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A random assignment is ordinally efficient if it is not stochastically dominated
with respect to individual preferences over sure objects. Ordinal efficiency implies
(is implied by) ex post (ex ante) efficiency. A simple algorithm characterizes ordinally
efficient assignments: our solution, probabilistic serial (PS), is a central element within
their set. Random priority (RP) orders agents from the uniform distribution, then lets
them choose successively their best remaining object. RP is ex post, but not always
ordinally, efficient. PS is envy-free, RP is not; RP is strategy-proof, PS is not. Ordinal
efficiency, Strategyproofness, and equal treatment of equals are incompatible. Journal
of Economic Literature Classification Numbers: C78, D61, D63. � 2001 Academic Press
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1. TWO PREVIOUS SOLUTIONS TO THE RANDOM
ASSIGNMENT PROBLEM

The assignment problem is the allocation problem where n objects are
to be allocated among n agents, and each agent is to receive exactly one
object. Examples include the assignment of jobs to workers, of rooms to
housemates, of time slots to users of a common machine, and so on (see
Roth and Sotomayor [14], Abdulkadiroglu and So� nmez [1]).

Using a lottery is one of the oldest tricks (going further back than the
Bible; see Hofstee [9]) to restore fairness in such problems.1 Suppose we
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1 Another standard trick is to use monetary compensations; see Leonard [12], Demange
[5]. Here we assume that money is not available.



must allocate a single (desirable) object among several agents: tossing a fair
die is obviously the uniquely optimal method.2 The simplest extension of
this method to the case of n heterogeneous objects and n agents is the familiar
mechanism that we call random priority3 : draw at random an ordering of
the agents from the uniform distribution and then let them successively
choose an object in that order (so the first agent in the ordering gets first
pick and so on). This method has been around for a long time, although
only two papers in the economic literature discuss it: Zhou [19] and
Abdulkadiroglu and So� nmez [1].

From the point of view of mechanism design, random priority is fair (at
least in the sense of equal treatment of equals) and incentive compatible (in
the sense of strategyproofness), but it is not efficient when the agents are
endowed with Von Neumann�Morgenstern preferences over random alloca-
tions (lotteries over objects), see Zhou [19].4

A second, more subtle, solution to the random assignment problem was
proposed by Hylland and Zeckhauser [10]. It adapts the competitive equi-
librium with equal incomes solution for the fair division of unproduced
commodities (Varian [18], Thomson and Varian [17]) to the random
assignment model: a VNM utility function over random allocations of
(indivisible) objects is viewed as a linear utility over vectors of ``shares'' of
these objects, where the share of an object is the probability of receiving it
in the eventual assignment. This solution, denoted CEEI, is fair in the sense
of no envy (a criterion that the RP assignment does not always meet; see
Proposition 1 in Section 7). It is also efficient with respect to the profile of
VNM utility functions, yet it is not strategyproof. In fact, Zhou [19]
(proving a conjecture formulated in Gale [7]) shows that there does not
exist any strategyproof mechanism eliciting individual VNM utility func-
tions and achieving both efficiency (Pareto optimality w.r.t. these utility
functions) and equity (in the very weak sense of equal treatment of equals).

The RP assignment is appealing on two accounts. First it is ex post
efficient, that is to say every deterministic assignment that is selected with
positive probability is Pareto optimal. This is a weaker property than ex
ante efficiency, namely efficiency with respect to the profile of VNM utility
functions, as discussed above. Second, the RP assignment can be computed
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2 For a formal statement see comment b in Section 9.
3 Also called random serial dictatorship by Abdulkadiroglu and So� nmez [1].
4 An example follows, with three agents, three objects and the VNM utilities: u1(a)=1,

u1(b)=0.8, u1(c)=0, for i=2, 3: ui (a)=1, ui (b)=0.2, ui (c)=0. The random priority assign-
ment gives a 1�3 chance of every object to each agent (because their preferences over sure
objects coincide) and a profile of expected utilities (0.6, 0.4, 0.4). But assigning object b to
agent 1 for sure and objects a, c randomly between agents 2, 3 yields the expected utilities
(0.8, 0.5, 0.5).



or implemented from the profile of preferences over sure objects. For
any given ordering of the agents, we compute the best available object for
each agent in turn, and this does not require knowledge of the prefer-
ences over lotteries (random objects). Contrast this simplicity with the
computation of the CEEI solution, which requires us to elicit the profile of
full-fledged VNM utility functions and to solve a difficult fixed-point
problem (of which the solution may not be unique). We submit that the
simplicity of information gathering and implementation of the RP assign-
ment makes the corresponding mechanism more appealing than the CEEI
one.

We call a mechanism that elicits only individual preferences over sure
objects ordinal (whereas a cardinal mechanism collects a full-fledged VNM
utility function from every agent). The restriction to ordinal mechanisms is
the central assumption in this paper.5 It can be justified by the limited
rationality of the agents participating in the mechanism. There is convincing
experimental evidence that the representation of preferences over uncertain
outcomes by VNM utility functions is inadequate (see, e.g., Kagel and Roth
[11]). One interpretation of this literature is that the formulation of rational
preferences over a given set of lotteries is a complex process that most agents
do not engage into if they can avoid it. An ordinal mechanism allows the
participants to formulate only this part of their preferences that does not
require to think about the choice over lotteries. It is genuinely simpler to
implement an ordinal mechanism than a cardinal one.

We introduce a new notion of efficiency for the random assignment
problem that we call ordinal efficiency (O-efficiency). O-efficiency is a
consequence of ex ante efficiency, and it implies ex post efficiency. It relies
on preferences over sure objects only; thus it is attainable by an ordinal
mechanism. We show that the RP assignment may be ordinally inefficient.
We propose a canonical O-efficient assignment that we call the probabilistic
serial assignment.

2. ORDINAL EFFICIENCY AND THE NEW SOLUTION

Preferences over deterministic objects induce a partial ordering over
random allocations (i.e., lotteries over objects), namely the (first order)
stochastic dominance relation. Our notion of ordinal efficiency (Definition 1)
comes from the Pareto (partial) ordering induced by the stochastic dominance
relations of individual agents.
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5 Gibbard [8] considers ordinal mechanisms in the context of voting with lotteries (random
choice of a pure public good). See also Ehlers et al. [6] in the context of a fair division
problem different from ours.



Ordinal efficiency is a stronger requirement than ex post efficiency. We
give a simple example with four agents,6 where the RP assignment is
ordinally inefficient. The preferences are as follows:

agents 1, 2: aobocod
(1)

agents 3, 4: boaodoc.

The RP assignment gives to agents 1, 2 a positive probability of receiving
b (e.g., for the ordering 1234) and to agents 3, 4 a positive probability of
receiving a. More precisely the RP assignment is as follows, where rows
marked 1�4 are agents and columns a�d are objects.

a b c d

1 5�12 1�12 5�12 1�12
2 5�12 1�12 5�12 1�12 (2)
3 1�12 5�12 1�12 5�12
4 1�12 5�12 1�12 5�12

Yet the following assignment is preferred by every agent to (2), irrespective
of their VNM utility functions compatible with the preferences (1):

a b c d

1 1�2 0 1�2 0
2 1�2 0 1�2 0 (3)
3 0 1�2 0 1�2
4 0 1�2 0 1�2

On the other hand, ordinal efficiency is a weaker requirement than ex
ante efficiency, as can be seen easily by considering a profile of identical
preferences over sure objects (just like in footnote 4 above) where every
feasible assignment is ordinally efficient.

Our first result (Theorem 1 in Section 5) characterizes the entire set of
ordinally efficient assignments by a natural constructive algorithm. Think
of each object as 1 unit of an infinitely divisible commodity (a different
commodity for each object), where ``agent i receives 0.4 units of commodity
a'' means that agent i gets a with probability 0.4. Each agent now is given
an exogeneous eating speed function, specifying a rate of instant consump-
tion for each time t between 0 and 1, and such that the integral of each
function is 1. Given a profile of preferences (over sure objects), the algorithm
works as follows: each agent eats from his or her best available object at the
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given speed, where an object is available at time t if and only if less than
one unit has been eaten away up to time t by all agents.

Our new solution, probabilistic serial (PS), obtains when the eating
speed functions are identical across agents (hence it can be taken to be the
unit eating speed between t=0 and t=1). The PS assignment is a central
point in the set of ordinally efficient assignments; if we choose the eating
speeds independent of the preference profiles, the PS assignment is the only
equitable one (Lemma 4 in Section 6). The RP assignment is similarly a
central point within the set of ex post efficient assignments (see Lemma 1
in Section 4).

In example (1) above, the PS algorithm does the right thing, namely it
selects assignment (3): indeed agents 1 and 2 start by eating object a while
agents 3, 4 start by eating object b. As the common speed is one, at time
t=0.5 both a and b are entirely consumed, and any inefficient allocation
of a to agents 3, 4 or of b to agents 1, 2 is avoided. The same applies to
the allocation of objects c, d between t=0.5 and t=1.

We systematically compare the RP and PS mechanisms for their efficiency,
fairness, and incentives properties. We find that PS fares better on efficiency
and fairness, yet RP has better incentives properties. On the former, the PS
assignment is always ordinally efficient (Theorem 1) and may stochastically
dominate the RP assignment for every agent; moreover the PS assignment
is envy-free for any profile of VNM utilities over lotteries compatible with
the given preferences over sure objects, whereas the RP assignment only
meets a weaker version of this criterion (Proposition 1 in Section 7). On
the latter, the RP mechanism is strategyproof for any profile of VNM
utilities over lotteries, whereas the PS mechanism is only strategyproof in
a weaker sense (Proposition 1).

Our third and last contribution is an impossibility result similar (but
not logically related) to Zhou's theorem. We show that with four agents
or more, there is no ordinal mechanism meeting simultaneously ordinal
efficiency, strategyproofness and equal treatment of equals (Theorem 2 in
Section 8). This does not imply Zhou's theorem because the class of
mechanisms that we consider is smaller than his, yet it carries the same
negative implications: even the huge conceptual simplification of only look-
ing at ordinal mechanisms is not enough to ensure the compatibility of the
three familiar requirements, efficiency, fairness, and incentive compatibility.

In Section 3 we discuss the literature related to our results. Section 4
defines the model, introduces the concept of ordinal efficiency, and com-
pares it to ex ante and to ex post efficiency. In Section 5 we characterize
the set of ordinally efficient assignments by means of the eating algorithms
mentioned above. The probabilistic serial assignment is defined and com-
pared with the RP one from the efficiency angle in Section 6. In Section 7
we compare RP and PS from the fairness (envy-freeness) and incentive
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compatibility (strategyproofness) angles. Section 8 offers two characteriza-
tion results, respectively, of the PS and RP mechanisms, in the case of three
agents; it also states the impossibility result parallel to Zhou's. The final
Section 9 discusses a number of variants of our model, to which our results
are easy to adapt. We consider successively a different number of objects
and agents, the possibility of ``objective'' indifferences (some objects are
viewed as identical by all agents), and the possibility of opting out.

All proofs are provided in the Appendix.

3. RELATED LITERATURE

The literature on the random assignment problem is very small and we
have already discussed two of its oldest papers: Hylland and Zeckhauser
[10] who propose to adopt the competitive equilibrium with equal
incomes, and Zhou [19], who proves an important impossibility result.

More recently Abdulkadiroglu and So� nmez [1] show that the random
priority assignment obtains as the top trading cycle outcome due to
Shapley and Scarf [16] with random initial endowments.

Cre� s and Moulin [4] introduce the PS mechanism in a simple model of
assignment with common ranking of the objects and where agents can opt
out. In that model, the PS assignment stochastically dominates the RP one.
In the same model, Bogomolnaia and Moulin [3] introduce the concept of
ordinal efficiency and give two characterizations of the PS mechanism,
briefly discussed in comment d of Section 9.

Two recent papers have improved an earlier version of this work.
Abdulkadiroglu and So� nmez [2] uncover some surprising features of ex
post efficiency (thus correcting an erroneous statement in the first version
of this paper) and offer an alternative characterization of ordinal efficiency;
see the discussion after Definition 1, Section 4. McLennan [13] proves an
important link between ordinal efficiency and ex ante efficiency: his result
is described in Remark 2, Section 4.

Finally, Ehlers et al. [6] apply the same notion of ordinal efficiency in
the probabilistic version of the problem of fair division with single-peaked
preferences. In their model, ordinal and ex post efficiency coincide.

4. EX POST, EX ANTE AND ORDINAL EFFICIENCY

First we define the random assignment problem. Throughout the paper,
the sets N of agents and A of objects are fixed, both finite and of cardinality n.

A deterministic assignment is a one-to-one mapping from N into A; it will
be represented as a permutation matrix (a n_n matrix with entries 0 or 1
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and exactly one nonzero entry per row and one per column) and denoted
6. We identify rows with agents and columns with objects. We denote by
D the set of deterministic assignments.

A random allocation is a probability distribution over A; their set is
denoted L(A).

A random assignment is a probability distribution over deterministic
assignments. The corresponding convex combination of permutation matrices
describes the probabilities that a given agent receives a given good:

P=[ pia] i # N, a # A where P= :
6 # D

*6 } 6 and *6�0, :
6

*6=1.

The matrix P is bistochastic, and its i th row is denoted Pi . It is agent i 's
random allocation:

for all i # N, a # A; p ia�0, :
j # N

pja= :
b # A

pib=1. (4)

By the classical Birkhoff�Von Neumann theorem, every bistochastic matrix
obtains as a (in general, not unique) convex combination of permutation
matrices: hence every such matrix corresponds to some random assignment(s).

Two probability distributions over D resulting in the same bistochastic
matrix will not be distinguished (they yield the same welfare level to every
agent). Therefore we identify a random assignment and its bistochastic
matrix P. We denote by R the set of bistochastic matrices.

Each agent i is endowed with strict preferences oi over A. We denote
this domain of preferences by A. We note that ruling out indifferences is
not an innocuous assumption: our results do not extend straightforwardly
to allow for indifferences among objects, except in the case of objective
indifferences. More on this in Section 9, comments b and c.

A Von Neumann�Morgenstern utility function (VNM utility) ui is a real
valued mapping on A: the corresponding preferences over L(A) obtain
by comparing expected utilities ui } Pi=�a ui (a) } pia . We say that u i is
compatible with the (strict) preference oi when ui (a)oui (b) iff aoi b.

For a deterministic assignment 6, there is only one notion of efficiency,
and the efficient subset of D is entirely described by the priority assignments
that we now define.

An ordering of N is a one-to-one mapping _ from [1, 2, ..., n] into N; we
denote by % the set of such orderings. Given the ordering _ and the
preference profile o, the corresponding priority assignment is denoted
Prio(_, o) and defined as follows: agent _(1) receives his or her best object
a1 in A (according to o_(1)); agent _(2) receives his or her best object a2

in A"[a1]; agent _(t) receives his or her best object at in A"[a1 , ..., at&1].
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Lemma 1. Fix a profile of preferences o in AN and a deterministic
assignment 6. The three following statements are equivalent

(i) 6 is Pareto optimal in D at o,

(ii) for any profile of VNM utilities (ui , i # N ) compatible with the
profile o, 6 is Pareto optimal in R at u,

(iii) there exists an ordering _ of N such that 6=Prio(_, o).

We omit the easy proof.

Definition 1. Given a random assignment P, P # R, a profile of
preferences o in AN, and a profile of VNM utilities u, we define:

(i) P is ex ante efficient at u iff P is Pareto optimal in R at u

(ii) P is ex post efficient at o iff it can be represented as a probability
distribution over efficient deterministic assignments. That is to say, P takes
the form

P= :
_ # %

+_ Prio(_, o) for some convex system of weights +_ . (5)

In view of (5), a natural central point within the set of ex post efficient
assignments simply takes the uniform system of weights. This is the random
priority assignment

RP(o)=
1
n!

:
_ # %

Prio(_, o). (6)

Remark 1. Abdulkadiroglu and So� nmez [2] observe that some ex post
efficient random assignments P can also be represented as a lottery over
inefficient deterministic assignments (they show this to be possible for n�4).
Therefore ex post efficiency is a subtle concept because of the possibility of
multiple representations of a doubly stochastic matrix as a lottery over deter-
ministic assignments.

We are now ready to define the concept of ordinal efficiency. A given
preference ordering oi on A induces a partial ordering of the set L(A) of
random allocations that we call the stochastic dominance relation associated
with oi and denote sd(oi ). Upon enumerating A from best to worst accord-
ing to oi : a1oi a2oi a3oi } } } o i an , we define

for all Pi , Qi # L(A) : Pi sd(oi ) Qi �
def { :

t

k=1

piak
� :

t

k=1

q iak
, for t=1, ..., n= .
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Note that the relation sd(oi ) is reflexive (Pi sd(oi ) P i ) whereas oi is not.
Clearly the statement Pi sd(oi ) Qi is equivalent to the property that ui } Pi

�ui } Qi for any VNM-utility function u i on A compatible with oi . If,
moreover, Pi{Qi , then we have ui } Pi>ui } Qi for any such utility function.

Definition 2. Given the preference profile (oi , i # N ), we say that the
random assignment P, P # R, is stochastically dominated by another random
assignment Q, Q # R, if we have:

[Qi sd(oi ) Pi for all i] and Q{P.

We say that P is ordinally efficient (O-efficient) if it is not stochastically
dominated.

We compare ordinal efficiency with the two other notions of efficiency
introduced in Definition 2. The first observation is that O-efficiency, like ex
post efficiency and unlike ex ante efficiency, only depends upon the profile
of individual preferences over sure objects, namely upon the preferences
over A.

Lemma 2. Fix a random assignment P, P # R, a preference profile o in
AN, and a profile u of VNM utilities compatible with o (that is, u i is
compatible with oi for all i).

(i) If P is ex ante efficient at u, then it is ordinally efficient at o; the
converse statement holds for n=2 but may fail for n�3.

(ii) If P is ordinally efficient at o, then it is ex post efficient at o;
the converse statement holds for n�3 but may fail for n�4.

Remark 2. Lemma 2 implies the following: given a profile o of preferences
over sure objects and a random assignment P, P is ordinally efficient if there
exists a profile u of VNM utilities compatible with o and such that P is ex ante
efficient at u. McLennan [13] proves the converse statement: if P is ordinally
efficient then such a profile of VNM utilities exists.

5. ORDINAL EFFICIENCY AND THE SIMULTANEOUS
EATING ALGORITHM

We give two characterizations of ordinal efficiency. The first one deter-
mines whether a given element P in R is ordinally efficient by checking the
acyclicity of a certain relation constructed from P and the preference profile.
The second one is a family of algorithms from which we can construct the
whole subset of ordinally efficient assignments in R.
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Given a preference profile o and a random assignment P, we define a
binary relation in A as follows:

for all a, b # A : a{(P, o)b � [there exists i # N : aoi b and pib>0].

(7)

Lemma 3. The random assignment P, P # R, is ordinally efficient at
profile o if and only if the relation {(P, o) is acyclic.

The second characterization result relies on a family of intuitive algorithms.
Think of each object as an infinitely divisible commodity of which one unit
must be distributed between the n agents. A quantity pia of good a allocated
to agent i is implemented by giving object a to agent i with probability pia .7

Each one of our simultaneous eating algorithms relies on a set of n eating
speed functions |i , i=1, ..., n. Thus |i (t) is the speed at which agent i is
allowed to eat at time t. The speed |i (t) is nonnegative and the total
amount that agent i will eat between t=0 and t=1 (the end time of the
algorithm) is one:

|
1

0
|i (t) dt=1.

Given the profile of eating speeds |=(|i )i # N and the profile o of
preferences, the algorithm lets each agent i eat his or her best available
good at the prespecified speeds: if at time t the objects a, b, c... have been
entirely eaten away (one unit of each has been distributed) and the objects
x, y, z, ... have not, agent i eats from his or her best object among x, y, z, ...
at speed |i (t).

For instance, consider the profile of uniform eating speeds |i (t)=1 for
all t, 0�t�1, all i=1, 2, 3, 4 in Example (1), Section 2. From t=0 until
t=0.5 agents 1 and 2 eat good a whereas agents 3, 4 eat good b; both
goods are exhausted at t=0.5; hence from t=0.5 until t=1 agents 1 and
2 eat good c whereas agents 3 and 4 eat good d. The resulting outcome is
precisely the random assignment (3). We turn to the formal definition of
the simultaneous allocation algorithms.

Denote by W the domain of eating speed functions:

|i # W iff |i is a measurable function, |i : [0, 1] � R+ , |
1

0
|i (t) dt=1.
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We use the following notation: whenever a # B, let M(a, b) =def [i # N |
aoi b \b # B, b{a], m(a, b)=*M(a, B). Given an ordinal preference
profile o, the assignment corresponding to the profile |=(|i ) i # N of
agents' eating speeds is defined by the following recursive procedure. Let
A0=A, y0=0, P0=[0], the n_n matrix of zeros. Suppose that A0, y0,
P0, ..., As&1, ys&1, Ps&1 are already defined. For any a # As&1 define

ys(a)=min { y } :
i # M(a, A s&1 )

|
y

ys&1
|i (t) dt+ :

i # N

p s&1
ia =1=

( ys(a)=+�, if M(a, As&1)=<). (8)

Define now

ys= min
a # As&1

ys(a)

As=As&1"[a | y(a)=ys]

Ps : p s
ia={ ps&1

ia +|
ys

y s&1
|i (t) dt,

ps&1
ia ,

if i # M(a, As&1)

otherwise.

By the construction, As % As&1 for all s, hence An=0 and Pn=Pn+1= } } } .
The matrix Pn is the random assignment corresponding to the profile of
eating speeds |=(|i ) i # N and the preference profile o: P|(o)=Pn.

Theorem 1. Fix a preference profile o in AN. For every profile of eat-
ing speed functions |=(|i ) i # N , the random assignment P|(o) is ordinally
efficient. Conversely, for every ordinally efficient random assignment P at o,
there exists a profile |=(|i )i # N such that P=P|(o).8

6. THE PROBABILISTIC SERIAL ASSIGNMENT

Definition 3. The probabilistic serial assignment at a given preference
profile o is the random assignment corresponding to the profile of uniform
eating speeds: |i (t)=1 for all i # N, all t, 0�t�1. It is denoted PS(o).
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In view of Theorem 1, the PS assignment is the simplest fair selection
from the set of ordinally efficient assignments at a given preference profile:
the mechanism PS is anonymous, that is to say the mapping o � PS(o)
is symmetric from the n preferences oi to the n assignments Pi . Similarly
the RP assignment (6) is the most natural fair selection from the set of ex
post efficient assignments (in view of (5)).

In fact, the PS mechanism is the only equitable mechanism we can
construct in this fashion. That is to say, whenever we use a simultaneous
eating algorithm (the same for all profiles) to construct an anonymous
assignment rule, we must end up with the PS mechanism:

Lemma 4. Fix at vector of eating speeds |=(|1 , ..., |n). Let P be the
mechanism derived from | at all profiles. P is anonymous if and only if it
coincides with PS.

We now compare the PS and RP assignment matrices, and their welfare
implications in a few examples. Example (1) in Section 2 with four agents
was discussed in the previous section: there the PS assignment (3) stochasti-
cally dominates the RP assignment (2). In problems with two or three agents,
this configuration cannot happen.

In the case of two agents, if their top choices are different the only ex-post
efficient assignment gives them these objects. Otherwise, equal treatment of
equals implies that each agent gets each good with probability 0.5. Naturally,
both the RP and PS assignments do exactly this.

Next we look at three agents problems. Up to relabeling the objects,
and�or the agents, there are only two profiles of deterministic preferences
at which the RP and PS assignments differ9, namely:

ao1 bo1 c 1
2

1
4

1
4

1
2

1
6

1
3

ao2 co2 b PS= 1
2 0 1

2 RP= 1
2 0 1

2 (9)

bo3 a, c 0 3
4

1
4 0 5

6
1
6

Note that neither assignment RP or PS stochastically dominates the
other, yet the preferences of the agents between the two assignments are
unambiguous:

agent 1 prefers PS over RP as ( 1
2 a+ 1

4 b+ 1
4 c) sd(o1)( 1

2 a+ 1
6 b+ 1

3 c)

agent 3 prefers RP over PS as ( 5
6 b+ 1

6 c) sd(o3)( 3
4 b+ 1

4 c)

agent 2 receives the same allocation under PS and RP.
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It may also happen that the individual random allocations under RP
and PS are not comparable by stochastic dominance, and this holds true
for every agent. At such a profile of deterministic preferences (an example
is given below), there is a compatible profile of VNM utilities such that the
RP assignment is ex ante (strictly) Pareto superior to the PS assignment,
and there is another compatible profile such that the PS assignment is ex
ante (strictly) Pareto superior to the RP one.

The example has six agents with the following preferences:

agents 1, 2: aobocodoeo f

agent 3: coaobodoeo f

agent 4: coeo fodoaob

agents 5, 6: eo focodoaob.

The assignment PS(o) is as follows:

a b c d e f

1, 2 1�2 1�3 0 1�6 0 0
3 0 1�3 1�2 1�6 0 0
4 0 0 1�2 1�6 0 1�3

5, 6 0 0 0 1�6 1�2 1�3

The assignment RP(o) is as follows:

a b c d e f

1, 2 11�24 5�12 0 1�8 0 0
3 1�12 1�6 1�2 1�4 0 0
4 0 0 1�2 1�4 1�12 1�6

5, 6 0 0 0 1�8 11�24 5�12

Consider agent 3, who gets one of [c, a], his or her two top objects, with
probability 7�12 under RP versus only 1�2 under PS; on the other hand,
agent 3 gets one of [c, a, b], his or her top three objects, with probability
5�6 under PS versus only 3�4 under RP. Therefore agent 3's two assignments
are not comparable by stochastic dominance. Similar arguments establish the
same property for agent 1 and, by symmetry, for all other agents.

With four agents, only a slightly weaker example can be found, where three
out of four agents have noncomparable assignments whereas the fourth agent
gets the same assignment:
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agents 1, 2: aobocod

agent 3: coaobod

agent 4: codoaob

11�24 5�12 0 1�8 1�2 1�3 0 1�6
11�24 5�12 0 1�8 =RP; 1�2 1�3 0 1�6 =PS
1�12 1�6 1�2 1�4 0 1�3 1�2 1�6

0 0 1�2 1�2 0 0 1�2 1�2

7. FAIRNESS AND INCENTIVES: COMPARING RANDOM
PRIORITY AND PROBABILISTIC SERIAL

We now compare the probabilistic serial and random priority assignments
(resp. mechanisms) by means of the no envy (resp. strategyproofness)
properties.

The profile (9) (Section 6) reveals two interesting facts. First, at the RP
assignment agent 1 may envy the allocation of agent 3: for some utility
functions u1 compatible with o1 we have

u1 } RP3= 5
6 u1(b)+ 1

6 u1(c)> 1
2 u1(a)+ 1

6 u1(b)+ 1
3 u1(c)=u1 } RP1 (10)

(e.g., take u1(a)=10, u1(b)=9, u1(c)=0). By contrast, no agent can be
envious at the PS assignment for any compatible VNM utilities.

The second fact is that agent 3 can profitably misreport his or her
preferences at the PS assignment when his or her preferences are bo3 a
o3 c. If agent 3 reports ao3* bo3* c he or she receives

PS3(o1 , o2 , o3*)= 1
3 a+ 1

2 b+ 1
6 c.

For some utility functions u3 compatible with agent 3's true preferences
o3 , we have

1
3 u3(a)+ 1

2 u3(b)+ 1
6 u3(b)o 3

4 u3(b)+ 1
4 u3(c) (11)

(e.g., take u3(b)=10, u3(a)=9, u3(c)=0). By contrast, no agent can
manipulate the RP assignment by misreporting, for any compatible VNM
utilities.

Thus the RP assignment may generate envy and the PS mechanism is
not strategyproof. However the possibilities of envy at the RP assignment
and of manipulation at the PS one occur only for some utility functions
compatible with the deterministic preferences in question: inequalities (11),
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(12) do not hold for all VNM utilities compatible with o1 and o3 respec-
tively. In other words the allocation RP3 does not stochastically dominate
RP1 for the preferences o1 ; nor does agent 3 have a manipulation after
which his or her allocation PS3* stochastically dominates PS3 . This suggests
the following two definitions.

Definition 4. We say that a random assignment P, P # R, is envy-free
(resp. weakly envy-free) at a profile o in AN if we have for all i, j # N :

No envy: Pi sd(oi ) Pj

Weak no envy: Pj sd(oi ) Pi O Pi=Pj .

Definition 5. Given a mechanism P( } ), namely a mapping from AN

into R, we define:

Strategyproofness: Pi (o) sd(oi ) Pi (o | i oi*) for all i # N, oi* # A,
o # AN

Weak strategyproofness: [Pi (o | i oi*) sd(oi ) Pi (o) O Pi (o | i oi*)
=Pi (o)] for all i # N, oi* # A, o # AN.

Our definitions of no envy and strategyproofness are standard if all
agents are endowed with VNM utilities (see, e.g., Roth and Rothblum
[15]). The weaker versions are sufficient if our agents compare lotteries
over A by their partial ordering of stochastic dominance.

Proposition 1.

(i) For any profile o in AN, the assignment PS(o) is envy-free; the
assignment RP(o) is weakly envy-free but may not be envy-free for n�3.

(ii) The RP mechanism is strategyproof; the PS mechanism is weakly
strategyproof but not strategyproof for n�3.

8. AN IMPOSSIBILITY RESULT

To characterize our two mechanisms RP and PS with the help of their
efficiency, equity and incentives properties is easy in the case of two or
three agents. But we run into a severe impossibility result when the number
of agents is four or more.

As already noted in Section 6, with two agents PS and RP coincide, and
are characterized by the combination of (ex post) efficiency and equal
treatment of equals (namely, oi=oj O Pi=Pj ). Two interesting charac-
terizations are available in the three agents case.
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Proposition 2. Assume n=3. Then the random priority mechanism is
characterized by the combination of three axioms: ordinal efficiency, strategy-
proofness, and equal treatment of equals.

The probabilistic serial mechanism is characterized by the combination of
three axioms: ordinal efficiency, no envy, and weak strategyproofness.

A corollary of Proposition 2 and Lemma 2 is the incompatibility of the
three requirements: ex post efficiency, strategyproofness and no envy. Indeed,
no envy implies equal treatment of equals, because our mechanisms only take
deterministic preferences into account. Therefore a mechanism meeting the
three properties listed would have to be both RP and PS.

For problems involving four agents or more, the impossibility result is more
severe.

Theorem 2. Assume n�4. Then there is no mechanism��no mapping from
AN into R��meeting the three following requirements: ordinal efficiency,
strategyproofness, and equal treatment of equals.

This result is interestingly similar to Zhou's theorem (Zhou [19]), although
neither result implies the other. Zhou works in the class of mechanisms elicit-
ing a full VNM utility function from every agent. This class is considerably
larger than the class of mechanisms considered here. Zhou shows the
incompatibility of equal treatment of equals, strategyproofness, and ex ante
efficiency.

9. CONCLUDING COMMENTS

We list a handful of variants of our random assignment model; for all
but one, the analysis of ordinal efficiency as well as the definitions and
comparison of the random priority and probabilistic serial assignments
extend almost verbatim.

(a) Different Number of Objects and Agents

Suppose that we have m objects, n agents and m>n. Then a random
assignment P is a nonnegative n_m matrix whose rows sum to one and
whose columns sum to at most one. The definition of the three notions of
efficiency (Section 4) and the two characterizations of ordinal efficiency
(Section 5) are preserved: in the simultaneous eating algorithm, each agent
receives a speed function |i of which the integral sums to 1. The definition
of the PS assignment (Section 6) and its comparison with the RP assign-
ment (Proposition 1 in Section 7) remain true.
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Next consider the case with more agents than objects: n>m. Now a
random assignment P is a nonnegative n_m matrix whose rows sum to
m�n and whose columns sum to one. The characterization of ordinal
efficiency in terms of the acyclicity of the relation { (Lemma 3) remains
true, that in terms of the simultaneous eating algorithms is preserved as
well, provided we allow a total eating capacity m�n per agent (� |i=m�n).

Alternatively, the assignment problem with m<n can be transformed
into an assignment problem with n objects by adding (n&m) copies of a
null object. The difference with our initial model is that some objects are
``objectively'' identical: as discussed in our next comment, this type of
indifferences poses no special problem.

(b) Objective Indifferences

Suppose that some objects are objectively identical in the sense that all
agents are indifferent between them. Formally we assume that for all a, b,
the statement ``agent i is indifferent between a and b'' holds for all i or for
no i.

All our definitions and results extend almost verbatim to this case. For
instance consider the two characterizations of ordinal efficiency in Section
5. The relation {(P, o) (7) is defined in the same way, and a{b never holds
between two identical objects. As for the simultaneous eating algorithm, it
is defined up to the (inconsequential) choice among identical objects, so
that Theorem 1 is preserved, and the probabilistic serial assignment is
unambiguously defined. The random priority assignment is similarly well
defined.

The careful reader will check that Proposition 1 still holds true.

(c) Subjective Indifferences

Suppose individual preferences vary in the classical domain of (complete
and transitive) preferences: that is, agent i may be indifferent between
objects a, b whereas other agents are not. An ordinal mechanism would
elicit the full preference relation and could in particular use subjective indif-
ferences to improve efficiency.

It is not clear, however, how this should be done. Think of the random
priority mechanism; an agent whose turn it is to choose may be indifferent
between several objects: the mechanism must define the tie breaking rule
(using, presumably, the information about the full profile of ordinal
preferences) and do so as efficiently as possible.

The definition of the simultaneous eating algorithms raises similar dif-
ficulties. And the link of such algorithms to ordinal efficiency is wholly
unclear. We submit that the random assignment problem with subjective
indifferences is as interesting as it is challenging and worthy of further
research.
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(d) Opting Out
In some examples of the assignment problem, an agent can always opt

out (claim the null object), namely refuse to accept certain objects (less
desirable than the null object). Bogomolnaia and Moulin [3] study a
simple assignment problem with opting out: all n agents have the same
ordinal ranking of the n objects, but differ in their ranking of the null
object with respect to the real objects. An example is the scheduling of jobs
by a single server: every agent prefers to be served earlier than later, but
agents have different ``deadlines.''

In that model, a random assignment is a substochastic matrix (the sum
of any row or any column is at most one) and the set of ordinally efficient
assignments is easy to describe (see Lemma 3.3 in Bogomolnaia and
Moulin [3]). Interestingly, the PS assignment (also defined by the equal
eating speeds algorithm) is equal to or stochastically dominates the RP
assignment. Moreover, the PS mechanism is strategyproof. Finally the PS
mechanism is characterized by the combination of ordinal efficiency,
strategyproofness, and equal treatment of equals and the PS assignment is
characterized by ordinal efficiency plus no envy.

Back to our model where different agents may rank the real objects dif-
ferently, it is straightforward to extend the definition of ordinal efficiency,
its two characterizations (Section 5), and the definition of the PS (and RP)
assignment when opting out is possible. Proposition 1 is preserved as well.

APPENDIX: PROOFS

1. Proof of Lemma 2

Statement i. Suppose P is stochastically dominated by Q at o (Defini-
tion 2). As noted immediately before Definition 2 this implies ui } Pi�ui } Qi

for all i; moreover, Pi{Q i implies that the corresponding inequality is
strict so that P is ex ante Pareto inferior to Q.

We give an example with n=3 of an ordinally efficient random alloca-
tion P that is not ex ante efficient. Consider the utility profile in footnote
4. It is compatible with the unanimous ordinal preferences aoi boi c. The
random priority assignment P is given by pix= 1

3 for i=1, 2, 3 and
x=a, b, c. It is not ex ante efficient for the profile u given in footnote 4, yet
every random assignment in R is ordinally efficient because the three
relations sd(oi ) coincide.

Statement ii. Suppose P is not ex post efficient at o. Consider a
decomposition of P as a convex combination of deterministic assignments:

P= :
6 # D

*6 } 6.
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By Lemma 1 and statement ii in Definition 1, there is an element 6 in
D that is Pareto inferior at o and such that *6>0. Let 6$ be a deter-
ministic assignment Pareto superior to 6. Upon replacing 6 with 6$ in the
summation, we obtain a random assignment that stochastically dominates
P (note that stochastic dominance in R is preserved by convex combinations).

The four agents example in Section 2 shows an ex post efficient assignment
that is not ordinally efficient. The preference profile o is given by (1) and the
random assignment (2) equals RP(o). By Definition 1, this random assign-
ment is ex post efficient. However it is stochastically dominated by the feasible
random assignment given by (3).

Finally, we must show that for n=3 every ex post efficient assignment
is ordinally efficient as well. To this end we note first that, up to relabeling
the objects and�or the agents, there are exactly ten different profiles of
deterministic preferences:

ao1 b, c ao1 bo1 c
type 1 (2 profiles) bo2 a, c type 2 ao2 bo2 c

co3 a, b ao3 bo3 c

ao1 bo1 c ao1 co1 b
type 3 ao2 bo2 c type 4 (2 profiles) ao2 co2 b

ao3 co3 b bo3 a, c

ao1 bo1 c ao1 bo1 c
type 5 (2 profiles) ao2 bo2 c type 6 (2 profiles) ao2 co2 b (12)

bo3 a, c bo3 a, c

In type 1 the only ex post efficient assignment is PS=RP. In type 2 any
feasible assignment is ordinally efficient. In type 3 every (deterministic)
priority assignment Prio(_, o) has p3b=0; hence every ex post efficient
assignment has p3b=0. The latter implies ordinal efficiency: if Q stochasti-
cally dominates P, we must have pia�qia for all i. Hence all three
inequalities are equalities; next pia+pib�qia+qib for i=1, 2 implies
pib=qib for i=1, 2 and hence Q=P. Next, consider type 4, where every
priority assignment, and hence every ex post-efficient assignment as well,
has p3b=1. This, in turn, implies ordinal efficiency.

Consider type 5, where every priority assignment, and hence every ex
post efficient assignment as well, has p3a=0, which implies ordinal
efficiency (by an argument similar to that for type 3 above). Finally in type
6, every priority assignment, and hence every ex post efficient assignment
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as well, has p2b=p3a=0, implying ordinal efficiency by the same kind of
argument again: if Q stochastically dominates P we have successively

pia�qia for i=1, 2 O pia=qia for i=1, 2

[ p1a+p1b�q1a+q1b ; p3b�q3b] O p1b=q1b and p3b=q3b

and Q=P as desired.

2. Proof of Lemma 3

Statement only if. Suppose the relation {(P, o), denoted { for simplicity,
has a cycle:

a2 {a1 ; a3{a2 ; ...; aK {aK&1 ; aK=a1

(we assume, without loss of generality, that the objects ak , k=1, ..., K&1,
are all different). By definition of {, we can construct a sequence i1 , ..., iK&1

in N :

pi1a1
>0 and a2oi1

a1 ;

pi2a2
>0 and a3oi2

a2 ; ...; piK&1 aK&1
>0 and aKoiK&1

aK&1

(note that the agents ik , k=1, ..., K&1, may not be all different). Choose
$ such that:

$>0 and $�pikak
for k=1, ..., K&1.

Then define a matrix Q as follows:

Q=P+2 where $ikak
=&$; $ ik ak+1

=+$ for k=1, ..., K&1

and $ia=0 otherwise.

By construction, Q is a bistochastic matrix, Q # R; moreover, Q stochasti-
cally dominates P, because one goes from Pik

to Qik
by shifting some

probability from object ak to the preferred object ak+1 (and if the same
agent appears more than once, we use the transitivity of stochastic
dominance).

Statement if. Suppose P in R is stochastically dominated at o by Q
in R. Let i1 be an agent such that Q i1

{Pi1
(Definition 2). By definition of

the relation sd(oi1
), there exist two objects a1 , a2 such that

a2 oi1
a1 qi1a1

<p i1 a1
and p i1a2

<qi1a2
.
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In particular, a2{(P, o) a1 . Next by feasibility of Q, there exists an agent
i2 such that q i2a2

<pi2a2
. Repeating the argument, we find a3 such that

a3oi2
a2 and pi3a3

<q i3a3
,

and hence a3{(P, o) a2 , and so on, until by finiteness of A and N we find
a cycle of the relation {.

3. Proof of Theorem 1

Fix an ordinal preference profile o. The set [P|(o) | | # Wn] coincides
with the set of all random assignments ordinally efficient with respect to o.

(i) Any P|(o) is ordinally efficient. We prove it by contradiction.
Suppose that for some | P|(o) is not ordinally efficient. By Lemma 3 we
can find a cycle in the relation {:

a0{ a1, ..., ar&1{ ar, ..., aR{ a0.

Let ir be an agent such that ar&1oir ar and pira r>0 (r # 1, ..., R+1, with
the convention aR+1=a0). Let sr be the first step s in our simultaneous
eating algorithm when the agent ir starts to acquire good ar, i.e., the least
s for which ps

ir a r{0.
Since in the algorithm pia can change from Ps&1 to Ps only if i # M(a, As&1),

we deduce that at the step sr good ar&1 has to be already fully distributed, i.e.,
ar&1 � As r&1. Thus, sr&1<sr for all r=1, ..., R+1, which is a contradiction
since a0=aR+1.

(ii) Any ordinally efficient assignment P can be constructed using
a simultaneous eating algorithm for some vector | of eating speeds.
Let A� 0=A, B1=the set of maximal elements of A� 0 under {, i.e.,
B1=[a # A� 0 | _3 b # A� 0 : b{a]. Let Bs=[a # A� s&1 | _3 b # A� s&1 : b{a], A� s=
A� s&1 "Bs, ... . This sequence stops at a step S, for which BS=A� S&1 (note
that A� n=< so <=Bn+1=A� n+1= } } } ).

Define now for all s=1, ..., S:

for
s&1

S
�t�

s
S

|i (t) =def {Spia ,
0,

if a # Bs and i # M(a, As&1)
otherwise.

We will check that P is the result of the simultaneous eating algorithm with
eating speeds (|1 , ..., |n) and that A� 0, ..., A� s coincide with A0, ..., As from
this algorithm. Indeed, let a # Bs. By the maximality of a in A� s&1, pia>0
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implies i # M(a, A� s&1). Thus, M(a, A� s&1){< and pia=0 whenever
i � M(a, A� s&1). For s=1 we obtain:

y1(a)={
1
S

,

�,

if a # B1

if a � B1.

Hence, y1=1�S, A� 1=A1, and P1 is such that

p1
ia={ p ia ,

0,
if a # B1

if a � B1.

We proceed by induction. Suppose that

ps&1
ia ={ pia ,

0,

if a # B1 _ } } } _ Bs&1 and ys&1=
s&1

S
otherwise.

We have for any a in A� s&1 :

:
i # M(a, A� s&1 )

|
y

s&1�S
|i (t) dt+ :

i # N

ps&1
ia

=0

={
:

i # M(a, A� s&1 )
|

y

s&1�S
Sp ia dt=[Sy&(s&1)]

} :
M(a, A� s&1 )

pia=Sy&(s&1), if a # Bs

=1

0, if a � Bs.

So,

ys(a)={
s
S

,

�,

if a # Bs

otherwise.

Thus ys=s�S, A� s=As and

ps
ia={p ia ,

0,
if a # B1 _ & _ Bs

otherwise.
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4. Proof of Lemma 4
We fix | and P as in the statement of the lemma and assume that P is

anonymous. We fix a preference profile o.
The partial assignment obtained under PS at any moment t # [0, 1] is

anonymous, so under o or any of its (agents) permutations, objects a1 ,
a2 , ..., ak , ..., an are eaten away in the same order and at the same instants
0<x1�x2� } } } �xk� } } } �xn=1. Note also that under PS, an agent
can change the good he or she eats only at one of the instants sk and that
the set of agents who eat a given good can only expand with time.

Define S(ak) to be the set of agents who eat good ak in [xk&1 , xk]. If
|S(ak)|=1 then ak is entirely assigned to one agent and xk=1=xn . Thus,
|S(ak)|�2 whenever xk<xn .

Step 1. Suppose there exist instants 0<y1�y2� } } } �yk� } } } �
yn=1 such that at yk all agents get under P exactly the xk fraction of their
unit share of goods, i.e., � yk

0
|i ({) d{=xk \i, k. Then P coincides with PS.

Indeed, suppose that assignments are the same at x1 , ..., xk&1 under PS
and at y1 , ..., yk&1 under P (where x0=y0=0). Under PS during [xk&1 , xk]
each agent eats his or her best among the goods still available ak , ..., an , and
the fraction xk&xk&1 eaten by everyone will not exhaust any good before xk .
Since xk&xk&1 is exactly the fraction each agent eats during the interval
[ yk&1&yk] under P, they will end up at yk with the same partial assignment
as at xk under PS.

Step 2. Check that such y1 , ..., yn exist. Define

t� i (k)=max {t: |
t

0
|i ({) d{�xk= t

� i
(k)=min {t: |

t

0
|i ({) d{�xk=

t� (k)=min
i

t� i (k), t
�
(k)=max

i
t
� i

(k),

i.e., [t
� i

(k), t� i (k)] is the largest interval during which the total fraction of
goods eaten by an agent i stays equal to xk .

Proceed by induction on k. Suppose that under P all agents are able to
eat exactly the fractions x1 , ..., xk&1 by the dates y1 , ..., yk&1 respectively
(where x0=y0=0). If t

�
(k)�t� (k) then choose any yk # [t

�
(k), t� (k)]. Suppose

that t
�
(k)>t� (k).

Consider the permutations o1 and o2 of o, such that agents 1 and 2
are in S(ak), t� (k)=t� 1(k) and t

�
(k)=t

� 2
(k) under o1, and o2 is obtained

from o1 by exchanging agents 1 and 2. We have

:
i # S(ak )

|
t� (k)

yk&1

|i ({) d{<|S(ak)| (xk&xk&1)=amount of ak left

< :
i # S(ak )

|
t
�
(k)

yk&1

| i ({) d{
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and for any good aj , j>k,

:
i # S(aj )

|
t� (k)

yk&1

|i ({) d{�|S(aj )| (xk&xk&1)�amount of aj left.

Moreover, the equality is possible only if xj=xk .
Thus, under o1 and o2 no good among ak , ..., an is eaten away before

t� (k) and good ak will be exhausted at some dates s1, s2 # (t� (k), t
�
(k)). But for

any s in this interval, under o1(o2) the fraction of goods agent 1 (2) gets
by time s is larger than xk , while the fraction of goods agent 2 (1) gets by
the time s is smaller than xk .

By our induction hypothesis, all agents get exactly the same partial
assignment at xk&1 under PS and at yk&1 under P. As a result, agent 1 will
get more and agent 2 less than xk of good a1 under o1, while agent 2 will
get more and agent 1 less than xk of good a1 under o2. This contradicts
the anonymity of P.

5. Proof of Proposition 1

Step 1. The PS assignment is envy-free. Fix o in AN, i in N and label
A in such a way that aoi boi co } } } . Consider the algorithm in Section
5 keeping in mind |i (t)=1 for all i, t. Let s1 be the step at which a is fully
allocated, namely

a # As1&1"As1.

Because i # M(a, As) as long as s�s1&1, we have

ps1
ia=ys1�ps1

ja for all j # N.

Because a is fully allocated at s1 , these numbers are respectively the ia and
ja entries of PS(o)=P, so that pia�pja . Next we let s2 be the step at
which [a, b] is fully allocated

[a, b] & As2&1{< [a, b] & As2=<.

Note that s1�s2 and that i # M(a, As) _ M(b, As) for s�s2&1. Hence

pia+p ib=ps2
ia+ps2

ib=ys2�ps2
ja+ps2

jb=p ja+pjb for all j # N.

Repeating this argument we find that Pi stochastically dominates Pj at oi ,
as desired.

Step 2. The PS mechanism is weakly strategyproof. In the simultaneous
eating algorithm with |i (t)=1 for all i, all t, 0�t�1, we introduce the
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following notations: N(a, t) is the (possibly empty) set of agents who eat
object a at time t: if t is such that for some s=1, ..., n : ys&1�t<ys then

N(a, t)=M(a, As&1) if a # As&1

=< if a � As&1.

We write n(a, t), the cardinality of N(a, t), and set t(a) to be the time at
which a dies, namely:

t(a)=sup[t | n(a, t)�1].

Observe that n(a, t) is nondecreasing in t on [0, t(a)[ , because once agent
i joins N(a, t), he or she keeps eating object a until its exhaustion.
Moreover,

|
t(a)

0
n(a, t) dt=1 (13)

because one unit of object a is allocated during the entire algorithm.
We turn to the proof of the claim. Fix o in AN, an agent denoted as

agent 1, and a misreport o1* by this agent. We write P=PS(o), P*=
PS(o |1 o1*), and similarly N(a, t), N*(a, t), and so on. Finally we label
A so that ao1 bo1 co } } } .

We assume P1* sd(o1) P1 and show P1*=P1 . If p1a=1, this implication
is obvious so we assume p1a<1 from now on. Note that, at profile o,
agent 1 is eating a during the whole interval [0, t(a)[ ; hence p1a=t(a). At
o*, on the other hand, agent 1 is eating a on a subset of [0, t*(a)[ . There-
fore the assumption p1a�p*1a implies t(a)�t*(a).

We claim that for all t in [0, t(a)[ and all agents i, i{1, we have:

i # N(a, t) O i # N*(a, t). (14)

Suppose there is an agent i, i{1, and a time t, 0�t<t(a) such that

i # N(a, t) and i # N*(x, t), for some object x, x{a.

As object a is available at time t under profile o* (because t<t*(a)),
agent i prefers x to a. Hence x is not available at t under o (recall that
agent i 's preferences do not change in the two profiles). This implies
t(x)�t<t*(x).

Now let B be the set of objects x such that x{a and t(x)<t*(x) (we
have just shown that B is nonempty). We pick y in B for which t(x) is
minimal. Note that t( y)<t(a) because in the above construction of x we
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had t(x)<t(a). From t( y)<t*( y) we deduce that at some date t, t<t( y),
there is an agent j such that

j # N( y, t) and j � N*( y, t). (15)

Otherwise the inclusion N( y, t)�N*( y, t) for t in [0, t( y)[ combined with

|
t( y)

0
n( y, t) dt=1=|

t*( y)

0
n*( y, t) dt (16)

and the fact that n*( y, t) is nondecreasing in t would contradict our
assumption t( y)<t*( y). Note that agent j in property (15) cannot be
agent 1 because t<t( y)<t(a) and agent 1 eats a over the whole internal
[0, t(a)[ under o. Let z be the good that agent j eats at date t under
o*: j # N*(z, t). As object y is available at t under o* (because t<t( y)
<t*( y)), agent j prefers z to y. As agent j eats y at t under o, and his or
her preferences are the same in both profiles ( j{1) object z is no longer
available at t under o. We have shown successively:

t<t( y), t<t*(z), and t(z)<t.

As z is not object a (because t(z)<t(a)) this implies z # B and t(z)<t( y),
a contradiction of the definition of y. This establishes (14).

Thus we have shown N(a, t)�N*(a, t) for t in [0, t(a)[ . By an argu-
ment used above (see (16)), this implies t(a)=t*(a) as well as N(a, t)=
N*(a, t) in this interval. Therefore p*1a=p1a and the eating algorithms
under o and o* coincide on the interval [0, t(a)[ .

It should be clear that the above argument can now be repeated: the
assumption P1* sd(o1) P1 gives p*1b�p1b and we show successively t(b)�t*(b),
then N(b, t)�N*(b, t) on the interval [0, t(b)[ , implying t(b)=t*(b) and
so on. We leave the details to the reader.

Step 3. The RP mechanism is strategyproof. For any ordering _ of N,
the priority mechanism o � Prio(_, o) is obviously strategyproof. This
property is preserved by convex combinations (with fixed coefficients,
independent of o); hence the claim.

Step 4. The RP assignment is weakly envy-free. Let o be a profile
at which P2 sd(o1) P1 , we must show P2=P1 . We label the outcomes
a1 , a2 , ..., an so that a1 o1 a2o1 a3o1 } } } .

For any ordering _ of N where 1 precedes 2, let _� be the ordering
obtained from _ by permuting 1 and 2. Clearly the pairs [_, _� ] form a
partition of %. As o is fixed throughout we omit it in the expression
Prio(_, o).
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If 2 gets a1 in Prio(_� ), so does 1 in Prio(_). In Prio(_), 2 cannot get a1

(for 1 would snatch it before 2 anyway). Therefore in the random assignment
Q=[Prio(_)+Prio(_� )]�2 we have q2a1

�q1a1
. But RP(o) is a convex

combination of such assignments; therefore p2a1
�p1a1

. From our assump-
tion P2 sd(o1) P1 we get q2a1

=q1a1
for all pairs _, _� , so that for any such

pair

either 1 gets a1 in Prio(_) and 2 gets a1 in Prio(_� ), or
(17)

none of 1, 2 gets a1 in any of Prio(_) or Prio(_� ).

Next consider the allocation of a2 in Prio(_), Prio(_� ). If 2 gets a2 in
Prio(_� ), by (17) 1 cannot get a1 in Prio(_); hence 1 gets a2 in Prio(_). If
2 gets a2 in Prio(_), then 1 gets a1 in Prio(_) (as 1 precedes 2, 1 must get
something he or she prefers to a2), so 2 gets a1 in Prio(_� ) (by (17)) so 1
gets a2 in Prio(_� ).

We conclude that q2a2
�q1a1

in Q. By assumption p2a1
+p2a2

�p1a1
+p1a2

and by the above argument, p2a1
=p1a1

; hence p2a2
=p1a2

and q2a2
=q1a1

for
all pairs [_, _� ]. For any such pair the allocation of a1 , a2 , A"[a1 , a2] is
``symmetric'' between _ and _� ; e.g., if Prio(_) has 1 � x, 2 � y where x, y
are a1 , a2 , or A"[a1 , a2], then Prio(_� ) has 2 � x, 1 � y.

We proceed by induction. Let p1ai
=p2ai

, i=1, ..., k&1. Suppose also
that for any x, y # [a1 , a2 , ..., ak&1 , A"[a1 , ..., ak&1]] whenever 1 receives
x and 2 receives y at Prio(_), 1 receives y and 2 receives x at Prio(_� ).

If 2 gets ak at Prio(_� ) then by the induction hypothesis 1 gets an object
from A"[a1 , ..., ak&1] at Prio(_). Since ak is the best for him or her in this
set and it is available, 1 gets ak at Prio(_). If 2 gets ak at Prio(_), then 1
gets ae , e<k, at Prio(_). Then, by the induction hypothesis, 2 gets ae at
Prio(_� ). Hence ak is available for 1 at Prio(_� ). But by induction hypothesis,
1 has to get something from A"[a1 , ..., ak&1] at Prio(_� ), so he or she gets ak .

It follows that q2ak
�q1ak

. Since �k
i=1 p2ai

��k
i=1 p1ai

by assumption and
p1ai

=p2ai
by the induction hypothesis, we deduce as above that p1ak

=p2ak

and that the induction hypothesis holds true when k&1 is changed to k.

6. Proof of Proposition 2

Step 1. A consequence of ordinal efficiency. For all o, all a, b # A, and
all i # N

[aoj b for all j # N"i and boi a] O [ p ia=0]. (18)

Note that this property holds for any n. Its proof is simple: if pia>0 we
have b{(P, o)a, whence pjb>0 for some j in N"i would imply a{(P, o)b
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and make the relation { cyclic. By Lemma 3 this is impossible, therefore,
pjb=0 for all j{i implying pib=1, contradiction.

Step 2. Characterization of the RP mechanism. We consider in turn the
ten different profiles listed in the proof of Lemma 2.

For type 1, ordinal efficiency is enough to pick RP. For type 2, ETE is
enough.

For type 3, ordinal efficiency yields p3b=0 (by (18)). Next ETE implies
p1b=p2b= 1

2 . Finally consider the misreport by agent 3, ao3* bo3* c, by
which this agent gets ( 1

3)a+( 1
3)b+( 1

3)c. Strategyproofness implies p1a� 1
3 .

Conversely, apply this property at a type 2 profile when agent 3 misreports
aocob and deduce p1a� 1

3 . Thus p1a= 1
3=p1b and we are done.

For type 4, ordinal efficiency gives p3b=1 (by (18)). Next ETE gives
p1a=p2a , p1c=p2c and we are done.

For type 5, we distinguish two cases. Start with the case bo3 ao3 c. By
ordinal efficiency and (18) we get p3a=0. If 3 misreports ao3* bo3* c he or
she gets ( 1

3)a+( 1
3)b+( 1

3)c; hence by strategyproofness we have p3b� 2
3 . By

considering the symmetric misreport by 3 at the type 2 profile, we get
p3b� 2

3 , so p3b= 2
3 . Now RP can be computed entirely by ETE.

For type 5 with bo3 co3 a, we have p3a=0 again by ordinal efficiency
and (18). Looking at the misreport by 3 from bocoa to boaoc and
vice versa, we get p3b= 2

3 and are done.
For type 6, distinguish two cases. First assume bo3 ao3 c. Ordinal

efficiency and (18) imply p3a=p2b=0. Next consider agent 1's misreport:
ao1*co1* b, which makes the reported profile of type 4. Thus p1a� 1

2 . The
symmetrical misreport by agent 1 starting from the type 4 profile gives
p1a= 1

2 . Finally consider agent 3's misreport ao3 bo3 c, making the reported
profile of type 3, and its symmetric misreport: we obtain p3b= 5

6 and the matrix
is now entirely determined.

In a type 6 preference with bo3 co3 a, we deduce as above p3a=p2b=0
and p1a= 1

2 . Finally the misreport bo3* ao3* c and its symmetric misreport
yield p3b= 5

6 .

Step 3. Characterization of PS. First we note that no envy implies
equal treatment of equals. Suppose at some profile o we have o1=o2

but P1{P2 . Then for some utility function u compatible with this common
ordering of A, we have u } P1{u } P2 . Hence one of the agents 1, 2 envies
the other if they both have utility u.

Next we look in turn at the ten types of profiles from the proof of
Lemma 2. For types 1, 2, and 4, the argument of Step 2 is repeated.

For type 3, ordinal efficiency gives p3b=0 and no envy gives pia= 1
3 for

i=1, 2, 3. Then equal treatment of equals gives p1b=p2b= 1
2 .
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For type 5 and bo3 ao3 c, we have p3a=0 by ordinal efficiency and
p1a=p2a= 1

2 by equal treatment of equals. Next we apply no envy between
agents 1 and 3:

[ p3b+p3a�p1b+p1a and p1a+p1b�p3a+p3b] O p3b=p1b+ 1
2 .

Because p1b=p2b , this gives p1b= 1
6 and we are done.

For type 5 and bo3 co3 a we have p3a=0 and p1a=p2a= 1
2 as above.

But no envy alone is not enough to pin down the PS assignment. For
instance

a b c

1 1
2

1
3

1
6

2 1
2

1
3

1
6

3 0 1
3

2
3

is ordinally efficient and envy-free. Here we must invoke weak strategy-
proofness in order to characterize the PS assignment. Say that 3 reports
bo3 ao3 c: after the misreport we are in the other type 5 profile, for which
we know that 3 gets ( 2

3)b+( 1
3)c. Therefore weak strategyproofness implies

p3b� 2
3 . But 1 does not envy 3 so 1

2+p1b�p3b implying p3b� 2
3 and we are

done.
For type 6 and bo3 ao3 c we get p3a=p2b=0 from ordinal efficiency

and (18). From no envy between 1 and 2 we have p1a=p2a= 1
2 and from

no envy between 1 and 3, we get 1
2+p1b=p3b so that p1b= 1

4 and we are
done.

Finally, for type 6 and bo3 co3 a, we have p3a=p2b=0, p1a=p12= 1
2 .

If 3 reports bo3* ao3* c he or she gets ( 3
4)b+( 1

4)c so p3b� 3
4 . As 1 does not

envy 3, we have 1
2+p1b�p3b � p3b� 3

4 and we are done.

7. Proof of Theorem 2 (Impossibility Result)

For n�4 there does not exist a mechanism which satisfies strategyproof-
ness, equal treatment of equals, and ordinal efficiency. We suppose that
there exists such a mechanism P=P(o) and will arrive to a contradiction
considering the restrictions our three desired properties impose on assign-
ment matrices at several preference profiles.

Note first that it is enough to consider the case n=4. Indeed, for an
arbitrary n, look at the following domain restriction. Let agents 1, 2, 3, and
4 prefer objects a1 , a2 , a3 , and a4 to all others (any ordering among a1 ,
a2 , a3 , a4 being admissible), while for i>4 object ai is the best choice for
agent i. O-efficiency implies that for all i>4 object ai must go to agent i
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with probability 1. So the assignment problem is reduced to the first four
agents. If there exists a mechanism satisfying the premises of the theorem,
its restriction to the above mentioned domain would give such a mechanism
for four agents.

In what follows, we will use the following facts.

Fact 1. Suppose that boi a, while aoj b for all j{i. Then O-efficiency
implies pia=0. (See Step 1 in the proof of Proposition 2.) Also, let boi a
for i # I, while aoj b for j � I. Then O-efficiency implies pia=0 \i # I and�or
pjb=0 \ j � I.

Fact 2. Consider two orderings: R=a1oa2 o } } } oan and R$=a$1 o
a$2 o } } } oa$n . Let for some k [a1 , ..., ak]=[a$1 , ..., a$k]. Let agent i change
his or her preferences from R to R$, the preferences of others being the
same (R&i ). By SP,

:
k

j=1

piaj
(R, R&i )= :

k

j=1

p ia$j
(R$, R&i )

(of course, the same is true for the sums j=k+1 til n).

Fact. 3. Let a be the best object for everyone; then p1a=p2a=p3a=
p4a= 1

4 .
Indeed, it is true for an unanimous preference profile by equal treatment

of equals. Whenever agent 4 changes his or her preferences, object a being
still his or her best, he or she has to receive p4a= 1

4 by Fact 2, while others
have to get (1& 1

4)�3= 1
4 by equal treatment of equals. If agent 3 changes

his or her preferences after that to be like the ordering of agent 4, then he
or she still has to receive p3a= 1

4 . Hence by equal treatment of equals
p4a= 1

4 , and so again by equal treatment of equals p1, 2a= 1
4 . Similar

arguments apply when 1, 2 have the same orderings, while 3 and 4 have
arbitrary ones (with a as the top)��we just see what happens when 3
changes to be like 4 or 4 changes to be like 3��as well as in the general
case.

Fact 4. Let exactly three agents (say, 1, 2, 3) have a as their top choice.
Fact 1 gives p4a=0, while Fact 2 implies (as above) that p1a=p2a=p3a= 1

3 .
We proceed by considering several preference profiles. We will write abcd

instead of aobocod, and abcd(2) if two agents in the profile have ao
bocod. While we refer to the agent whose preferences are listed first as
agent 1, etc., we keep in mind that once we derive some restrictions on P
for a given profile, we obtain the same restrictions for all permutations of
agents' orderings. Figure 1 records the successive facts we establish for a
number of specific profiles.
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FIGURE 1

Profile 1: abcd(3), badc. By Fact 1, p4a=p4c=0 (objects a, b, then
objects c, d ); hence p4b=p4c= 1

2 by Fact 2 (compare with profile ``abcd(4)'':
p4a+p4b should not change).

Profile 2: abcd(2), abdc(2). pia= 1
4 by Fact 3 and by a similar argument

pib= 1
4 for all i. Then it follows from O-efficiency that p1, 2d=p3, 4c=0.

Indeed, p1, 2d>0 would imply p3, 4c=0 by O-efficiency, which would in
turn imply p3, 4d= 1

2 (P is bistochastic!) and hence p1, 2d=0.
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Profile 3: abcd(3), adbc. We have that pia= 1
4 by Fact 3, while by Fact

1 p4b=0 (objects b, d ) and p4c=0 (objects c, d). Thus pjb= 1
3 for j=1, 2, 3.

Profile 4: abcd(2), adbc, bacd (or badc!). By Fact 4, p1a=p2a=p3a= 1
3 ,

while p4a=0. Changing preferences of the last agent to R$=abcd gives us
the Profile 3, so by Fact 2 p4a+p4b must be the same as at that profile.
Hence, p4b= 1

4+ 1
3&0= 7

12 .

Profile 5: abcd(3), bdac. p4a=0 by Fact 4, while p4b= 1
2 and p4c=0 by

Fact 2 (change of preferences of agent 4 to badc leads to Profile 1).

Profile 6: abcd(2), badc(2). When the last agent changes from badc to
abcd, we obtain Profile 1. Thus p4a+p4b= 1

2 , as at Profile 1. Using equal
treatment of equals we get pia+pib=pic+p ib= 1

2 \i. Finally, using the same
argument as for Profile 2, it follows from O-efficiency that p1, 2b=p3, 4a=0,
etc.

Profile 7: abcd(2), bdac(2). O-efficiency implies that in each pair
( p3, 4a , p1, 2b), ( p3, 4a , p1, 2d ), and ( p3, 4c , p1, 2d) at least one probability must
be zero. Suppose p3, 4a>0; then p1, 2b=p1, 2d=0. Hence (P is bistochastic!)
p3, 4b=p3, 4d= 1

2 and so p3, 4a=0. Thus p3, 4a=0. By similar argument,
p1, 2d=0, and so p1, 2a=p3, 4d= 1

2 . Before completing the assignment matrix
for this profile we need to consider another profile, namely:

Profile 8: abcd(2), bdac, badc. p3a=0 for Fact 1 (objects a, d ); p3b= 1
2

and p3c=0 by Fact 2 (compare with Profile 6, when agent 3 changes from
bdac to badc). Look now at the last agent with preferences badc. When he
or she changes to abcd we obtain Profile 5. Thus p4a+p4b= 1

3+ 1
6= 1

2 .
When he or she changes to bdac, we obtain Profile 7. Thus p4b , p4c must
be the same as at Profile 7. So p4b+p4c=1&(0+ 1

2)= 1
2 . Suppose that

p4a>0; then by O-efficiency p1, 2b=0, and so p4b= 1
2 ; i.e., p4a=0. Thus we

have p4a=0=p4c , and p4b= 1
2 .

Return to Profile 7. When the last agent changes from bdac to badc, we
obtain Profile 8. So by Fact 2 p4b does not change; i.e., at the Profile 7
p4b= 1

2 , p4c=0 (see the bold numbers in the matrix of Fig. 1).

Profile 9: abcd(2), bdac, adbc. By Fact 4, p1, 2, 4a= 1
3 , p3a=0. By Fact 1

(objects b, d) p4b=0. By Fact 2 (agent 3 changes from bdac to ba . . and we
get Profile 4), p3b= 7

12 . Also by Fact 2 (agent 4 changes from adbc to bdac
and we get Profile 7), p4c=0. Hence, p4d= 2

3 . Next, p1d+p2d+p3d=
1&p4d= 1

3 , so p3c=1& 7
12&p3d�1& 7

12& 1
3= 1

12>0; hence by O-efficiency
p1, 2d=0.

Profile 10: abcd(2), adbc(2). pia= 1
4 for all i by Fact 3. When agent 3

changes from adbc to bdac, we get Profile 9. Thus by Fact 2 p3c=
1
12 (=p4c)>0. Then by O-efficiency p1, 2d=0.
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Profile 11: abcd(2), adbc, abdc. By Fact 3, pia= 1
4 for all i. Consider

agent 4 with preferences abdc. When he or she changes to adbc, we get
Profile 10; so by Fact 2 p4c= 1

12 . When he or she changes to abcd, we
get Profile 3, so by Fact 2 p4b= 1

3 . Hence, p4d= 1
3 . Consider now agent 3

with preferences adbc. By Fact 1 (objects b, d ), p3b=0. If agent 3 changes
to abdc, we get Profile 2. So by Fact 2 p3c=0; hence p3d= 3

4 . But then
p3d+p4d= 3

4+ 1
3>1, which is the desired contradiction.
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