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Abstract

In a variety of cases, a set of indivisible objects must be allocated to a set of agents

where each agent needs exactly one object. Examples include the allocation of tasks to

workers, spots at public schools to pupils, and kidneys to patients with renal failure. We

consider the mixed ownership case of this problem (some objects are initially owned

by some agents while the other objects are unowned) and introduce a market-based

mechanism that is procedurally reminiscent of the Walrasian Mechanism from equal-

division. Our mechanism is strategy-proof and procedurally fair, and it leads to Pareto-

e¢ cient allocations. We obtain that it is equivalent to a well-known priority-order

based mechanism. The equivalence result in the classical paper by Abdulkadiro¼glu and

Sönmez (Econometrica�1998 ) follows as a corollary.
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1 Introduction

We consider the problem of allocating n indivisible objects to n agents where each agent

needs exactly one object and agents�preferences over objects are strict. Monetary transfers

are not allowed.1 There are numerous real-life applications of this problem, such as the

allocation of tasks to workers, spots at public schools to pupils, kidneys to patients with

renal failure, dormitory rooms to college students, and legislators to committees [1, 2, 3, 5,

9, 15]. The purpose of this paper is to design a mechanism (a systematic allocation rule)

which has a market-based approach, is fair in a certain sense, and leads to e¢ cient (Pareto

optimal) allocations (matchings of agents and objects). A core issue to pay attention to

when designing a mechanism is that preferences are elicited from agents who may respond

strategically rather than truthfully.

As is the convention in this literature, we employ the paradigm of allocating �houses�

to agents. There are three cases of this problem in the literature, varying in the initial

ownership structure. In the private ownership case, called a housing market, initially each

agent (privately) owns a house (see Shapley and Scarf [18]). In the social ownership case,

called a house allocation problem, initially houses are unowned (meaning that they are socially

owned by all agents; see Hylland and Zeckhauser [9]). In the mixed ownership case, called a

house allocation problem with existing tenants, the previous two cases are generalized: There

are k �newcomers�who initially do not own any houses; k �vacant houses,�which are initially

unowned; and n� k �existing tenants�and n� k �occupied houses�such that each existing

tenant owns her occupied house (see Abdulkadiro¼glu and Sönmez [2]).

This paper considers the mixed ownership case. Besides being more general, it draws

attention because of a number of interesting real-life applications of it. A prominent example

is kidney exchange with Good Samaritan Donors. In the most serious forms of renal disease,

the preferred treatment is kidney transplantation. As of March 2009, there were about

79,000 patients waiting for a kidney transplant in the United States. While some patients

(�existing tenants�) have friends or relatives willing to donate them their kidneys (�occupied

1We do not take a normative standpoint against the use of money. In many real-life applications, however,
the use of money is not permissible.
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houses�), there are also patients (�newcomers�) who do not have donors. There are also

kidneys obtained from Good Samaritan Donors and cadavers (�vacant houses�) which are

donated to patients collectively. In many cases a patient cannot be transplanted the kidney

of her donor due to medical incompatibilities. A common practice is then kidney exchange in

which patients are transplanted the kidneys of one another�s donors. A kidney exchange may

also involve patients without donors and kidneys obtained from Good Samaritan Donors and

cadavers [15, 17, 22]. Another real-life application of the mixed ownership case is allocation

of on-campus housing units at college campuses . Each returning student (�existing tenant�)

occupies a room from the previous year. There are also incoming freshmen (�newcomers�),

who initially do not occupy any rooms, and vacant rooms, vacated by the graduated class [2,

7].

The mechanism that we will introduce is inspired from the �Walrasian Mechanism from

equal-division,�which is arguably the most widely advocated mechanism to allocate a socially

owned bundle of (in�nitely) divisible goods to a set of agents fairly and e¢ ciently. This

mechanism proceeds in a simple manner. First, the bundle is equally divided among agents. If

agents also have private endowments, the natural idea is to add agents�equal-division shares of

the bundle to their private endowments. This results in a private ownership exchange market,

in which the Walrasian Mechanism is operated, producing a Walrasian allocation, which

is Pareto-e¢ cient under standard assumptions on preferences.2 This mechanism has been

shown to be compatible with many equity criteria that has been proposed in the literature

(see Thomson [21]).

Clearly, �indivisible�objects cannot be equally �divided.�A probabilistic equal-division

idea can still be employed, however, using random distribution. In an indivisible object allo-

cation problem, the �rst mechanism that involves random distribution has been introduced

by Abdulkadiro¼glu and Sönmez [1]. In the context of a house allocation problem, they pro-

posed the core from random endowments mechanism (in short, cfre), which proceeds as

follows:

Distribute n houses to n agents uniformly at random such that each agent receives
2A Walrasian allocation is an allocation that can be attained in a Walrasian equilibrium. The Walrasian

mechanism is the rule that maps a private ownership exchange economy to a Walrasian allocation.
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exactly one house. In the induced exchange market, reallocate houses to agents by

executing the top trading cycles mechanism3 (in short, ttc), as described below:

Step 1: Let each agent �point�to her most preferred house and let each house �point�

to its owner. There exists at least one �cycle,�characterized by a list a1; a2; � � � ; aj of

agents where a1 points to a2�s house which points to a2; a2 points to a3�s house which

points to a3;� � � ; aj�1 points to aj�s house which points to aj; and aj points to a1�s

house which points to a1.4 Assign the agents in cycles the houses they point to and

then remove these agents and houses from the market.

Step t > 1: Let each remaining agent point to her most preferred house among re-

maining ones and let each remaining house point to its owner. There exists at least

one cycle. Assign the agents in cycles the houses they point to and then remove these

agents and houses from the market.

Roth [13] showed that ttc is strategy-proof (truthful preference revelation is a dominant

strategy), from which it immediately follows that cfre is also strategy-proof.

There are interesting procedural and theoretical parallels between the Walrasian Mech-

anism from equal-division and cfre. For both mechanisms, �rst a private ownership ex-

change market is generated by distributing the socially owned resources to agents employing

an equal-division idea. In the former, equal-division is in the physical sense; in the latter, in

a probabilistic sense, as each socially owned vacant house is given to each agent with exactly

the same probability, 1=n. For both mechanisms, market outcomes are calculated in the

induced exchange markets. In the former, the Walrasian Mechanism is operated producing

a Walrasian allocation, which is Pareto-e¢ cient. In the latter, ttc is executed, which is

the exact counterpart of the Walrasian Mechanism in this context, as it produces the unique

Walrasian allocation, which is again Pareto-e¢ cient (see Shapley and Scarf [18]). In the for-

mer, under certain assumptions that guarantee core convergence (see Aumann [4]) and the

uniqueness of a Walrasian allocation (see Mas-Colell [11]), the Walrasian Mechanism pro-

duces the exchange market�s unique core allocation. In the latter, similarly, ttc produces

3This mechanism is credited to David Gale in Shapley and Scarf [18].
4The existence of a cycle arises from the fact that the number of agents and houses is �nite.
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the exchange market�s unique core allocation (see Shapley and Scarf [18]).

We want to employ a similar approach in the mixed ownership case. The random distrib-

ution in the mixed ownership context is a more delicate issue, however. To highlight the key

challenges, consider the following two mechanisms, the �rst of which is due to Sönmez and

Ünver [19]:

(1) Distribute k vacant houses to k newcomers uniformly at random such that each new-

comer receives exactly one vacant house. Then reallocate houses to agents by executing

ttc.

(2) Distribute k vacant houses to n agents uniformly at random such that out of n agents

k of them receive a vacant house. Then reallocate houses to agents by executing ttc.

In (1), random distribution results in a housing market and ttc produces its unique

core allocation. There is no probabilistic equal-division, however, as a vacant house, which

is socially owned, is given to a newcomer with 1=k probability but to an existing tenant

with zero probability. To emphasize the fairness shortcoming of this mechanism, consider an

existing tenant whose occupied house is the least desired house of every agent. Then in (1) she

will be assigned her least desired house. In a sense, she is punished for owning a house, which

is not what we desire. Arguably, this feature of the mechanism may also cause an incentive

shortcoming. The agent who owns the least desired house may respond strategically by �rst

giving up her house and then participating in the mechanism as a newcomer.

In (2), there is a probabilistic equal-division, as each vacant house is given to each agent

with exactly 1=n probability. There is an e¢ ciency shortcoming of this mechanism, however.

After vacant houses have been distributed, if an existing tenant e receives a vacant house and

a newcomer a does not, then, in the induced exchange market, e owns two houses (a vacant

house besides her occupied house) while a owns none. When ttc is executed, a cannot join

a cycle and remains unassigned, and when e departs from the market by joining a cycle, one

of her two houses remains, which becomes �wasted.�

We introduce a mechanism that resolves the fairness and e¢ ciency tension in (1) and (2)
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in an intuitive way. The core from random distribution mechanism (in short, cfrd) proceeds

as follows:

Besides the k vacant houses, introduce n�k �inheritance rights�associated with n�k

existing tenants. Distribute k vacant houses and n � k inheritance rights to n agents

uniformly at random such that each agent receives exactly one vacant house or one

inheritance right. If an agent receives an inheritance right, she becomes the �inheritor�

of the associated existing tenant; if she receives a vacant house, she then owns that

vacant house. Therefore, in the induced exchange market, a newcomer owns a house or

an inheritance right, and an existing tenant owns two houses (a vacant house besides

her occupied house) or an inheritance right and a house. We call this an inheritors

augmented housing market. In this market reallocate houses to agents by executing the

following inheritors augmented top trading cycles mechanism (in short, iattc):

Step 1: Let each agent point to her most preferred house and let each house point to its

owner. There exists at least one cycle. Assign the agents in cycles the houses they point

to and then remove these agents and houses from the market. If an existing tenant in

a cycle owns two houses, one of her two houses remains. Then let her remaining house

be owned by her inheritor. If her inheritor is an existing tenant who has already been

assigned a house, let her remaining house be owned by the inheritor of her inheritor,

and so on.

Step t > 1: Let each remaining agent point to her most preferred house among re-

maining ones and let each remaining house point to its owner. There exists at least

one cycle. Assign the agents in cycles the houses they point to and then remove these

agents and houses from the market. If an existing tenant in a cycle owns two houses,

one of her two houses remains. Then let her remaining house be owned by her inheritor.

If her inheritor is an existing tenant who has already been assigned a house, let her

remaining house be owned by the inheritor of her inheritor, and so on.

The innovation in cfrd is the role played by inheritance rights in the execution of iattc.

When an existing tenant who owns two houses is removed after joining a cycle, her remaining

house is not wasted; rather, it is given to her inheritor (or to the inheritor of her inheritor
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and so on). Note that this has no negative welfare implications for her. She can trade any of

her two houses to join a cycle and be assigned the best house that she can. Her remaining

house is given to another agent only after she departs from the market. It can be shown that

iattc is strategy-proof.5 Then it immediately follows that cfrd is also strategy-proof.

Observe that there is a probabilistic equal-division in cfrd; each vacant house is given to

each agent with exactly 1=n probability. Further, iattc is the counterpart of the Walrasian

Mechanism in this context, as it produces a Walrasian allocation.6 In Theorem 1 we show

that, as ttc produces the unique core allocation in a housing market, iattc produces the

unique core allocation in an inheritors augmented housing market. The core allocation notion

in this context is more subtle, however. The de�nition should incorporate the rights of

inheritors (see De�nition 2). Also, observe that in an inheritors augmented housing market

where each agent owns exactly one house, iattc proceeds just like ttc; in this sense, an

inheritors augmented housing market and iattc can be seen as generalizations of a housing

market and ttc.

Our main theoretical contribution is a surprising equivalence result, similar to the one in

Abdulkadiro¼glu and Sönmez [1]. In a house allocation problem, they showed that cfre is

equivalent to random-priority (also known as �random serial dictatorship�),7 which proceeds

as follows: (If two mechanisms are equivalent, it means, given any preference pro�le, any

given allocation is produced by the two mechanisms with exactly the same probability.)

Choose a priority-order (an ordering of agents) uniformly at random. Then execute the

associated priority-rule as follows: Assign the �rst agent her most preferred house, the

second agent her most preferred house among remaining ones, and so on.

In Theorem 2 we show that cfrd is equivalent to random You request my house - I get

your turn (in short, random Y-I ), a mechanism due to Abdulkadiro¼glu and Sönmez [2] and

which proceeds as follows:

5We do not include a proof for this, as it follows as a corollary of Theorem 2.
6This is due to Theorem 2 and the fact that a Y-I mechanism produces a Walrasian allocation (Ekici [8]).
7Knuth [10] also proved this equivalence result in an independent study.
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Choose a priority-order uniformly at random. Then execute the associated You request

my house - I get your turn mechanism (in short, Y-I) as follows:8 Assign the �rst agent

her most preferred house, the second agent her most preferred house among remaining

ones, and so on, until an agent requests the occupied house of an existing tenant. If

at that point that existing tenant has already been assigned a house, do not disturb

the procedure. Otherwise, update the remainder of the order by inserting that existing

tenant to the top and proceed. If at any point a loop forms, it is formed exclusively by

a subset of existing tenants who request the occupied houses of one another. In such

cases remove the existing tenants in the loop by assigning them the houses they request

and proceed.

In a house allocation problem, random Y-I reduces to random-priority and cfrd reduces

to cfre. Therefore, the equivalence result in Abdulkadiro¼glu and Sönmez [1] is a corollary

of our more general equivalence result.

Our equivalence result contributes to our understanding of the links between popular

mechanisms in divisible and indivisible resource allocation problems. In allocating indivisible

resources, priority-order based mechanisms� random Y-I and random-priority, are popular,

perhaps owing to their simplicity in formulation. Procedurally, however, they cannot be given

interpretations from a market point of view. On the other hand, cfre and cfrd have explicit

market interpretations by formulation: First, they induce private ownership exchange markets

via probabilistic equal-division, and then they produce Walrasian allocations in the resulting

exchange markets. The way they proceed is analogous to the Walrasian Mechanism from

equal-division, the popular mechanism in allocating divisible resources. Thus the equivalence

results in our paper and in [1] expose that, although this is not explicit by formulation, the

popular divisible and indivisible resource allocation mechanisms in the literature are indeed

analogous.

The rest of the paper is organized as follows. The next subsection brie�y mentions the

related literature. Section 2 introduces the model, describes random Y-I and cfrd, and

presents our equivalence result. The proof is bijective and fairly involved, which we cover

8See Sönmez and Ünver [20] for a characterization of this mechanism.
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exclusively in Section 3 (where we present an alternative speci�cation of iattc and explore

its properties). Section 4 concludes the paper. We present the proof of Theorem 1 in the

Appendix.

Related Literature

In addition to [1], there are several other papers with equivalence results in the literature:

Sönmez and Ünver [19] showed that the ttc based mechanism in (1) in Section 1 is equiv-

alent to the following priority-order based mechanism: Choose a priority-order by ordering k

newcomers at the top uniformly at random and placing n� k existing tenants at the bottom

(in any order); then execute the Y-I mechanism de�ned by that priority-order.

In two recent papers random-priority has been shown to be equivalent to certain mecha-

nisms that execute ttc based upon �inheritance tables.�An inheritance table is a collection

of orderings of agents. Each ordering relates to a house. While ttc is executed, an agent

points to her most preferred house in the market (as usual) and a house points to the agent

in the market who is ordered highest in its ordering. Pathak and Sethuraman [12] show that,

if ttc is executed based upon a randomly generated inheritance table where every agent is

included in every ordering, the resulting mechanism is equivalent to random-priority. They

also extend this equivalence to the houses-with-quotas case (e.g., a public school with a quota

of q can be assigned to q students). Also, they show that, in the houses-with-quotas case, if

ttc is executed based upon a randomly generated inheritance table where the ordering for a

house with quota q includes only q agents and each agent is included in the ordering of only

one house, the resulting mechanism is again equivalent to random-priority. Carroll [6] later

showed a general equivalence result that implies and extends the preceding ones.

There is a conceptual di¤erence between iattc based cfrd and the above-mentioned ttc

based mechanisms. The execution of ttc in these mechanisms is based upon a randomly

generated inheritance table, while the execution of iattc is based upon randomly generated

�inheritor relationships between agents.� This innovation in cfrd promises a new line of

research. Future research papers may study how to execute iattc in the houses-with-quotas

case, or when an existing tenant may initially own multiple houses, which may potentially
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lead to the design of other iattc based mechanisms that are equivalent to variants of random

Y-I. The tools that we introduce in Section 3 may become useful in these e¤orts.

2 House Allocation with Existing Tenants

2.1 Preliminaries

A house allocation problem with existing tenants is a �ve-tuple < AN ; HV ; AE; HO; P > where

�AN : fa1; a2; :::; akg is a �nite set of �newcomers�;

�HV : fh1; h2; : : : ; hkg is a �nite set of �vacant houses�;

�AE : fek+1; ek+2; :::; eng is a �nite set of �existing tenants�;

�HO : fok+1; ok+2; :::; ong is a �nite set of �occupied houses� such that existing tenant es

owns (or, equivalently, occupies) os for s = k + 1; � � � ; n;

�P : (Pa)a2AN[AE is the pro�le of agents�strict preference relations over the set of houses.
9

A house allocation problem with existing tenants is a housing market if every agent is an

existing tenant (i.e., k = 0), and it is a house allocation problem if every agent is a newcomer

(i.e., k = n).

We �x AN , HV , AE, HO throughout the paper, and we denote AN [ AE and HV [ HO

respectively by A and H.

We assume that every agent prefers being assigned any house to not being assigned a

house. For a 2 A and h, h0 2 H we write hPa h0 if a prefers h to h0. We denote the domain

of admissible preference relations by P (so, P 2 Pn). We use Ra to represent the �at least

as good as�relation for a 2 A derived from Pa (i.e., hRa h0 means hPa h0 or h = h0).

An allocation � : A ! H is a bijection from the set of agents to the set of houses. We

denote the set of admissible allocations byM.

Given P 2 Pn, an allocation � 2M is:

9 i.e., no agent is indi¤erent between two distinct houses.
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� Pareto-e¢ cient if there exists no �0 2 M such that �0(a)Ra �(a) for every a 2 A and

�0(a)Pa �(a) for an agent a 2 A.

� individually-rational if �(es)Res os for s = k + 1; � � � ; n.

� group-rational if there exists no triplet


C;HC ; �

�
where C � AE; HC � H is the set

of houses owned by agents in C; and � : C ! HC is a bijection such that �(a)Ra �(a)

for every a 2 C and �(a)Pa �(a) for an agent a 2 C. If there exists such a triplet then

C is called a �blocking coalition�and we say that � is �blocked�by C.

In the context of a housing market a group-rational allocation is also called a core allo-

cation.

An allocation � 2 M is a Walrasian allocation (with transfers) if there exists a non-

negative price function p : H ! R+ [ f0g and a non-negative transfer function tr : A !

R+ [ f0g such that

1. the budget function w : A ! R+ [ f0g is given by w(a) = tr(a) for a 2 AN and

w(es) = tr(es) + p(os) for s = k + 1; � � � ; n;

2. p(�(a)) � w(a) for every a 2 A;

3.
X
a2A

tr(a) �
X
h2HV

p(h);

4. if hPa �(a) for any a 2 A and h 2 H, then w(a) < p(h).

In words, at a Walrasian allocation, vacant houses are sold in the market and the raised

revenue is distributed to agents, existing tenants raise additional revenue by selling their

occupied houses, and then agents buy in the market their most preferred a¤ordable houses.

Ekici [8] shows that the inequalities in (2) and (3) are binding.

A random assignment � : M ! R is a probability distribution over allocations. We

denote the domain of admissible random assignments by �. Note that for every � 2 �,

�(�) � 0 for every � 2M, and
X
�2M

�(�) = 1.
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A mechanism (or, an allocation rule) is a systematic way to choose an allocation at any

given preference pro�le. Formally, a �deterministic�mechanism 'D : Pn !M is a function

that maps the domain of admissible preference pro�les to the codomain of allocations (so

at P 2 Pn its allocation choice is certain), and a �lottery�mechanism 'L : Pn ! � is a

function that maps the domain of admissible preference pro�les to the codomain of random

assignments (so, at P 2 Pn it chooses an allocation randomly based upon 'L(P )). We have

given these de�nitions in the context of a house allocation problem with existing tenants, but

we will also talk about mechanisms in more restricted domains, such as a housing market or

a house allocation problem. Therefore, in what follows, a �mechanism�should be understood

as a systematic way to choose an allocation in the context of a well-speci�ed class of problems.

A lottery mechanism is ex-post (Pareto) e¢ cient if it maps every preference pro�le to a

random assignment at which positive probability weights are given to only Pareto-e¢ cient

allocations. For a lottery mechanism, the properties of ex-post individually-rationality and

ex-post group-rationality are de�ned accordingly.

In the remainder of the paper we will consider a representative problem� :< AN ; HV ; AE; HO; P >,

which stands for the class of house allocation problems with existing tenants.

2.2 Random You request my house - I get your turn

In this subsection we present a lottery mechanism in the context of a house allocation problem

with existing tenants. It is derived from the class of �You request my house - I get your turn�

(Y-I) mechanisms, introduced by Abdulkadiro¼glu and Sönmez [2].

A priority-order is a bijection from the set of agents A to the set of numbers f1; 2; :::; ng.

We denote a generic priority-order by f , and the domain of admissible priority-orders by F .

For instance, if f(a) = 4 for a 2 A and f 2 F , it means that agent a is ordered fourth in the

priority-order f .

Each priority-order f 2 F de�nes a separate Y-I mechanism, which allocates houses to

agents at a given preference pro�le as described below.
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The Y-I mechanism de�ned by f 2 F : Assign the agent ordered �rst in f to her most

preferred house; assign the agent ordered second in f to her most preferred house among

remaining ones; and so on, until an agent requests the occupied house of an existing

tenant. If at that point the existing tenant whose occupied house is requested has already

been assigned a house, do not disturb the procedure. Otherwise, update the remainder

of the priority-order by inserting that existing tenant to the top and proceed. If at any

point a loop forms, it is formed exclusively by a subset of existing tenants who request

the occupied houses of one another. In such cases remove all agents in the loop by

assigning them the houses they request and proceed.

There are appealing properties of the class of Y-I mechanisms. They are strategy-proof

(truthful preference revelation is a dominant strategy) (Abdulkadiro¼glu and Sönmez [2]); for

any given preference pro�le, they lead to Pareto-e¢ cient and individually-rational allocations

[2], and the set of allocation induced by them coincides with the set of Walrasian allocations

(Ekici [8]). The following example demonstrates the workings of a Y-I mechanism.

Example 1 Consider a house allocation problem with existing tenants in which the prefer-

ence pro�le of agents is as in the following table:

a1 a2 a3 a4 a5 a6 a7 e8 e9 e10 e11 e12

h3 h1 h3 h6 h4 o11 o8 o9 h2 h1 o10 h5
...

... o10
...

... o8 h1
...

... o11
...

...

o12
... o10

...
... h7

...

Let the priority order f order agents as a1; a2; e8; e11; a4; a5; e10; e9; a3; a6; e12; a7 (so f(a1) =

1; � � � ; f(a7) = 12). The following �gure illustrates how the Y-I mechanism speci�ed by f pro-
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ceeds.

Step 1: No cycles

Step 2: a1 h3 (assigned)

THEN
a2 h1 (assigned)

Step 3: e 10 o11

o10 e11

Step 4: e8 o9

THEN
e9 h2 (assigned)

THEN
e8 o9 (assigned)

THEN
a4 h6 (assigned)

THEN
a5 h4 (assigned)

THEN
a3 o12

THEN
e 12 h5 (assigned)

THEN
a3 o12 (assigned)

THEN
a6 o8 (assigned)

THEN
a7 h7 (assigned)

each agent in the cycle is assigned the
house she points to

owned by e 9; e 9 becomes the agent with
highest priority among remaining ones

owned by e12; e 12 becomes the agent with
highest priority among remaining ones

The allocation induced is as follows:
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a1 a2 a3 a4 a5 a6 a7 e8 e9 e10 e11 e12

h3 h1 o12 h6 h4 o8 h7 o9 h2 o11 o10 h5

�

In our representative problem �, let �Y�I;f denote the allocation chosen by the Y-I

mechanism de�ned by f 2 F , and let F� � F be the subset of priority-orders for which the

resulting Y-I mechanisms choose � 2M (i.e., F� = ff 2 Fj�Y�I;f = �g).

Despite its other appealing properties, a Y-I mechanism su¤ers on grounds of fairness.

If in a priority-order f 2 F we have f(a) < f(a0) for two agents a; a0 2 A, then the Y-I

mechanism de�ned by f clearly favors a over a0. A natural way to introduce fairness is

randomization. That is, one may �rst choose a priority-order uniformly at random and then

execute the Y-I mechanism de�ned by the chosen priority-order. This is what we call the

random You request my house - I get your turn mechanism (in short, random Y-I).

Random Y-I: Choose a priority-order of agents f 2 F uniformly at random, and then

allocate houses to agents by executing the Y-I mechanism de�ned by f .

Having been derived from the class of Y-I mechanisms, random Y-I is strategy-proof,

ex-post e¢ cient, and ex-post group-rational.

In our representative problem �, let �rY�I denote the random assignment induced by

random Y-I. Then,

�rY�I(�) =
jF�j
n!
:

2.3 Core from Random Distribution

In this subsection we introduce an alternative lottery mechanism in the context of a house

allocation problem with existing tenants. For this purpose we �rst recall Gale�s reputable

top trading cycles mechanism (in short, ttc), an allocation rule de�ned in the context of a

housing market that proceeds as follows.

TTC: Step 1: Let each agent �point� to her most preferred house, and each house �point�

to its owner. There exists at least one "cycle,�characterized by a list a1; a2; � � � ; aj of

agents where a1 points to a2�s house which points to a2; a2 points to a3�s house which
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points to a3;� � � ; aj�1 points to aj�s house which points to aj; and aj points to a1�s

house which points to a1. Assign the agents in cycles the houses they point to and then

remove these agents and houses from the market.

Step t > 1: Let each remaining agent point to her most preferred house among remaining

ones and let each remaining house point to its owner. There exists at least one cycle.

Assign the agents in cycles the houses they point to and then remove these agents and

houses from the market.

ttc is strategy-proof (Roth [13]), and in a housing market it chooses the unique core

allocation, which is also the unique Walrasian allocation (Roth and Postlewaite [14]).

We also need to introduce what we call an �inheritors augmented housing market,�which

is generated from our representative problem �.

Definition 1 From � : < AN ; HV ; AE; HO; P > an inheritors augmented housing

market �v : < AN ; HV ; AE; HO; P; v > is generated by specifying a bijection v : AN [AE !

HV [ I such that:

� I : fik+1; � � � ; ing is the set of �inheritance rights,�where is is the inheritance right asso-

ciated with existing tenant es;

� agent a 2 AN [ AE owns v(a) (which is a vacant house or an inheritance right).

In words, an inheritors augmented housing market is generated from a house allocation

problem with existing tenants by distributing to agents vacant houses and inheritance rights

associated with existing tenants. Note that in an inheritors augmented housing market it is

possible that an existing tenant owns two houses (a vacant house besides her occupied house)

and a newcomer owns none (she then owns only an inheritance right).

For a 2 A if v(a) = is, then we call a the �inheritor�of es and es the �bequeather�of a. If

we talk of �bequeathers�of a, the agents we mean by it are a�s bequeather, a�s bequeather�s

bequeather, and so on. We denote by V the domain of admissible bijections from AN [AE to

HV [ I. Note that jVj = n!, and by separately augmenting n! bijections to our representative

problem � we can generate n! distinct inheritors augmented housing markets. If we talk of an
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�allocation�in an inheritors augmented housing market, we mean by it, as usual, a bijection

from A to H.

The essential component of our alternative lottery mechanism is the �inheritors aug-

mented top trading cycles� (in short, iattc), a mechanism that operates on an inheritors

augmented housing market; as described below, iattc resembles ttc.

IATTC: Step 1: Let each agent point to her most preferred house, and each house point to its

owner. There exists at least one cycle. Assign the agents in cycles the houses they point

to, and then remove these agents and houses from the market. If an existing tenant in

a cycle owns two houses, one of her two houses remains. Then let her remaining house

be owned by her inheritor. If her inheritor is an existing tenant who has already been

assigned a house, let her remaining house be owned by the inheritor of her inheritor,

and so on.

Step t > 1: Let each remaining agent point to her most preferred house among

remaining ones, and each remaining house point to its owner. There exists at least one

cycle. Assign the agents in cycles the houses they point to, and then remove these agents

and houses from the market. If an existing tenant in a cycle owns two houses, one of

her two houses remains. Then let her remaining house be owned by her inheritor. If her

inheritor is an existing tenant who has already been assigned a house, let her remaining

house be owned by the inheritor of her inheritor, and so on.

It is simple to verify that iattc is well-de�ned. The key observation is that while iattc

operates on an inheritors augmented housing market, any newcomer who does not own a

house eventually inherits a house from one of her bequeathers, and so she joins a cycle in

which she trades that house. Let a1 be a newcomer who does not own a house and let a2

be the existing tenant who is her bequeather. There are two possibilities: either a2 owns

two houses or a2 has a bequeather� say, a3. If the former is true, a2 joins a cycle in which

she trades one of her two houses; when she departs, a1 inherits the house that remains. If

the latter is true, there are again two possibilities: either a3 owns two houses or she has a

bequeather� say, a4. If the former is true, a3 joins a cycle in which she trades one of her
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two houses; when she departs, a1 inherits the house that remains if a2 has departed earlier;

if a2 has not departed yet, a2 inherits the remaining house ending up owning two houses (her

occupied house and the house she inherited), and after she departs by joining a cycle one of

these two houses will again be inherited by a1. By iterating similarly, we conclude that a1

always inherits a house and hence joins a cycle.

The following example demonstrates the workings of iattc.

Example 2 Consider an inheritors augmented housing market generated from the house

allocation problem with existing tenants in Example 1 by distributing to agents vacant houses

and inheritance rights as in the following table:

a1 a2 a3 a4 a5 a6 a7 e8 e9 e10 e11 e12

h1 h2 i10 h4 h5 i11 i12 h3 i9 i8 h6 h7

Thus, the distribution of houses and inheritance rights to agents in this inheritors aug-

mented housing market is as in the following table:

a1 a2 a3 a4 a5 a6 a7 e8 e9 e10 e11 e12

h1 h2 i10 h4 h5 i11 i12 h3; o8 i9; o9 i8; o10 h6; o11 h7; o12

We will illustrate how IATTC proceeds in a series of �gures. For visual ease we indicate

cycles in the �gures in dashed rectangles.

When each house points to its owner and each agent points to her most preferred house,
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the resulting �gure is as follows:

Step 1: No cycles

Step 2:
a3 o8 a7

a1 h3 e8 o9

e10 h1 a2 h2 e9

o10 e 11 o11 a6

h6 a4 h4

o12 e12 h5 a5

h7

Step 3: e 10 o11

o10 e11

Step 4:
a7

o8 a6 h6 a4 h4

a3 o12 e12 h5 a5

h7

THEN

a7

h7

each agent in the cycle is assigned the
house she points to

each agent in the cycle is assigned the
house she points to

each agent in the cycle is assigned the
house she points to

each agent in the cycle is assigned the
house she points to

As prescribed by the cycle in the �gure, a1; e8; e9; a2 are assigned h3; o9; h2; h1, respectively.

The house o8 of e8 remains, which is received by her inheritor e10.

When each remaining house points to its owner and each remaining agent points to her
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most preferred house among remaining ones, the resulting �gure is as follows:

As prescribed by the cycle in the �gure, e10 and e11 are assigned o11 and o10, respectively.

The houses h6 of e11 and o8 of e10 remain, which are received by their inheritors a6 and a3,

respectively.

When each remaining house points to its owner and each remaining agent points to her

most preferred house among remaining ones, the resulting �gure is as follows:

As prescribed by the cycle in the �gure, e12; a5; a4; a6; a3 are assigned h5; h4; h6; o8; o12,

respectively. The house h7 of e12 remains, which is received by her inheritor a7.

The last cycle is formed by a7 and h7; thus, a7 is assigned h7:

The allocation chosen by IATTC is the same as the one we obtained in Example 1. �

In our representative problem �, let �iattc;v denote the allocation chosen by iattc in �v,

and let V� � V be the set of bijections from AN [AE to HV [ I such that, in the inheritors

augmented housing markets generated by augmenting them to �, the allocation chosen by

iattc is � (i.e., V� = fv 2 Vj�iattc;v = �g).

We should point out that, in essence, an inheritors augmented housing market generalizes

a housing market, and iattc generalizes ttc. If � is a housing market (i.e., k = 0) and

�v is an inheritors augmented housing market generated from �, in �v every agent owns

exactly one house. Then no house ever remains from an agent who departs from the market,

rendering the distribution v without signi�cance, and hence iattc proceeds just the same

as ttc. As it turns out, in this generalization the desirable theoretical properties of ttc

are retained by iattc: It can be shown that iattc is strategy-proof; also, the allocation

it chooses in an inheritors augmented housing market is the unique core allocation if the
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�core allocation�notion is properly rede�ned taking account of the rights of inheritors to the

houses of their bequeathers.

Definition 2 An allocation � : A! H is a core allocation in �v : < AN ; HV ; AE; HO; P; v >

(v 2 V) if there exists no four-tuple < C;HC ; �; Claim > where C � A, HC � H, and

� : C ! HC and Claim : C ! HC are bijections such that:

(i) �(a)Ra �(a) for every a 2 C and �(a)Pa �(a) for an agent a 2 C;

(ii) for any a 2 C, a owns Claim(a); or a is the inheritor of an agent a0 2 C who owns

Claim(a); or a is the inheritor of an agent a0 2 C who is the inheritor of another agent

a00 2 C who owns Claim(a); or so on.

If there exists such a four-tuple we say that � is �blocked� by < C;HC ; �; Claim > and

we call C a �blocking coalition.�

The subtle part in the above de�nition is the Claim function. It states that in a blocking

coalition every agent needs to claim (bring into the coalition) a distinct house, which should

be a house that she or one of her bequeathers owns. In case an agent, say a, claims a house

owned by one of her bequeathers, say a00, inheritors of a00 that are more closely related to

her than a should also be in the blocking coalition. That is, if a00 is the bequeather of a0 and

a0 is the bequeather of a, then a0 should also be in the blocking coalition. This requirement

ensures that the allocation is not blocked to bene�t the distant inheritor a at the expense

of the more immediate inheritor a0. If every agent owns precisely one house, De�nition 2

reduces to the familiar core allocation notion in a housing market.

Theorem 1 For v 2 V the allocation �iattc;v is the unique core allocation in the inheritors

augmented housing market �v.

Proof. See Appendix.

We are now ready to introduce our alternative lottery mechanism in the context of a

house allocation problem with existing tenants.

Core from Random Distribution: Distribute n �items�� k vacant houses and n� k in-

heritance rights associated with n�k existing tenants, to n agents uniformly at random

21



(each agent receives exactly one vacant house or one inheritance right). In the generated

inheritors augmented housing market, reallocate houses to agents by executing IATTC.

We shortly call this mechanism cfrd. From the theoretical properties of its main com-

ponent, iattc, it is not di¢ cult to show that cfrd is strategy-proof, ex-post e¢ cient, and

ex-post group-rational.

In our representative problem �, let �cfrd denote the random assignment induced by

cfrd. Then,

�cfrd(�) =
jV�j
n!
:

Theorem 2 presents the main result of our paper. Its proof is bijective and fairly involved,

which we cover exclusively in Section 3.

Theorem 2 Random Y-I and CFRD are equivalent. That is, for any � 2M,

�rY�I(�) = �cfrd(�):

3 The Proof of Theorem 2

In this section we provide an alternative speci�cation of iattc. As we proceed, we introduce

some tools, make certain observations about this alternative speci�cation, and present four

lemmas, which help us prove Theorem 2. The proof involves the construction of a bijection

as in Abdulkadiro¼glu and Sönmez [1], but our construction is fairly more involved due to the

presence of existing tenants.

Recall that, in cfrd, �rst n items (k vacant houses and n � k inheritance rights) are

distributed to n agents uniformly at random, and then, in the generated inheritors augmented

housing market, houses are reallocated to agents by executing iattc. In the execution of

iattc an existing tenant is assigned a house by joining a cycle, in which the house that she

trades comes from one of two resources. It is either her occupied house, or a house that she

receives due to the item that she received in the random distribution (i.e., a vacant house

that she received in the random distribution, or a house that is accrued to her because of an
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inheritance right that she received in the random distribution). The distinguishing feature

of our alternative speci�cation of iattc is that, it �monitors� the potential bene�ts to an

existing tenant from these two resources by representing her in the exchange market with two

copies of her, one of them owning her occupied house, and the other owning the item that she

received in the random distribution. This separation allows us to construct a priority-order of

agents from the distribution of items to agents. Our construction turns out to be a bijective

mapping and leads to the proof of Theorem 2.

From a given inheritors augmented housing market �v : < AN ; HV ; AE; HO; P; v >, we

construct its �ab-representation��v;ab : < AN ; HV ; AaE; A
b
E; HO; P; v > in the following man-

ner:

�We preserve the set of newcomers AN : a 2 AN owns v(a).

�We replace the set of existing tenants AE by two disjoint sets, AaE and A
b
E: Each existing

tenant es 2 AE in �v is now �represented�in �v;ab by two distinct agents, as 2 AaE who

owns v(es), and bs 2 AbE who owns os. The preferences of as and bs are the same as

the preferences of es. Although technically as and bs are two separate agents, they are

both to serve the interests of es, and hence we call them the �sisters�of one another.

In the ab-representation, we refer to the agents in AN [ AaE as �a-type�agents, and to

the agents in AbE as �b-type�agents. As an illustration, we present below how inheritance

rights and houses are distributed to agents in the inheritors augmented housing market in
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Example 2 and in its ab-representation:

inheritors augmented housing market in Example 2

AN AE

a1 a2 a3 a4 a5 a6 a7 e8 e9 e10 e11 e12

h1 h2 i10 h4 h5 i11 i12 o8; h3 o9; i9 o10; i8 o11; h6 o12; h7

+

ab-representation

a-type agents b-type agents

AN AE BE

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 b8 b9 b10 b11 b12

h1 h2 i10 h4 h5 i11 i12 h3 i9 i8 h6 h7 o8 o9 o10 o11 o12

We are now ready to introduce the �ab-representation speci�cation�of iattc, or, shortly,

iattcab.

IATTCab: Given an inheritors augmented housing market �v, construct its ab-representation

�v;ab. In �v;ab, reallocate houses and inheritance rights to a-type and b-type agents by

the following iterative procedure:

Step 0,1: (b-step) Let every remaining house and inheritance right point to its

owner. Among remaining agents, let only b-type agents point. A b-type agent bs 2 AbE
points to her most preferred house among remaining ones if as 2 AaE has not been

assigned a house yet, and she points to is if as has already been assigned a house.

If there exists one or more cycles, remove the agents in cycles by assigning them the

houses and inheritance rights they point to.

Step 0,r: (b-step) Same as Step 0,1. (Continue until there exists no cycles)

Step 1,0: (a-step) Let every remaining house and inheritance right point to its owner.

Now, let every remaining agent (both a-type and b-type) point. A newcomer a 2 AN

points to her most preferred house among remaining ones. Of two sister agents as 2 AaE
and bs 2 AbE, if neither has been assigned a house yet, let them both point to their most
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preferred house among remaining ones; if one of them has been assigned a house before,

let the remaining one point to is. There exists at least one cycle. Remove the agents

in cycles by assigning them the houses and inheritance rights they point to.

Step 1,1: (b-step) Same as Step 0,1.

Step 1,r: (b-step) Same as Step 0,1. (Continue until there exists no cycles)

Step t,0: (a-step) Same as Step 1,0.

Step t,1: (b-step) Same as Step 0,1.

Step t,r: (b-step) Same as Step 0,1. (Continue until there exists no cycles)

Stop when the procedure assigns every a-type and b-type agent a house or an inheritance

right. Then, in �v, let the houses assigned to agents be as follows: For a newcomer a 2 AN ,

the house assigned to her is the house the above procedure assigns a 2 AN in �v;ab; and for

an existing tenant es 2 AE, the house assigned to her is the house the above procedure assigns

as 2 AaE or bs 2 AbE (the procedure assigns a house to only one of them, the other is assigned

is).

Notice that iattcab proceeds just like ttc, by identifying cycles and then carrying out

the trades in cycles, but it gives precedence to the trades in cycles that involve only b-type

agents. At prior b-steps, trades are carried out in cycles that involve only b-type agents, and

when no such cycle remains, iattcab moves to an a-step at which it carries out the trades in

cycles that involve both a-type and b-type agents.

Two observations are useful to better understand the design of iattcab.

y Observation 1: Suppose for an existing tenant es 2 AE in �v ( v 2 V) it happens

that v(es) 2 HV (so, es owns two houses, v(es) and os). Notice how IATTC and IATTC ab

proceed analogously:

When IATTC is executed in �v, at initial steps v(es) and os point to es and es points

to her most preferred house among remaining ones; when IATTC ab is executed in �v;ab, at

initial steps v(es) and os respectively point to as and bs (the agents that represent es), and

as and bs point to es�s most preferred house among remaining ones.
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In IATTC�s execution in �v, when es joins a cycle in which she exchanges v(es) or os,

in parallel to that, in IATTC ab�s execution in �v;ab, as or bs joins the analogous cycle in

which she exchanges v(es) or os.

In IATTC�s execution in �v, the house that remains from es is given to her inheritor; in

IATTC ab�s execution in �v;ab, the analogous thing happens: The remaining house ( v(es) or

os) points to the remaining sister agent (as or bs); the remaining sister agent points to is; is

points to the a-type or b-type agent that represents the inheritor of es; and hence, in essence,

the remaining house is transferred to the inheritor of es.

For v 2 V let �ab;v denote the allocation chosen by iattcab in �v. Given Observation 1

the following lemma is evident.

Lemma 1 IATTC and IATTCab are equivalent. That is, for any v 2 V,

�iattc;v = �ab;v.

y Observation 2: In IATTC ab , at a b-step only b-type agents point (to houses or inher-

itance rights), and thus:

(i) a cycle at a b-step consists of only b-type agents and occupied houses;

(ii) a-type agents, vacant houses, and inheritance rights are part of the cycles at a-steps,

but a cycle at an a-step may also include b-type agents and occupied houses.

The separation of the steps in iattcab as a-steps and b-steps is fundamental to our proof

of Theorem 2. In the following example we demonstrate the workings of iattcab.

Example 3 Consider the ab-representation of the inheritors augmented housing market in

Example 2. The table below presents the distribution of houses and inheritance rights to

a-type and b-type agents:

a-type agents b-type agents

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 b8 b9 b10 b11 b12

h1 h2 i10 h4 h5 i11 i12 h3 i9 i8 h6 h7 o8 o9 o10 o11 o12
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We illustrate in a series of �gures below how IATTC ab proceeds. While looking into the

�gures, recall that remaining houses and inheritance rights point (to their owners) at both

a-steps and b-steps; remaining b-type agents also point (to houses and inheritance rights) at

both a-steps and b-steps; but remaining a-type agents point (to houses and inheritance rights)

only at a-steps. For visual ease we indicate cycles in the �gures in dashed rectangles.

Step 1: No cycles

Step 2:
i10 a3 b8 o8 a7 i12

i8

a1 h3 a8 o9

a10

b10 h1 a2 h2 b9 a9 i9

o10 b11 o11 a6 i11

a11 h6 a4 h4

o12 b12 h5 a5

h7 a12

Step 3: b10 o11

o10 b11

Step 4:
a7 i12 a9 i9

b8 o8 a6 i11 a11 h6 a4 h4

i8 a10 i10 a3 o12 b12 h5 a5

h7 a12

THEN

a7 i12

h7 a12

each agent in the cycle is assigned the
item she points to

each agent in the cycle is assigned the
item she points to

each agent in the cycle is assigned the
item she points to

each agent in the cycle is assigned the
item she points to
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There are no cycles at Step 0,1. IATTC ab proceeds to Step 1,0.

There is one cycle at Step 1,0. As prescribed by the cycle, a1; a8; b9; a2 are assigned

h3; o9; h2; h1, respectively. IATTC ab proceeds to Step 1,1.

There is one cycle at Step 1,1. As prescribed by the cycle, b10 and b11 are assigned o11

and o10, respectively. IATTC ab proceeds to Step 1,2.

At Step 1,2 there are two remaining b-type agents, b8 and b12, who respectively point to i8

and h5. The resulting �gure would be the same as the preceding �gure except that the cycle

in the �gure is removed. There are no cycles and thus IATTC ab proceeds to Step 2,0.

There are two cycles at Step 2,0. As prescribed by the cycles, a3; b12; a5; a4; a11; a6; b8; a10; a9

are assigned o12; h5; h4; h6; i11; o8; i8; i10; i9, respectively. IATTC ab proceeds to Step 2,1.

Since there is no remaining b-type agent, there are no cycles at Step 2,1, and the mecha-

nism proceeds to Step 3,0.

There is one cycle at Step 3,0. As prescribed by the cycle, a7 and a12 are assigned h6 and

i12, respectively, and the procedure terminates.

The houses the procedure assigns to a-type and b-type agents, and the implied assignments

to agents made by IATTC ab in the inheritors augmented housing market, are as follows:
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Assignments of a-type agents Assignments of b-type agents

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 b8 b9 b10 b11 b12

h3 h1 o12 h6 h4 o8 h7 o9 i9 i10 i11 i12 i8 h2 o11 o10 h5

+

Assignments of newcomers and existing tenants

a1 a2 a3 a4 a5 a6 a7 e8 e9 e10 e11 e12

h3 h1 o12 h6 h4 o8 h7 o9 h2 o11 o10 h5

�

In what follows we introduce some tools about iattcab, and based upon these tools we

make certain observations.

z TOOL 1, sets de�ned by the order of cycle groups: In the execution of iattcab

in �v;ab (v 2 V), houses and inheritance rights are assigned to a-type and b-type agents in

a well-de�ned order of cycle groups. Based upon this order of cycle groups, we de�ne below

certain sets of agents, houses, and inheritance rights:

�Avt;r: the set of a-type and b-type agents that are assigned a house or an inheritance right

in a cycle at Step t,r.

�Av0 = A
v
0;1 [ Av0;2 [ � � � and Avt = Avt;0 [ Avt;1 [ � � � for t � 1.

�Hv
t;r: the set of houses assigned to agents in A

v
t;r.

�Hv
0 = H

v
0;1 [Hv

0;2 [ � � � and Hv
t = H

v
t;0 [Hv

t;1 [ � � � for t � 1.

� Ivt;0: the set of inheritance rights assigned to agents in A
v
t;0 for t � 1. (Recall from Obser-

vation 2 (i) that in the cycles at b-steps there are no inheritance rights.)

z TOOL 2, a-blocks at an a-step: In the execution of iattcab in �v;ab (v 2 V), we de-

�ne an �a-block�at an a-step Step t,0 (t � 1) as an ordered list blvt (a) : (a; o�1 ; b�1 ; � � � ; o�q ; b�q ; y)

(or blvt (a) : (a; y)) where

� a 2 Avt;0 \ (AN [ AaE); y 2 (Hv
t;0 \HV ) [ Ivt;0;
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� k + 1 � �p � n for p = 1; � � � ; q;

� at Step t,0 a points to o�1, b�1 points to o�2 , � � � , and b�q points to y (if blvt (a) : (a; y) then

simply a points to y).

We call a the �source�and y the �sink�of the a-block blvt (a). With some abuse of notation,

we denote the set fa; o�1 ; b�1 ; � � � ; o�q ; b�q ; yg (or fa; yg) also by blvt (a).

More simply, an a-block is a segment of a cycle that arises at an a-step in the execution

of iattcab. It starts with the only a-type agent of that a-block, and ends with a vacant

house or an inheritance right owned by another a-type agent. At an a-step sinks of a-blocks

(vacant houses and inheritance rights) point to the sources of a-blocks (a-type agents), and

hence the cycles form. As an illustration, in the �gure below we indicate in enclosed boxes

the a-blocks at Step 2,0 in Example 3.

Step 2,0: a­blocks
a9 i9

b8 o8 a6 i11 a11 h6 a4 h4

i8 a10 i10 a3 o12 b12 h5 a5

bl2
v(a6) bl2

v(a11)

bl2
v(a9)

bl2
v(a10) bl2

v(a3)

bl2
v(a4)

bl2
v(a5)

The following observation summarizes our preceding discussion on a-blocks.

y Observation 3: In the execution of IATTC ab in �v;ab ( v 2 V ), the cycles that arise

at an a-step Step t,0 ( t � 1) consist of a-blocks. The sinks of a-blocks point to the sources of

a-blocks, and hence the cycles form. So,

(i)
S

a2Avt;0\(AN[AaE)
blvt (a) = A

v
t;0 [Hv

t;0 [ Ivt;0;

(ii) and for a; a0 2 Avt;0 \ (AN [ AaE) and a 6= a0, blvt (a) \ blvt (a0) = ;:

The following is another simple observation pertaining to a-blocks, which later proves

useful.

y Observation 4: Suppose we are given the list of sets
�
Avj;0 \ (AN [ AaE)

�t
j=1

but we do

not know v 2 V . (That is, we are given the sets of a-type agents that are assigned houses
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at Step 1,0, Step 2,0, � � � , Step t,0 when IATTC ab is executed in �v;ab.) Then, we can

determine

(i) to which house or inheritance right a remaining agent points to up to Step t+1,0;

(ii) the assignments made by IATTC ab up to Step t+1,0;

and we can identify

(iii) the a-block blvj (a) for any a 2 Avj;0 \ (AN [ AaE) and j 2 f1; � � � ; tg.

Explanation: The execution of IATTC ab in �v;ab at Step 0,1, Step 0,2, and so on, is

independent of v. Then, to which house or inheritance right a remaining agent points to, and

the assignments made, can be determined up to Step 1,0. For the subsequent steps, we can

iteratively apply the following arguments for j=1,� � � ,t:

Given the assignments made prior to Step j,0, we know to which house or inheritance

right a remaining agent points to at Step j,0. So, for any a 2 Avj;0 \ (AN [ AaE), we can

identify blvj (a). But then we can also determine the assignments made at Step j,0: Each

agent in an a-block is assigned the house she points to in that a-block.

Given the assignments made at Step j,0 and prior to it, the execution of IATTC ab in �v;ab

at Step j,1, Step j,2, and so on, is independent of v. Then, to which house or inheritance

right a remaining agent points to, and the assignments made, can be determined for Step j,1,

Step j,2, and so on.

z TOOL 3, chains at an a�step: Consider the execution of iattcab in �v;ab (v 2 V ).

The elements of Avt+1;0 [ Hv
t+1;0 [ Ivt+1;0 (t � 1), which form the cycle(s) at Step t+1,0,

form at Step t,0 what we call �chains.� Formally, a chain at Step t,0 is an ordered list

chvt (x1) : (x1; y1; � � � ; xq; yq) (t � 1, q � 1) where

� xp 2 Avt+1;0 and yp 2 Hv
t+1;0 [ Ivt+1;0 for p = 1; � � � ; q;

� at Step t,0 x1 points to a house or an inheritance right in Hv
t [ Ivt;0; y1 points to x1 (i.e.,

x1 owns y1); x2 points to y1;� � � ; yq points to xq (i.e., xq owns yq);

� there exists no xq+1 2 Avt+1;0 who points to yq at Step t,0.
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We call x1 the �head�of chvt (x1) and yq the �tail�of ch
v
t (x1). With some abuse of notation,

we denote the set fx1; y1; � � � ; xq; yqg also by chvt (x1).

More simply, a chain at Step t,0 is a connected (by pointers) elements of Avt+1;0[Hv
t+1;0[

Ivt+1;0. At Step t+1,0, the heads of chains at Step t,0 point to the tails of chains at Step t,0,

hence the cycles form. As an illustration, in the �gures below we indicate in enclosed boxes

the chains at Step 1,0 in Example 3, and how they form the cycles at Step 2,0.

Step 1,0: Chains

i10 a3 i12 a7 o8 b8 a9 i9 a10 i8

a1 h3 a8 o9 b9 h2 a2 h1

o12 b12 h5 a5 h4 a4 h6 b11 o10 b10

h7 a12 a11 o11 a6 i11

ch1
v(b8) ch1

v(a10)ch1
v(a3)

ch1
v(a6)

ch1
v(a11)

ch1
v(a9)

Step 2,0: How the chains at Step 1,0 form cycles
a7 i12 a9 i9

b8 o8 a6 i11 a11 h6 a4 h4

i8 a10 i10 a3 o12 b12 h5 a5

h7 a12

ch1
v(a11)ch1

v(b8)

ch1
v(a10) ch1

v(a3)

ch1
v(a6)

ch1
v(a9)

Notice that at Step t,0 (t � 1) the head of a chain, which by de�nition points to a house

or an inheritance right, indeed always points to a house: By construction of iattcab, an

inheritance right is is pointed by only one agent� as or bs, whoever is assigned later. But if

the head of a chain at Step t,0 points to an inheritance right, it means she is not assigned

that inheritance right, which would be a contradiction. (As an illustration, notice that in the

second preceding �gure all heads of chains point to houses.)

The following observation summarizes our preceding discussion on chains.

y Observation 5: In the execution of IATTC ab in �v;ab ( v 2 V ), let X be the set of

heads of chains at Step t,0 ( t � 1). Then,
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(i) a head of a chain x 2 X points to a house in Hv
t;0 at Step t,0, and to a house or an

inheritance right in Hv
t+1;0 [ Ivt+1;0 at Step t+1,0;

(ii) an agent a 2 Avt+1;0 =X points to the same house or inheritance right in Hv
t+1;0[Ivt+1;0

at Step t,0 and Step t+1,0.

For the chains at Step t,0, at Step t+1,0 their heads point to their tails, and hence the

cycles at Step t+1,0 form. Then,

(iii)
S
x2X

chvt (x) = A
v
t+1;0 [Hv

t+1;0 [ Ivt+1;0;

(iv) and for x; x0 2 X and x 6= x0, chvt (x) \ chvt (a0) = ;:

From the head to the tail of a chain, we call the a-type agent ordered �rst the �a-head�of

the chain, and the a-type agent ordered last the �a-tail�of the chain. For instance, looking

into the second preceding �gure above, the a-head and a-tail of chv1(a11) are respectively a11

and a5. Looking into that �gure, also note that in a chain (i) the head and a-head can be

the same (e.g., chv1(a11)); (ii) there may be only one a-type agent and so its a-head and a-tail

can be the same (e.g., chv1(a3)); (iii) there may be no a-type agents, in which case we call it

an �empty chain�(e.g., chv1(b8)).

z TOOL 4, the chain-order ovch of a-type agents

For v 2 V, the �chain-order�ovch : AN [AaE ! f1; 2; � � � ; ng of a-type agents is a bijection

that orders a-type agents according to the following three rules:

Chain-order Rule 1: In the chain-order ovch, order a-type agents in A
v
1;0 \ (AN [ AaE)

before a-type agents in Av2;0 \ (AN [ AaE); order a-type agents in Av2;0 \ (AN [ AaE) before

a-type agents in Av3;0 \ (AN [ AaE); and so on.

Chain-order Rule 2: In the chain-order ovch, order a-type agents in A
v
1;0 \ (AN [ AaE)

in order of the indices of vacant houses and inheritance rights that they are assigned at v.

Chain-order Rule 3: In the chain-order ovch, order the a-type agents in A
v
t+1;0 \ (AN [

AaE)) ( t � 1) in the following manner: Consider the chains at Step t,0. Order the a-type

agents in a non-empty chain from its a-head to its a-tail, consecutively. Order non-empty
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chains in order of the indices of vacant houses and inheritance rights that their a-tails are

assigned at v.

As an illustration, consider the execution of iattcab in the ab-representation of the

inheritors augmented housing market in Example 3:

By Chain-order Rule 1, in ovch the a-type agents assigned at Step 1,0 (i.e., a1; a2; a8) are

ordered before the a-type agents assigned at Step 2,0 (i.e., a11; a4; a5; a10; a9; a3; a6), who are

ordered before the a-type agents assigned at Step 3,0 (i.e., a12; a7).

By Chain-order Rule 2, in ovch the three a-type agents assigned at Step 1,0 are ordered

as a1; a2; a8. (Note that a1; a2; a8 own respectively h1; h2; h3, whose indices are respectively

1; 2; 3.)

By Chain-order Rule 3 and looking into the second preceding �gure above, the order of

non-empty chains at Step 1,0 is chv1(a11); ch
v
1(a10); ch

v
1(a9); ch

v
1(a3); ch

v
1(a6) (a-tails of these

chains own respectively h5; i8; i9; i10; i11; indices are respectively 5; 8; 9; 10; 11), and hence the

chain-order of a-type agents in Av2;0 is a11; a4; a5; a10; a9; a3; a6.

The �gure below shows the chains at Step 2,0 in Example 3, formed by the elements of

Av3;0 [Hv
3;0 [ Iv3;0.

Step 2,0: Chains
a7 i12 a9 i9

b8 o8 a6 i11 a11 h6 a4 h4

i8 a10 i10 a3 o12 b12 h5 a5

h7 a12

ch2
v(a7)

ch2
v(a12)

By Chain-order Rule 3 and looking into the preceding �gure, the order of non-empty

chains at Step 2,0 is chv2(a12); ch
v
2(a7) (a-tails of these chains respectively own h7; i12; indices

are respectively 7 and 12), and hence the chain-order of a-type agents in Av3;0 is a12; a7.

Therefore, the chain-order of a-type agents that we obtain in Example 3 is:
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ovch : a1; a2; a8| {z } a11; a4; a5; a10; a9; a3; a6| {z } a12; a7| {z }
Av1;0 \ (AN [ AaE) Av2;0 \ (AN [ AaE) Av3;0 \ (AN [ AaE)

z TOOL 5, the chain priority-order f vch of newcomers and existing tenants: For

v 2 V, from the chain-order ovch of a-type agents, we derive the �chain priority-order�f vch 2 F

of newcomers and existing tenants in a straightforward way. Simply set f vch(a) = o
v
ch(a) for

a 2 AN , and f vch(es) = ovch(as) for es 2 AE.

For instance, the chain order given above, and the chain priority-order derived from it,

are as follows:

ovch : a1; a2; a8; a11; a4; a5; a10; a9; a3; a6; a12; a7

f vch : a1; a2; e8; e11; a4; a5; e10; e9; a3; a6; e12; a7

Observe that f vch is precisely the same priority-order as the one considered in Example 1.

Also, recall that the allocations chosen in Example 3 by iattcab, and in Example 1 by the

Y-I mechanism de�ned by f vch, are the same. Lemma 2 states that this holds in general.

Lemma 2 For any v 2 V,

�ab;v = �Y�I;f
v
ch :

Proof. It is plain to see that the lemma holds once the following observation is made.

Considering the execution of the Y-I mechanism de�ned by f vch in �, and the execution of

iattcab in �v;ab, a loop in the former one corresponds to a cycle at a b-step in the latter

one, and an out-of-loop assignment made in the former one corresponds to an a-block at an

a-step in the latter one. We elaborate below.

In the execution of the Y-I mechanism de�ned by f vch in �, let it be the turn of agent

a 2 A to request a house. Also, in the execution of iattcab in �v;ab, let Step t,0 be when the

a-type agent that represents a is assigned a house or an inheritance right. When a requests

a house, one of the following �ve cases occurs:

(1) Agent a requests a house that triggers the formation of one or more loops (if a is an

existing tenant, she may also be part of one of these loops). In the execution of iattcab in
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�v;ab, these loops correspond to certain cycles that arise at b-steps prior to Step t,0: The

agents in the cycles are the b-type agents that represent the existing tenants in the loop, and

they are assigned the same houses at �ab;v and �Y�I;f
v
ch.

(2) Agent a requests a vacant house h 2 HV . In the execution of iattcab in �v;ab, this

case corresponds to the a-block blvt (a) : (a; h) at Step t,0. Agent a is assigned h at both �
ab;v

and �Y�I;f
v
ch.

(3) Agent a requests the occupied house os of es 2 AE, who has already been assigned

a house before. In the execution of iattcab, this case corresponds to the a-block blvt (a) :

(a; os; bs; is) at Step t,0. Agent a is assigned os at both �ab;v and �Y�I;f
v
ch.

(4) Agent a requests the occupied house o�1 of e�1 2 AE; e�1 moves to the top of

the remainder of the priority-order and requests the occupied house o�2 of e�2 2 AE;

� � � ; e�q moves to the top of the remainder of the priority-order and requests a vacant

house h 2 HV . In the execution of iattcab in �v;ab, this case corresponds to the a-block

blvt (a) : (a; o�1 ; b�1 ; � � � ; o�q ; b�q ; h) at Step t,0. Agents a; e�1 ; � � � ; e�q are assigned the houses

o�1 ; � � � ; o�q ; h, respectively, at both �ab;v and �Y�I;f
v
ch.

(5) The same thing happens as in (4) except that e�q requests the occupied house os of

es 2 AE, who has already been assigned a house before. In the execution of iattcab in

�v;ab, this case corresponds to the a-block blvt (a) : (a; o�1 ; b�1 ; � � � ; o�q ; b�q ; os; bs; is) at Step

t,0. Agents a; e�1 ; � � � ; e�q are assigned the occupied houses o�1 ; � � � ; o�q ; os, respectively, at

both �ab;v and �Y�I;f
v
ch.

The following lemma states that if the executions of iattcab in two inheritors augmented

housing markets induce the same chain priority-order, then a-type agents join cycles at the

same a-steps for the two inheritors augmented housing markets.

Lemma 3 For v1; v2 2 V if f v1ch = f
v2
ch , then A

v1
t;0 \ (AN [ AaE) = Av2t;0 \ (AN [ AaE) for every

t � 1.

Proof. If f v1ch = f v2ch , then �
ab;v1 = �ab;v2 (by Lemma 1 and Lemma 2). Also, ov1ch = ov2ch

(by de�nition). Let � : f1; 2; � � � ; ng ! f1; 2; � � � ; ng be the bijection such that ov1ch(a�(s)) =

ov2ch(a�(s)) = s for s = 1; 2; � � � ; n. The proof is by induction.

Base Case:
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Suppose Av11;0 \ (AN [ AaE) 6= Av21;0 \ (AN [ AaE). W.l.o.g. let

Av11;0 \ (AN [ AaE) = fa�(1); a�(2); � � � ; a�(�)g,

Av21;0 \ (AN [ AaE) = fa�(1); a�(2); � � � ; a�(�); a�(�+1); � � � ; a�(�)g (i.e., � > � � 1).

We present our arguments in four steps:

(1) Show that blv11 (a�(s)) = bl
v2
1 (a�(s)) for s = 1; 2; � � � ; �:

The execution of iattcab prior to Step 1,0 is independent of v1 and v2 (i.e., the same

assignments are made prior to Step 1,0). Then, for �v1 and �v2 the same a-type agents,

b-type agents, houses, and inheritance rights remain at Step 1,0, and remaining a-type and

b-type agents point to the same houses and inheritance rights. So, blv11 (a�(s)) = bl
v2
1 (a�(s)) for

s = 1; 2; � � � ; �.

Let blv21 (a�(�+1)) : (a�(�+1); o�1 ; b�1 ; � � � ; o�q ; b�q ; y) where k + 1 � �p � n for p = 1; � � � ; q

and y 2 HV [ I. (The arguments are essentially the same if blv21 (a�(�+1)) : (a�(�+1); y)).

(2) Show that y =2 Hv1
1 [ Iv11;0:

Since y 2 blv21 (a�(�+1)), we get y =2 blv21 (a�(s)) for s = 1; � � � ; � (by Observation 3 (ii)), and

hence y =2 blv11 (a�(s)) for s = 1; � � � ; �. Then, y =2 Hv1
1;0 [ Iv11;0 (see Observation 3 (i)). Since

y 2 HV [ I, we get y =2 Hv1
1;r also for r � 1 (by Observation 2 (i)). Then, y =2 Hv1

1 [ Iv11;0.

(3) Show that blv12 (a�(�+1)) = bl
v2
1 (a�(�+1)):

From blv21 (a�(�+1)) we know that for �
v2 at Step 1,0 a�(�+1) points to o�1; o�1 points to b�1;

� � � ; and b�q points to y. Since the execution of iattcab prior to Step 1,0 is independent of

v1 and v2, also for �v1 at Step 1,0 a�(�+1) points to o�1; o�1 points to b�1; � � � ; and b�q points

to y. Since y =2 Hv1
1 [ Iv11;0, for �v1 this sequence remains una¤ected until Step 2,0. Then,

blv12 (a�(�+1)) = bl
v2
1 (a�(�+1)).

(4) Find a contradiction:

Since in Av12;0 \ (AN [ AaE) the a-type agent who comes �rst in ov1ch is a�(�+1), at Step 1,0

a�(�+1) should be the a-head of a non-empty chain. In this chain either a�(�+1) is the head,

or a b-type agent in blv12 (a�(�+1)) is the head, say b�j for some j 2 f1; 2; � � � ; qg.

If a�(�+1) is the head of the chain, then at �ab;v1 she is not assigned her most preferred
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house in H n Hv1
0 . But for �

v2 since a�(�+1) is assigned at Step 1,0, at �ab;v2 she is assigned

her most preferred house in H n Hv2
0 (= H n Hv1

0 ), which contradicts that �
ab;v1 = �ab;v2.

If b�j is the head of the chain, then from

blv21 (a�(�+1)) : (a�(�+1); o�1 ; b�1 ; � � � ; o�q ; b�q ; y);

in the execution of iattcab in �v2, b�j points at Step 1,0 to o�j+1 (or y). From the fact

that in the execution of iattcab in �v1 at Step 1,0 b�j is the head of a chain, by Observation

5 (i) she points at Step 1,0 to a house not in blv12 (a�(�+1)) (= bl
v2
1 (a�(�+1)), which contradicts

that for �v1 and �v2 at Step 1,0 remaining agents point to same houses an inheritance rights.

Inductive Step: (The arguments are exactly parallel to the base case. For the sake of

completeness, we reproduce them below, where changes have been made as necessary).

Suppose Av1j;0 \ (AN [AaE) = Av2j;0 \ (AN [AaE) for j = 1; � � � ; t but Av1t+1;0 \ (AN [AaE) 6=

Av2t+1;0 \ (AN [ AaE). W.l.o.g. let

Av1t+1;0 \ (AN [ AaE) = fa�(l); a�(l+1); � � � ; a�(�)g,

Av2t+1;0 \ (AN [ AaE) = fa�(l); a�(l+1); � � � ; a�(�); a�(�+1); � � � ; a�(�)g (i.e., � > � � l).

We present our arguments in four steps:

(1) Show that blv1t+1(a�(s)) = bl
v2
t+1(a�(s)) for s = l; l + 1; � � � ; �:

By Observation 4, for �v1 and �v2 the same assignments are made by iattcab prior to

Step t+1,0; the same a-type agents, b-type agents, houses, and inheritance rights remain at

Step t+1,0; remaining a-type and b-type agents point to the same houses and inheritance

rights; and blv1t+1(a�(s)) = bl
v2
t+1(a�(s)) for s = l; l + 1; � � � ; �.

Let blv2t+1(a�(�+1)) : (a�(�+1); o�1 ; b�1 ; � � � ; o�q ; b�q ; y) where k + 1 � �p � n for p = 1; � � � ; q

and y 2 HV [ I. (The arguments are essentially the same if blv2t+1(a�(�+1)) : (a�(�+1); y)).

(2) Show that y =2 Hv1
t+1 [ Iv1t+1;0:

Since y 2 blv2t+1(a�(�+1)), we get y =2 blv2t+1(a�(s)) for s = l; � � � ; � (by Observation 3 (ii)),

and hence y =2 blv1t+1(a�(s)) for s = l; � � � ; �. Then, y =2 Hv1
t+1;0 [ Iv1t+1;0 (see Observation 3

(i)). Since y 2 HV [ I, we get y =2 Hv1
t+1;r also for r � 1 (by Observation 2 (i)). Then,

y =2 Hv1
t+1 [ Iv1t+1;0.
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(3) Show that blv1t+2(a�(�+1)) = bl
v2
t+1(a�(�+1)):

From blv2t+1(a�(�+1)) we know that for �
v2 at Step t+1,0 a�(�+1) points to o�1; o�1 points to

b�1; � � � ; and b�q points to y. Given that Av1j;0\ (AN [AaE) = Av2j;0\ (AN [AaE) for j = 1; � � � ; t

the execution of iattcab prior to Step t+1,0 is the same for �v1 and �v2 (see Observation 4).

Then, also for �v1 at Step t+1,0 a�(�+1) points to o�1; o�1 points to b�1; � � � ; and b�q points to

y. Since y =2 Hv1
t+1 [ Iv1t+1;0, for �v1 this sequence remains una¤ected until Step t+2,0. Then,

blv1t+2(a�(�+1)) = bl
v2
t+1(a�(�+1)).

(4) Find a contradiction:

Since in Av1t+2;0 \ (AN [ AaE) the a-type agent who comes �rst in ov1ch is a�(�+1), at Step

t+1,0 a�(�+1) should be the a-head of a non-empty chain. In this chain either a�(�+1) is the

head, or a b-type agent in blv1t+2(a�(�+1)) is the head, say b�j for some j 2 f1; 2; � � � ; qg.

If a�(�+1) is the head of the chain, then at �ab;v1 she is not assigned her most preferred house

inH n (Hv1
0 [Hv1

1 [� � �[Hv1
t ). But for�

v2 since a�(�+1) is assigned at Step t+1,0, at �ab;v2 she is

assigned her most preferred house inH n (Hv2
0 [Hv2

1 [� � �[Hv2
t ) (= H n (Hv1

0 [Hv1
1 [� � �[Hv1

t )),

which contradicts that �ab;v1 = �ab;v2.

If b�j is the head of the chain, then from

blv2t+1(a�(�+1)) : (a�(�+1); o�1 ; b�1 ; � � � ; o�q ; b�q ; y);

in the execution of iattcab in �v2 , b�j points at Step t+1,0 to o�j+1 (or y). From the

fact that in the execution of iattcab in �v1 at Step t+1,0 b�j is the head of a chain, by

Observation 5 (i) she points at Step t+1,0 to a house not in blv1t+2(a�(�+1)) (= bl
v2
t+1(a�(�+1)),

which contradicts that for �v1 and �v2 at Step t+1,0 remaining agents point to same houses

an inheritance rights.

Lemma 4 If f v1ch = f
v2
ch for v1; v2 2 V, then v1 = v2.

Proof. Let f v1ch (= f v2ch ) be given but not v1. By Lemma 3 f
v1
ch uniquely identi�es the sets

Av1t;0 \ (AN [AaE) (= Av2t;0 \ (AN [AaE)) for t = 1; 2; � � � (i.e., to identify them we do not need

v1 and v2). Also, from f
v1
ch we can derive o

v1
ch (= o

v2
ch) (by de�nition). We will show that, from

Av1t;0 \ (AN [ AaE) for t = 1; 2; � � � and ov1ch, we can uniquely identify v1 (and hence also v2),

which proves the lemma.
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Let � : f1; 2; � � � ; ng ! f1; 2; � � � ; ng be the bijection such that ov1ch(a�(s)) = s for s =

1; 2; � � � ; n. By Observation 4 (ii), from the sets Av1t;0 \ (AN [ AaE) for t = 1; 2; � � � we can

determine the a-blocks at every a-step. The proof is in two parts.

(I) Let the a-blocks at Step 1,0 be

blv11 (a�(1)) : (a�(1); � � � ; y1);

blv11 (a�(2)) : (a�(2); � � � ; y2);
...

blv11 (a�(�)) : (a�(�); � � � ; y�):

By Chain-order Rule 2, at v1 the a-type agents a�(1); � � � ; a�(�) are assigned the vacant

houses and inheritance rights y1; � � � ; y� in order of the indices of vacant houses and inheri-

tance rights. Since this is well-de�ned, we can uniquely identify how y1; � � � ; y� are assigned

to a�(1); � � � ; a�(�) at v1.

(II) For t � 1 let the a-blocks at Step t+1,0 be

blv1t+1(a�(m0)) : (a�(m0); � � � ; ym0);

blv1t+1(a�(m0+1)) : (a�(m0+1); � � � ; ym0+1);

...

blv1t+1(a�(m1�1)) : (a�(m1�1); � � � ; ym1�1)

blv1t+1(a�(m1)) : (a�(m1); � � � ; ym1)

...

...

blv1t+1(a�(mq�1)) : (a�(mq�1); � � � ; ymq�1)

blv1t+1(a�(mq)) : (a�(mq); � � � ; ymq)

...

blv1t+1(a�(�)) : (a�(�)); � � � ; y�)

(i:e:; 1 � m0 < m1 < � � � < mq � �)
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such that a�(m0); � � � ; a�(mq) are a-heads of chains at Step t,0. (By Observation 5 (i), we

can determine the heads of chains at Step t,0. They are the agents in Av1t+1;0 who point

to a house in Hv
t;0 at Step t,0, and to a house or an inheritance right in H

v
t+1;0 [ Ivt+1;0 at

Step t+1,0. Then we can also determine the a-heads of chains at Step t,0. An a-type agent

a 2 Av1t+1;0 \ (AN [AaE) is the a-head of a chain at Step t,0 if an agent in blv1t+1(a) is the head

of a chain at Step t,0.)

Then, the a-type agents a�(m0); � � � ; a�(m1�1) are in the same chain at Step t,0, and at v1,

by Chain-order Rule 3, ym0+1 is assigned to a�(m0), y
m0+2 is assigned to a�(m0+1)), � � � , and

ym1�1 is assigned to a�(m1�2). Similarly, a�(m1); � � � ; a�(m2�1) are in the same chain at Step t,0,

and at v1, by Chain-order Rule 3, ym1+1 is assigned to a�(m1), y
m1+2 is assigned to a�(m1+1)),

� � � , and ym2�1 is assigned to a�(m2�2); and so on.

Then, at v1 the a-tails of chains at Step t,0 (i.e., a�(m1�1); a�(m2�1); � � � ; a�(mq�1); a�(�))

are assigned the remaining vacant houses and inheritance rights (i.e., ym0 ; ym1 ; � � � ; ymq). By

Chain-order Rule 3 these houses and inheritance rights are assigned to a�(m1�1); a�(m2�1); � � � ; a�(mq�1); a�(�)

in order of their indices. Since this is well-de�ned, we can also uniquely identify how

ym0 ; ym1 ; � � � ; ymq are assigned to a�(m1�1); a�(m2�1); � � � ; a�(mq�1); a�(�) at v1.

Given Lemma 2 and Lemma 4 the proof of Theorem 2 is easy.

Proof of Theorem 2. Consider the mapping fch : V ! F such that fch(v) = f vch for v 2 V.

By Lemma 4 fch is an injection. By the facts that fch is an injection and jVj = jFj = n!, fch

is a bijection. By Lemma 2 and the fact that fch is a bijection, we get �
rY�I = �cfrd.

4 Conclusion

We studied the mixed ownership case of the indivisible resource allocation problem, also

known as the �house allocation problem with existing tenants.�A mechanism due to Ab-

dulkadiro¼glu and Sönmez [2] for this class of problems is random Y-I, which is strategy-proof,

ex-post e¢ cient, and ex-post group-rational. We proposed in this context a market-based

alternative mechanism, cfrd, which can also be shown to be strategy-proof, ex-post e¢ cient,

and ex-post group-rational. There are interesting methodological and theoretical parallels
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between cfrd and the Walrasian Mechanism from equal-division, the popular rule used in

divisible resource allocation problems. We obtain that cfrd and random Y-I are equivalent

mechanisms. In the public ownership case, Abdulkadiro¼glu and Sönmez [1] showed the equiv-

alence of �random-priority�and cfre. Our result generalizes theirs to the mixed ownership

setting. The equivalence results in our paper and in theirs expose that, although this is

not explicit by formulation, there is a hidden methodological analogy between the popular

divisible and indivisible resource allocation mechanisms in the literature. These mechanisms

also have interesting theoretical similarities.

In two recent papers, Pathak and Sethuraman [12] and Carroll [6] show the equivalence

of random-priority to certain mechanisms that execute ttc based upon randomly generated

�inheritance tables.� The key component of cfrd, iattc, however, executes based upon

randomly generated �inheritor relationships between agents.� This innovation promises a

new line of research. Future research papers may study how to execute iattc in problems

where an object can be assigned to multiple agents (e.g., in the school choice setting), or when

an existing tenant may initially own multiple houses. This line of research may potentially

lead to the design of other iattc based lottery mechanisms that are equivalent to variants

of random Y-I. The tools that we introduced in Section 3 may become useful in these e¤orts.
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APPENDIX

Proof of Theorem 1.

While iattc operates on �v, cycles appear in an order. First, a group of cycles form� call

Group 1; agents in these cycles are assigned the houses that they point to; then they depart

from the market and houses that remain are inherited by those agents that are still in the

market. Then, a second group of cycles forms� call Group 2, and the execution similarly

proceeds.

Let A and H be partitioned into fAsgTs=1 and fHsgTs=1 according to cycle groups: As and

Hs are respectively the sets of agents and houses that join a cycle in Group s for s = 1; � � � ; T .

Let # : A [ H ! f1; 2; � � � ; Tg be the function such that #(x) = s if x 2 As [ Hs. (It

speci�es to which group of cycles a house or an agent belongs.)

Let Points : A! H be the function such that for an agent a 2 A, Points(a) is the house

that she trades (the house that points to her) in the cycle that she joins. Clearly,

#(a) = #(Points(a)) 8a 2 A:

The proof is in two parts:
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(I) for any � 2M if � 6= �iattc;v, then � is not a core allocation in �v:

Suppose � 6= �iattc;v but � is a core allocation in �v.

If �(a) 6= �iattc;v(a) for an agent a 2 A1, then a �nds �(a) less preferable than �iattc;v(a)

(because �iattc;v(a) is a�s most preferred house in H). Then � is clearly blocked by the four-

tuple < A1; H1; �; Claim > where �(a) = �iattc;v(a) and Claim(a) = Points(a) for every

a 2 A1. Then we should have �(a) = �iattc;v(a) for every a 2 A1.

Given that �(a) = �iattc;v(a) for every a 2 A1, if �(a) 6= �iattc;v(a) for an agent a 2 A2,

then a �nds �(a) less preferable than �iattc;v(a) (because �iattc;v(a) is a�s most preferred house

in H nH1 and �(a) 2 H nH1). Then � is clearly blocked by the four-tuple < A1 [ A2; H1 [

H2; �; Claim > where �(a) = �iattc;v(a) and Claim(a) = Points(a) for every a 2 A1 [ A2.

Then we should have �(a) = �iattc;v(a) for every a 2 A1 [ A2.

If we iterate similarly we conclude that � = �iattc;v, which is a contradiction.

(II) �iattc;v is a core allocation in �v:

Suppose �iattc;v is blocked by a four-tuple


C;HC ; �; Claim

�
.

While iattc operates on �v, whenever an agent is assigned a house, that house is her

most preferred house among remaining ones. Therefore, for a 2 A if �(a)Ra �iattc;v(a), then

#(�(a)) � #(�iattc;v(a)), and if �(a)Pa �iattc;v(a), then #(�(a)) < #(�iattc;v(a)). Then,

X
h2HC

#(h) <
X
a2C

#(a): (F)

By De�nition 2 (ii), agents and houses in C[HC can be partitioned into subsets according

to the houses that they claim. Such a subset consists of a list of agents a1; a2; � � � ; am � C

and a list of houses h1; h2; � � � ; hm � HC where

S
a2fa1;��� ;amg

Claim(a) = fh1; � � � ; hmg;

and which adopts one of the following three structures.

STRUCTURE 1: a1 is the inheritor of a2, a2 is the inheritor of a3, � � � , am�1 is the

inheritor of am; a2 owns h1, a3 owns h2, � � � , am�1 owns hm�2, am owns hm�1 and hm. A

graphical representation, in which agents point to their bequeathers and to the houses they
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own, is as follows:

a1 a2 … am­1 am

h1 hm­2 hm­1 hm

While iattc operates on �v, in the cycles that they join, am trades a house in fhm�1; hmg,

am�1 trades a house in fhm�2; hm�1; hmg,� � � , a2 trades a house in fh1; � � � ; hmg. Then,

fPoints(a2); Points(a3); � � � ; Points(am)g � fh1; h2; � � � ; hmg;

and let eh = fh1; h2; � � � ; hmg n fPoints(a2); Points(a3); � � � ; Points(am)g:
Then a1 trades in the cycle that she joins either eh or a house that she owns which is not

in HC (in which case a1 is an existing tenant who trades in that cycle her occupied house,

which is not in HC). If the former holds, we get

S
a2fa1;��� ;amg

Points(a) = fh1; � � � ; hmg,

and so
X

h2fh1;��� ;hmg

#(h) =
X

a2fa1;��� ;amg

#(a).

If the latter holds, then eh joins a cycle after a1 joins a cycle, and hence #(eh) > #(a1).
Then, we get X

h2fh1;��� ;hmg

#(h) >
X

a2fa1;��� ;amg

#(a).

In either case, for Structure 1, we get

X
h2fh1;��� ;hm+1g

#(h) �
X

a2fa1;��� ;amg

#(a).

STRUCTURE 2: a1 is the inheritor of a2, a2 is the inheritor of a3, � � � , am�1 is the

inheritor of am; a1 owns h1, a2 owns h2, � � � , am�1 owns hm�1, and am owns hm. A graphical

representation, in which agents point to their bequeathers and to the houses they own, is as
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follows:
a1 a2 … am­1 am

h1 h2 hm­1 hm

While iattc operates on �v, an agent joins a cycle before or at the same time as a house

that she owns. Then, #(hs) � #(as) for s = 1; 2; � � � ;m. Note that, according to De�nition

2, agents under this structure claim the houses that they own.

STRUCTURE 3: a1 is the inheritor of a2, a2 is the inheritor of a3, � � � , am�1 is the

inheritor of am, am is the inheritor of a1; a1 owns h1, a2 owns h2, � � � , am owns hm. A

graphical representation, in which agents point to their bequeathers and to the houses they

own, is as follows:

h1

a1

hm am a2 h2

am­1 …

hm­1

By the same argument as in Structure 2, we get #(hs) � #(as) for s = 1; 2; � � � ; k. Note

that, according to De�nition 2, an agent under this structure does not necessarily claim the

house that she owns.

From the arguments in Structure 1, Structure 2, and Structure 3, we get,

X
h2HC

#(h) �
X
h2C

#(a),

which contradicts (F).
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