# Engineering Systems for Allocating Public Goods

### One possibility: allocate randomly

#### **Group Work:**

- 1. Get to know the other members of your group! Share your name, your program, and something that you are excited about.
- 2. Identify (at least) one positive feature of random allocation, and (at least) one concern or shortcoming.
- 3. Brainstorm an alternative procedure. Does this procedure addresses one of your listed shortcomings for random allocation?
- 4. When you are ready to discuss, add your pro and con to the board.

### How To Design A System?

In practice: copy what we see elsewhere, possibly with modifications.

### An Engineering Approach

First, define requirements and/or an objective.

Then try to design an algorithm that satisfies these requirements or maximizes the objective.

### Possible Goals

1.Efficient

2.Fair

3.Truthful

**Questions:** 

How do we define efficiency? Give people fruit that they like? Minimize time and effort?

How do we define fairness? Equal priority? Give to the hungriest?

How do we know people's preferences and needs? Hopefully, they tell us!

# Course Content (First Half)

| School Choice: New York, Boston, |  |
|----------------------------------|--|
| w Orleans                        |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |

### Course Content (Second Half)

| Key Algorithms                             | Leading Applications          |
|--------------------------------------------|-------------------------------|
| Unit 4: Screening for Need/Auction Theory  |                               |
| First Price (Pay as Bid) Auction           | Online Advertising            |
| Second Price (Uniform Price) Auction       | <b>Browser Choice Screens</b> |
| Ascending Auction                          | Fishing Quotas                |
| Unit 5: Organ Allocation                   |                               |
| Kidney Exchange Cycles and Chains          | Living Donation               |
| Iran's Kidney Market                       |                               |
| Waitlists with Deferral                    | Deceased Donation             |
| Unit 6: Housing Allocation                 |                               |
| Waitlists without Deferral                 | Public Housing                |
| Independent Lotteries                      | Inclusionary Zoning           |
| Common Lottery                             | Homeless Services             |
| Unit 7: Frontiers/Beyond Unit Demand, Know | n Preferences                 |
|                                            | Food Banks                    |
|                                            | Course Allocation             |
|                                            | Hiking and Hunting Permits    |
|                                            | License Plate Rationing       |
|                                            |                               |

### Course Goals: Learning

- 1. Key concepts and definitions (i.e. efficiency, fairness, truthfulness).
- 2. Algorithms that are (or could be) used.
- 3. Relationships between concepts and algorithms.
- 4. Assess existing solutions.
- 5. Apply knowledge to propose new solutions.

# **Bloom's Taxonomy**





### Course Goals: Relationships

I want to get to know you as a person!

### About Me







Professor, Industrial and Systems Engineering



Hobbies:

- Board Games
- Ultimate Frisbee
- Camping
- World Travel



BA, Math and Computer Science



Columbia Business School AT THE VERY CENTER OF BUSINESS™

Professor, Decisions Risk and Operations

### Course Goals: Relationships

I want to get to know you as a person!

Come to office hours:

Tuesdays 11:15-12:15 over Zoom. E-mail me for other times (<u>arnosti@umn.edu</u>)

Use name tents (first few classes).

### Course Goals: Fun

Ideal: Your favorite course at the University of Minnesota.Plausible: Your favorite course this semester.Realistic: Interesting, engaging, a little rough around the edges.

How you can help:

- Commit to spending time outside of class
- Share your thoughts with me (in person or anonymously)

#### This is my passion project!

### **Teaching Philosophies**

- Lots of practice
- Rapid feedback
- Low stress

# Grading

### Homework: 50%

- Due before each class
- Drop lowest 4 scores

### **Blog Post:**

- 16%
- Describe and analyze realworld allocation

### Exams:

24%

• Two midterms and a final

### Participation: 10%

Class discussion, office hours

# Two Types of Homework

### **Reflection + Critical Thinking**

- Apply knowledge to real world
- Analyze definitions and algorithms
- May discuss with classmates

### **Concept Check**

- Used as diagnostic
- Immediate feedback
- Individual do not discuss!
- Open notes





### Norms and Expectations

- Attend class (Illness excepted)
- Ask lots of questions! (Lots of new terms, reminders are good)
- Laptops and phones away

### Break

### Unit 1: Foundations

- Efficient
- Fair
- Truthful

Precise language and definitions are important!

# Allocating Efficiently

# Our Setting

We wish to allocate objects to a set of agents. The objects are different, and the agents care about which they receive.

#### **Key Assumptions:**

- 1. Consequentialist: agents care about outcome, not process.
- 2. Unit Demand: agents demand at most one item.
- 3. No Externalities: agents care only about their own allocation.
- 4. Strict Preferences: agents can rank all items (no ties).
- 5. Known Preferences: agents know their own ranking of items.
- 6. No Money!



### Defining Efficiency

An **allocation** is a function from agents to objects (specifies what each agent gets).

An allocation is **feasible** if the number of agents assigned to each object is  $\leq$  the number of copies of that object.

A feasible allocation is **Pareto Efficient** if there is no other feasible allocation that is at least as good for every agent, and strictly better for some agent (cannot help any agent without hurting another).



Informal: allocation is *inefficient* if people want to switch objects.



# Group Work

 Get to know the other members of your group! Share your name, your program, and something that you are excited about.

#### 2. Is this allocation Pareto Efficient?

### 3. Is this allocation Pareto Efficient?



#### 4. How many Pareto Efficient allocations can you find?











### How To Find Pareto Efficient Allocations?

### Serial Dictatorship

- 1. Place agents in some order.
- 2. One by one, have them choose favorite remaining option.



#### **Group Work:**

- 1. If the order is 1, 2, 3, 4, which allocation is selected by the Serial Dictatorship?
- 2. Is the allocation of the Serial Dictatorship always Pareto Efficient?

### "First Choices First" Algorithm

- 1. Give as many agents their first choice as possible.
- 2. Give as many of the remaining agents their second choice as possible.
- 3. Give as many of the remaining agents their third choice as possible.
- •
- •

To make this well-defined, must specify how

to choose among agents: suppose 1 > 2 > 3 > 4.

#### **Group Work:**

- 1. Which allocation is selected by the First Choices First algorithm?
- 2. Is the allocation of the First Choices First algorithm always Pareto Efficient?



### Utilitarianism

Goal: maximize "total happiness."

How could we turn this into an algorithm?

# Optimization

The **sum of ranks** of an allocation is calculated by adding the rank that each agent gives to his or her object.

A feasible allocation is **rank efficient** if no other feasible allocation has a lower sum of ranks.



#### **Group Work:**

- 1. In our example, which allocations are rank efficient?
- 2. In general, is every rank efficient allocation Pareto efficient?
- 3. In general, is every Pareto efficient allocation rank efficient?

Pareto Efficient

Rank Efficient

### Implementing Serial Dictatorship

Two Approaches:

- **1. Dynamic** mechanism (ask people to choose one at a time).
- 2. Direct mechanism (ask people to tell you their preferences).

When is a dynamic mechanism better? When is a direct mechanism better?

### Dynamic vs

Doesn't require participants to provide as much information.
Reasonable if either number of people or number of prizes is small.

### Direct

- Only requires one round of back and forth, and thus may take less time.
   Reasonable if not too many
  - options for people to rank.

### Dynamic vs

Doesn't require participants to provide as much information.
Reasonable if either number of people or number of prizes is small.

### Direct

 Only requires one round of back and forth, and thus may take less time.
 Reasonable if not too many options for people to rank.

Group Work: Would you recommend a direct or dynamic implementation?CBS Offices: 20 faculty assigned to 20 offices.IE 5541: 50 students assigned to 10 project teams.

# Study Guide

#### Concepts

### Algorithms

- Serial Dictatorship is PE Allocation (Assignment)
   Serial Dictatorship
- Preference Profile
- Pareto Efficient (PE)
- Rank Efficient
- Dynamic Mechanism
- Direct (Revelation) Mechanism

• First Choices First (Boston)

Facts

- First Choices First is PE.
- Neither is guaranteed to be Rank Efficient.

### For Monday (Posted this afternoon)

- 1. Concept check
- 2. Reflection + Critical Thinking