B.1 that s∗ < m

(
1− c

v

)
.

Therefore, the ICO fails if m
(
1− c

v

)
≤ mc

v , i.e., v ≤ 2c.

Proof of Proposition 3

i) Shown by Proposition 2.

ii) (a) Shown by Proposition 6.

(b) By Lemma 2, s∗(τ∗, n∗) = n∗ · 1{u(n∗)≥0}. By definition of τ∗ as in Proposition 5 part

(i), we know that u(n∗) = u(n∗, n∗, τ∗) ≥ 0. The result follows.

(c) By Proposition 5, we know that there exists a unique n̂ ∈ (mc
v ,

m
2 ) such that the following

holds:

• v n̂
cm E[min

{
D,F−1(1− cm

(m−n̂)v )
}

] = F−1(1− cm
(m−n̂)v );

• F−1(1− cm
(m−n̂)v ) = τ∗(n̂)n̂

c .

We show in the proof of Proposition 6 that this n̂ is a global maximum point, which we

call n∗. Hence, v n∗

cm E[min
{
D,F−1(1− cm

(m−n∗)v )
}

] = τ∗(n∗)n∗

c , and the ICO token price

is τ∗ = v
m E[min

{
D,F−1(1− cm

(m−n∗)v )
}

].

(d) Following the proof of part (c) and substituting n∗ and τ∗ into Proposition 1 part (i),

we have Q∗ = min
{
F−1(1− cm

(m−n∗)v ), τ
∗n∗

c

}
= F−1(1− cm

(m−n∗)v ).

(e) By definition of τ∗ as in Proposition 5 part (i), we have E[τeq] = τ∗. We obtain the

result by part (c).

iii) By part (a), (c) and (e) of Proposition 3, we have n∗ · τ∗ = Q∗ · c.

Proof of Proposition 4

i) Shown by Proposition 3.
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ii) By Proposition 3, Q∗ICO = F−1(1− cm
(m−n∗)v ). The optimal production quantity of a traditional

newsvendor is F−1(1 − c
v ). Since m

m−n∗ > 1 and F−1 is an increasing function, we have

F−1(1− cm
(m−n∗)v ) < F−1(1− c

v ).

iii) The ICO newsvendor’s profit is given by ΠICO = τ∗ s∗−cQ∗+(m−s∗)E[τeq]. By Proposition

3, τ∗ = E[τeq], therefore

ΠICO = mE[τeq]− cQ∗

= v E[min

{
D,F−1(1− cm

(m− n∗)v
)

}
]− c F−1(1− cm

(m− n∗)v
)

= Πtraditional(F
−1(1− cm

(m− n∗)v
)) (20)

where Πtraditional is the profit function of a traditional newsvendor defined as Πtraditional(Q) =

v E[min {D,Q}] − cQ. We know that Πtraditional(Q) is maximized by F−1(1 − c
v ) which

is greater than F−1(1 − cm
(m−n∗)v ) by part (ii). Therefore Πtraditional(F

−1(1 − cm
(m−n∗)v )) <

Πtraditional(F
−1(1− c

v )).

iv) The fact that the firm who finances through ICO does not invest its own money makes sure

that it never suffers a loss. Indeed, following (20),

ΠICO = v

∫ F−1(1− cm
(m−n∗)v )

0
xf(x)dx + (

cm

m− n∗
− c)F−1(1− cm

(m− n∗)v
) > 0. (21)

Proof of Lemma 2

i) See the main text.

ii) See the main text.

iii) Fix τ and n. Recall that by (1) that u(s) and ∆(s) have the same sign. Therefore, we can

also express s0(τ) as max {s ≥ 0 : ∆(s) = 0}. We now examine the behavior of ∆(s) as a

function of s:
d∆(s)

ds

∣∣∣∣
s<m(1− c

v )
=

v

m
[1− F (Q∗(s))]

dQ∗(s)

ds

∣∣∣∣
s<m(1− c

v )
, (22)

where

dQ∗(s)

ds

∣∣∣∣
s≤m(1− c

v )
=

 − cm
f(Q∗(s))(m−s)2 v if F−1(1− cm

(m−s)v ) ≤ τ s
c

τ
c otherwise

. (23)

Ignoring the sales cap n for the moment, note that for s ∈ [0,m
(
1− c

v

)
], F−1(1 − cm

(m−s)v )

39

 Electronic copy available at: https://ssrn.com/abstract=3361121 



monotonically decreases in s whereas τ s
c linearly increases in s. Also, F−1(1− cm

(m−s)v )
∣∣
s=0

=

F−1(1 − c
v ) > 0 = τ s

c

∣∣
s=0

and F−1(1 − cm
(m−s)v )

∣∣
s=m(1− c

v ) = 0 < τ s
c

∣∣
s=m(1− c

v ). Therefore,

for any fixed τ , there exists one and only one ŝ(τ) that satisfies F−1(1 − cm
(m−ŝ(τ)v ) = τ ŝ(τ)

c .

By (23), Q∗(s) increases in s for s ∈ [0, ŝ(τ)) and decreases in s for s ∈ (ŝ(τ),m
(
1− c

v

)
),

and is thus maximized at ŝ(τ). Therefore, (22) is positive for all s ∈ [0, ŝ(τ)) and negative

for all s ∈ (ŝ(τ),m
(
1− c

v

)
) and ŝ(τ) maximizes ∆(s). Now note that ∆(0) = 0 − τ = −τ

and ∆(m
(
1− c

v

)
) = 0 − τ = −τ . This shows that s0(τ) ∈ [ŝ(τ),m

(
1− c

v

)
) if it exists.

Figure 12 illustrates the relationships between the quantities mentioned above when demand

is uniformly distributed.

Figure 12: ∆(s) vs s, assuming existence of s0(τ)

Proof of Proposition 5

i) First note that by Lemma 2 or (9), for each τ , it is redundant to consider n > s0(τ). Therefore,

for each n, we can restrict our attention to the set Tr = {τ > 0 : s0(τ) ≥ n}. When

n ≤ s0(τ), we have s∗(τ, n) = n. We will first find τ∗(n) ∈ R+ that maximizes (5) evaluated

at s∗(τ, n) = n and then show that this τ∗(n) is in Tr. Since Tr ⊂ R+, this τ∗(n) must

maximize (5) over Tr.

Substituting s∗(τ, n) = n into (5) and differentiating with respect to τ ,

dΠ

dτ
= n − c

dQ∗(n)

dτ
+ (m− n)

v

m

d

dτ
E[min {D,Q∗(n)}]

= n − c
dQ∗(n)

dτ
+ (m− n)

v

m
(1− F (Q∗(n)))

dQ∗(n)

dτ

= n + [(m− n)
v

m
(1− F (Q∗(n)))− c ]

dQ∗(n)

dτ

= n + [(m− n)
v

m
(1− F (Q∗(n)))− c ]1{F−1(1− cm

(m−n)v )≥ τ n
c
}
n

c

=

 n + [(m− n) v
m (1− F (Q∗(n)))− c ]nc if F−1(1− cm

(m−n)v ) ≥ τ n
c

n otherwise
. (24)

Note that F−1(1− cm
(m−n)v ) ≥ τ n

c means (m−n) v
m (1−F (Q∗(n)))− c ≥ 0. Therefore, dΠ

dτ > 0
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for all τ , implying that for a given n, the optimal initial token price τ∗(n) is given by

τ∗(n) = max {τ : u(s∗(τ, n)) = E[τeq(Q
∗(n))]− τ ≥ 0}. (25)

Consider some n ∈ (mc
v , m

(
1− c

v

)
] and we know by (18) that du(s∗(τ,n))

dτ > 0 for τ ∈ [0, τ̃) for

some 0 < τ̃ < c
nF
−1(1− cm

(m−n)v ) such that du(s∗(τ,n))
dτ

∣∣
τ=τ̃

= 0. Given that u(s∗(0, n)) = 0, by

definition of τ∗ given by (25), we must have τ∗(n) > τ̃ > 0. We also know that τ∗(n) < ∞

because by (18), the speculators’ utility will eventually go negative as τ increases given that

du(s∗(τ,n))
dτ < 0 when τ > c

nF
−1(1 − cm

(m−n)v ). Therefore, τ∗(n) = max {τ : u(s∗(τ, n)) = 0}.

Since u(s∗(τ, n)) ≥ 0 for all τ ∈ [0, τ∗(n)] and decreases linearly in τ for τ > τ∗(n), the

equation u(s∗(τ, n)) = 0 has one and only one nonzero solution. We can thus simplify the

definition by writing τ∗(n) = {τ > 0 : u(s∗(τ, n)) = 0}.

Last, this new definition of τ∗(n) makes sure that n ≤ s0(τ∗(n)) because s0(τ∗(n)) is the

largest s that gives u(s) = 0 by definition. Therefore, s∗(τ, n) = n still holds. We can then

solve u(s∗(τ, n)) = s∗(τ,n)
z ∆(s∗(τ, n)) or equivalently ∆(s∗(τ, n)) = v

m E[min
{
D,F−1(1− cm

(m−n)v ), τ nc

}
]−

τ = 0.

ii) For a fixed n ∈ (mc
v , m

(
1− c

v

)
], we define

• τ1(n) = v
m E[min

{
D,F−1

(
1− cm

(m−n)v

)}
];

• τ2(n) : {τ > 0 : φ(τ) = v
m E[min

{
D, τ nc

}
]− τ = 0}.

By part (i) we know that τ∗(n) is either equal to τ1(n) or given by τ2(n).

We first show that τ2(n) is finite and unique. Consider φ(τ) = v
m E[min

{
D, τ nc

}
] − τ and

φ′(τ) = v
m

n
c (1 − F ( τ nc )) − 1. Note that φ(0) = 0 and φ′(0) > 0 since n > mc

v . For large

τ , φ′(τ) < 0 as φ′′(τ) = − v
m

n2

c2
f( τ nc ) < 0 for all τ ≥ 0. Therefore, there exists exactly one

0 < τ <∞, which is τ2(n), that gives φ(τ) = 0. Also note that φ′(τ2(n)) < 0 and we will use

this result in the proof of Proposition 6.

Next, let’s find out the expression of τ∗(n) for n ∈ (mc
v , m

(
1− c

v

)
]. Let g(n) = τ1(n)n

c −

F−1
(

1− cm
(m−n)v

)
and note that g(n) > 0 means τ∗(n) = τ1(n). If g(n) = 0, then F−1

(
1− cm

(m−n)v

)
=

τ1(n)n
c and thus E[min

{
D,F−1

(
1− cm

(m−n)v

)}
] = E[min

{
D, τ2(n)n

c

}
], which by definition im-

plies that τ1(n) = τ2(n) = τ∗(n). Also, g(n) < 0 means τ∗(n) 6= τ1(n) and thus τ∗(n) = τ2(n).

We will first look at n ∈ (mc
v ,

m
2 ] and then n ∈ (m2 , m

(
1− c

v

)
] (v > 2c guarantees that

mc
v < m

2 < m
(
1− c

v

)
).
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Consider n ∈ (mc
v ,

m
2 ]. Note that g(mc

v ) = E[min
{
D,F−1(v−2c

v )
}

] − F−1(v−2c
v ) < 0 and

we now show that g(m2 ) > 0. Let r = v
c and we know that r > 2. Define g̃(r) = g(m2 ) =

v
2c E[min

{
D,F−1

(
1− 2c

v

)}
]−F−1

(
1− 2c

v

)
= r

2 E[min
{
D,F−1

(
1− 2

r

)}
]−F−1

(
1− 2

r

)
. When

r = 2, g̃(2) = 0. For r ≥ 2, g̃(r) increases in r as g̃′(r) = 1
2 E[min

{
D,F−1

(
1− 2

r

)}
] +

r
2

[
1− FF−1

(
1− 2

r

)]
d
drF

−1
(
1− 2

r

)
− d

drF
−1
(
1− 2

r

)
= 1

2 E[min
{
D,F−1

(
1− 2

r

)}
] > 0 for

r ≥ 2. Therefore, g(m2 ) = g̃(r) > 0 for all r > 2.

Next note that

g′(n) =
τ1(n)

c
+
v n

cm
(1− FF−1

(
1− cm

(m− n)v

)
)
d

dn
F−1

(
1− cm

(m− n)v

)
]

− d

dn
F−1

(
1− cm

(m− n)v

)
=

v

cm
E
[
min

{
D,F−1

(
1− cm

(m− n)v

)}]
+

2n−m
m− n

d

dn
F−1

(
1− cm

(m− n)v

)
.(26)

Since d
dnF

−1
(

1− cm
(m−n)v

)
< 0, when n ≤ m

2 , g′(n) > 0. Therefore, there must exist a

unique n̂ ∈ (mc
v ,

m
2 ) such that g(n̂) = 0. This means that τ∗(n) = τ2(n) for n ∈ (mc

v , n̂),

τ∗(n) = τ1(n) for n ∈ (n̂, m2 ], and τ∗(n) = τ1(n) = τ2(n) when n = n̂.

For n ∈ (m2 , m
(
1− c

v

)
], we have g(m

(
1− c

v

)
) = v−c

c E[min
{
D,F−1(0)

}
] − F−1(0) = 0

and g′(m
(
1− c

v

)
) = 0 + 2n−m

m−n
d
dnF

−1
(

1− cm
(m−n)v

)
< 0 by (26). Since we have shown that

g(m2 ) > 0, there must be either zero or more than one n̂ ∈ (m2 , m
(
1− c

v

)
) such that g(n̂) = 0.

To rule out multiple zeros in the range of n ∈ (m2 , m
(
1− c

v

)
], a sufficient condition is that

g′′(n) < 0 for n ∈ (m2 , m
(
1− c

v

)
]. We can find g′′(n) from (26) and, after some algebra,

simplify it as

g′′(n) = − cm

f(F−1(y))(m− n)4v

[
3n+

(2n−m)cm

(m− n)v
· f ′(F−1(y)

(f(F−1(y))2

]
, (27)

where y = 1− cm
(m−n)v .

Last, we find a sufficient condition for g′′(n) < 0 for n ∈ (m2 , m
(
1− c

v

)
] or equivalently

y ∈ [0, 1− 2c
v ). By (27), to make g′′(n) < 0, it suffices to have 3n+ (2n−m)cm

(m−n)v ·
f ′(F−1(y)

(f(F−1(y))2
> 0,

or
f ′(F−1(y)

(f(F−1(y))2
> − 3n(m− n)v

(2n−m)cm
. (28)

Let n
m = k. Then k = 1− c

(1−y)v and we look at k ∈ (1
2 , 1− c

v ]. Then, the right hand side of

(28) is equal to −3v
c · k ·

1−k
2k−1 . Therefore, under our assumption, (28) holds.
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Proof of Proposition 6

By Proposition 5, we know that there exists a unique n̂ ∈ (mc
v ,

m
2 ) such that the following holds:

• v n̂
cm E[min

{
D,F−1(1− cm

(m−n̂)v )
}

] = F−1(1− cm
(m−n̂)v );

• F−1(1− cm
(m−n̂)v ) = τ∗(n̂)n̂

c .

We will first show that this n̂ is a local maximum point. Differentiating the objective function

(6) with respect to n, we have

dΠ

dn
=
dτ∗(n)

dn
· n+ τ∗(n) − c

dQ∗(n)

dn
+ (m− n)

dE[τeq(n)]

dn
− E[τeq(n)]. (29)

By part (i), we know that τ∗(n) = E[τeq(n)] and consequently simplify (29) as

dΠ

dn
= n

dτ∗(n)

dn
− c

dQ∗(n)

dn
+ (m− n)

dE[τeq(n)]

dn

= n
dτ∗(n)

dn
− c

dQ∗(n)

dn
+ (m− n)

v

m
(1− F (Q∗(n)))

dQ∗(n)

dn

= n
dτ∗(n)

dn
+ [(m− n)

v

m
(1− F (Q∗(n)))− c]dQ

∗(n)

dn
. (30)

Let’s now evaluate dΠ
dn at n = n̂. We know that τ∗(n̂) = v

m E[min
{
D,F−1(1− cm

(m−n̂)v )
}

] and

Q∗(n̂) = Q∗(τ∗(n̂), n̂) = min
{
F−1(1− cm

(m−n̂)v ), τ
∗(n̂) n̂
c

}
= F−1(1 − cm

(m−n̂)v ). Therefore, (m −

n̂) vm(1− F (Q∗(n̂)))− c vanishes. Hence,

dΠ

dn

∣∣∣∣
n=n̂

= n̂
dτ∗(n)

dn

∣∣∣∣
n=n̂

+ 0

=
v n̂

m
(1− F (Q∗(n̂)))

dQ∗(n)

dn

∣∣∣∣
n=n̂

=
c n̂

m− n̂
dQ∗(n)

dn

∣∣∣∣
n=n̂

(31)

Q∗(n) is not differentiable at n = n̂ and thus dQ∗(n)
dn

∣∣
n=n̂

does not exist. However, we’ve shown

in the proof of Lemma 2 part iii) that given τ∗(n̂), dQ∗(τ∗(n̂),n)
dn

∣∣
n<n̂

> 0 and dQ∗(τ∗(n̂),n)
dn

∣∣
n>n̂

< 0.

Therefore we know that lim
n→n̂−

dΠ
dn > 0 and lim

n→n̂+

dΠ
dn < 0, suggesting that n̂ maximizes profit locally.

Last, we will show that n̂ is the global maximum point by showing that (30) is negative for

n ∈ (n̂,m
(
1− c

v

)
] and positive for [mc

v , n̂).

For n ∈ (n̂,m
(
1− c

v

)
], we have F−1(1 − cm

(m−n)v ) < τ∗(n)n
c , Q∗(n) = F−1(1 − cm

(m−n)v ) so

(m− n) vm(1− F (Q∗(n)))− c = 0. Since dτ∗(n)
dn = v

m
d
dnE[min

{
D,F−1

(
1− cm

(m−n)v

)}
] < 0, (30) is
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negative.

Now for n ∈ (mc
v , n̂), we have F−1(1− cm

(m−n)v ) > τ∗(n)n
c and Q∗(n) = τ∗(n)n

c .

dΠ

dn

∣∣∣∣
mc
v
<n<n̂

= n
dτ∗(n)

dn

∣∣∣∣
mc
v
<n<n̂

+
[
(m− n)

v

m
(1− F (Q∗(n)))− c

] dQ∗(n)

dn

∣∣∣∣
mc
v
<n<n̂

=
n v

m
[1− F (Q∗(n̂))]

dQ∗(n)

dn

∣∣∣∣
mc
v
<n<n̂

+
[
(m− n)

v

m
(1− F (Q∗(n)))− c

] dQ∗(n)

dn

∣∣∣∣
mc
v
<n<n̂

=
[
(m− n+ n)

v

m
(1− F (Q∗(n)))− c

] dQ∗(n)

dn

∣∣∣∣
mc
v
<n<n̂

= [v [1− F (Q∗(n))]− c] dQ
∗(n)

dn

∣∣∣∣
mc
v
<n<n̂

(32)

Note that

v [1− F (Q∗(n))]− c = v [1− F (
τ∗(n)n

c
)]− c

> v [(1− F (F−1(1− cm

(m− n)v
))]− c

=
cm

m− n
− c

> 0. (33)

and dQ∗(n)
dn

∣∣
mc
v
<n<n̂

= τ∗(n)
c + n

c
dτ∗(n)
dn

∣∣
mc
v
<n<n̂

. Therefore, to show that (32) is positive, it suf-

fices to show dτ∗(n)
dn

∣∣
mc
v
<n<n̂

> 0. By Proposition 5, when mc
v < n < n̂, dτ∗(n)

dn = v
m(1 −

F ( τ
∗(n)n
c ))

[
τ∗(n)
c + n

c
dτ∗(n)
dn

]
. Rearranging, we have

dτ∗(n)

dn
= −

v
m(1− F ( τ

∗(n)n
c )) τ

∗(n)
c

v
m(1− F ( τ

∗(n)n
c ))nc − 1

(34)

The denominator of (34) is equal to φ′(τ∗(n)) where φ is defined in the proof of Proposition 5 and

we’ve shown that φ′(τ∗(n)) < 0. Therefore, (34) is positive and this completes the proof.

Proof of Proposition 7

The case where s0(τ) does not exist is trivial. Suppose that s0(τ) exists. When n > s0(τ), by

Lemma 2 part iii), we know that s∗(τ, n) = s0(τ) under sequential arrival. Now consider the case

n ≤ s0(τ). We show in the proof of Lemma 2 part iii) that u(0) < 0 and u(s) is continuous and
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crosses zero at most once for s ∈ [0, s0(τ)). Therefore, if u(n) < 0, then u(s) < 0 for all s ∈ [0, n].

This means that no s ≤ min {s0(τ), n} satisfies the participation constraint and hence s∗ = 0. On

the other hand, if u(n) ≥ 0, then s = n satisfies the participation constraint.

To see why (10) is a sufficient condition for s∗ speculators, let’s first consider the s∗ − th

speculator that arrives after s∗ − 1 other speculators have bought a token each. She knows that if

she buys a token, then she will be the last person to do so — either because there is no extra token

for sale (s∗ = n) or buying tokens after her is no longer attractive (s∗ = m
(
1− c

v

)
). Therefore,

(10) guarantees non-negative utility for her. Next, the (s∗ − 1) − th speculator knows that even

if u(s∗ − 1) < 0, buying a token now would induce the s∗ − th speculator to buy a token later,

eventually resulting in non-negative rewards. By induction, we see that it is always optimal to buy

a token for prior speculators.

Proof of Corollary 1

Substituting the expression of τ∗ in Proposition 3 part c) into part a), we see that n∗ and τ∗(n∗)

satisfy n∗

c τ
∗(n∗) = F−1(1 − cm

(m−n∗)v ). Therefore, given τ∗(n∗), we know that n∗ = ŝ(τ∗(n∗))

where ŝ(τ) is the unique maximum point of u(τ, s) as defined in the proof of Lemma 2 part

iii). Additionally, since u(τ∗(n∗), n∗) = 0, we know that n∗ is the only value of s such that

u(τ∗(n∗), s) = 0. Therefore, by definition of s0, the result follows.

Proof of Proposition 8

Let Πe denote the expected final wealth of the firm that issues equity tokens. Ignoring the budget

constraint for the moment and taking derivative of Πe with respect to Q, by (12),

dΠe

dQ
= v [1− F (Q)]− c− s

m

d

dQ
E[vmin {Q,D} − cQ]+

= v [1− F (Q)]− c− s

m

d

dQ

[
(v − c)Q [1− F (Q)] +

∫ Q

c
v
Q

(v x− cQ)f(x)dx

]
= v [1− F (Q)]− c− s

m

[
v [1− F (Q)]− c+ c F

( c
v
Q
)]

=
m− s
m

[v [1− F (Q)]− c] − s c

m
F
( c
v
Q
)
. (35)

By (35), for s ∈ (0,m), dΠe
dQ

∣∣
Q=0

= m−s
m (v−c)−0 > 0 and d2Πe

dQ2

∣∣
Q>0

= m−s
m [−f(Q)v]− s c

m ·
c
v f
(
c
vQ
)
<

0. Therefore, there exists a unique unconstrained optimal production quantity, denoted by Q∗u(s),
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such that dΠe
dQ

∣∣
Q=Q∗u(s)

= 0, i.e.,

m− s
m

[v [1− F (Q∗u(s))]− c] =
s c

m
F
( c
v
Q∗u(s)

)
. (36)

Next, we show that dQ∗u(s)
ds < 0. Differentiating (36) with respect to s, we get

− (v− c)+v F (Q∗u(s))− c F
( c
v
Q∗u(s)

)
=
[
(m− s)v f(Q∗u(s)) + s c f

( c
v
Q∗u(s)

)
· c
v

] dQ∗u(s)

ds
. (37)

By (36), the left-hand side of (37) equals −m
s [v (1 − F (Q∗u(s))) − c, which is negative. Since the

coefficient of dQ∗u(s)
ds on the right-hand side of (37) is positive, dQ∗u(s)

ds must be negative.

Proof of Proposition 9

i) To make the ICO successful, the firm needs to set a (τe, ne) pair such that a positive number

of speculators participate in the ICO, i.e., s(τe, ne) > 0, which requires the participation

constraint.

We first evaluate the behavior of ∆(s(τe, ne)). Now, ∆(s(τe, ne)) = 1
mE[vmin {Q∗e(s(τe, ne)), D}−

cQ∗e(s(τe, ne))]
+ − τe. For a fixed τe,

d∆(s)

ds
=

1

m

∂

∂Q∗e(s)
E[vmin {Q∗e(s), D} − cQ∗e(s)]+

dQ∗e(s)

ds

=
1

m

{
v [1− F (Q∗e(s))]− c+ c F

( c
v
Q∗e(s)

)} dQ∗e(s)

ds
. (38)

Following similar arguments as in Lemma 2 (iii) and the regularity assumption that f(x) <

a2 · f(ax) for a > 2, we can show that v [1−F (Q∗e(s))] − c + c F
(
c
vQ
∗
e(s)

)
> 0 for all s. This,

given that dQ∗u(s)
ds < 0, means that there exists a unique ŝ(τe) that satisfies Q∗u(s) = τe ŝ(τe)

c

and ŝ maximizes ∆(s).

Next, following the argument in Proposition 2 (i), we have

du(s∗(τe, ne))

dτe

∣∣∣∣
τe∈T2

=
d

dτe

[ne
z

∆(ne)
]

=
ne
z

[
1

m

d

dτe
E[vmin {Q∗e(ne), D} − cQ∗e(ne)]+ − 1

]
=

ne
z

[
1

m

∂

∂Q∗e
E[vmin {Q∗e(ne), D} − cQ∗e(ne)]+

dQ∗e
dτe
− 1

]
=

ne
z

[
1

m

{
v [1− F (Q∗e(ne))]− c+ c F

( c
v
Q∗e(ne)

)} dQ∗e
dτe
− 1

]
.(39)
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Again, the firm needs du(s∗(τe,ne))
dτe

∣∣
τe=0

= ne
z

[
1
m {v − c+ 0} ne

c − 1
]
> 0, i.e., ne >

c
v−c m.

ii) Since we need ne < m, by part (i), we must have 1 > c
v−c , i.e., v > 2c.

Proof of Proposition 10

For a fixed ne,
dΠe
dτe

= ∂Πe
∂τe

+ ∂Πe
∂Q∗e

dQ∗e
dτe

= ne + ∂Πe
∂Q∗e

dQ∗e
dτe

. Note that ∂Πe
∂Q∗e

> 0 because Q∗e ≤ Q∗u, and

dQ∗e
dτe

= ne
c or 0. Therefore, we know that dΠe

dτe
> 0. Given that τ∗e must satisfy the participation

constraint, we have u(s∗(τ∗e (ne))) = 0. By (39), we know that such τ∗e is finite. Lastly, since

u(s∗(τe, ne) is linear in τe, τ
∗
e (ne) must be unique.

Proof of Proposition 11

Differentiate (14) with respect to Q,

dΠ

dQ
= [(m− s) α v

m
− c ] − α (m− s) v

m
F (Q) (40)

By (40), dΠ
dQ < 0 when α(m − s) v

m − c < 0, i.e., s > m(1 − c
α v ). On the other hand, when

s ≤ m(1 − c
α v ), ignoring the budget constraint and setting dΠ

dQ = 0, we get Q∗unconstrained(s) =

F−1(1 − cm
α(m−s)v ). Since d2Π

dQ2 = −α (m − s) v
mf(Q) < 0, the profit function is concave in Q and

Q∗unconstrained is a maximum. Hence the firm’s optimal production quantity is given by

Q∗(s) = min

{
F−1(1− cm

α (m− s)v
),
τ s

c

}
· 1{s≤m(1− c

α v
)}. (41)

Proof of Proposition 12

i) We substitute the new definition of the market equilibrium token price, τeq = α· vm min {Q,D},

into (1), and then follow similar arguments in the proofs of Lemma 2(iii) and Proposition 2.

Applying (41), we have

du(s∗(τ, n))

dτ

∣∣∣∣
τ∈T2

=
d

dτ

[n
z

∆(n)
]

=
n

z

[α v
m

(1− F (
τ n

c
))
n

c
· 1{τ≤ c

n
F−1(1− cm

α (m−n)v )} − 1
]
. (42)

By the analysis of T1 and (42), for τ > c
nF
−1(1− cm

α(m−n)v ), the speculators’ utility would either

remain the same (if τ ∈ T1) or keep decreasing in τ (if τ ∈ T2) as du(s∗(τ,n))
dτ |τ∈T2 = −n

z < 0.

For τ ≤ c
nF
−1(1− cm

α(m−n)v ), u(s∗(τ, n)) is either zero (if τ ∈ T1) or keeps decreasing in τ (if
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τ ∈ T2) as (1 − F ( τ nc ) decreases in τ . Hence, to guarantee a positive number of speculators

and thus non-negative profit, it is necessary and sufficient for the platform to set n such

that du(s∗(τ,n))
dτ

∣∣
τ=0

= n
z

[
αv
m (1− F (0·n

c )) nc − 1
]
> 0, i.e., n > mc

αv . In this case, ∃τ > 0 s.t.

u(s∗(τ, n)) > 0. Note that by definition of s0(τ), it must be that s∗(τ, n) < s0(τ) and thus

n < s0(τ), which means that this τ is indeed in T2.

ii) By Part (i), s∗ ≥ mc
αv . On the other hand, we showed in Appendix B.5 that s∗ < m(1− c

α v ).

Therefore, the ICO fails if m(1− c
α v ) ≤ mc

αv , i.e., v ≤ 2c
α .

Proof of Proposition 13

i) We substitute the new definition of the expected profit given by (15) into (1), and then follow

similar arguments in the proofs of Lemma 2(iii) and Proposition 2.

Applying (17), we have

du(s∗(τ, n))

dτ

∣∣∣∣
τ∈T2

=
d

dτ

[n
z

∆(n)
]

=
n

z

[ v
m

(1− F (
τ n

c
))
n

c
· 1{τ≤ c

n
F−1(1− cm

(m−n)v )} − (1 + k)
]
. (43)

By the analysis of T1 and (43), for τ > c
nF
−1(1 − cm

(m−n)v ), the speculators’ utility would

either remain the same (if τ ∈ T1) or keep decreasing in τ (if τ ∈ T2) as du(s∗(τ,n))
dτ |τ∈T2 =

−n
z (1 + k) < 0. For τ ≤ c

nF
−1(1 − cm

(m−n)v ), u(s∗(τ, n)) is either zero (if τ ∈ T1) or keeps

decreasing in τ (if τ ∈ T2) as (1−F ( τ nc ) decreases in τ . Hence, to guarantee a positive number

of speculators and thus non-negative profit, it is necessary and sufficient for the platform to

set n such that du(s∗(τ,n))
dτ

∣∣
τ=0

= n
z

[
v
m (1− F (0·n

c )) nc − (1 + k)
]
> 0, i.e., n > mc

v (1 + k).

In this case, ∃τ > 0 s.t. u(s∗(τ, n)) > 0. Note that by definition of s0(τ), it must be that

s∗(τ, n) < s0(τ) and thus n < s0(τ), which means that this τ is indeed in T2.

ii) By Part (i), s∗ ≥ mc
v (1 + k). On the other hand, we showed in Appendix B.6 that s∗ <

m
(
1− c

v

)
. Therefore, the ICO fails if m

(
1− c

v

)
≤ mc

v (1 + k), i.e., v ≤ (2 + k)c.

Proof of Proposition 14

Since the firm’s objective function remains unchanged by adding the outside option, the proof of

this proposition resembles that of Proposition 5 (i).
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