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Abstract

In a variety of cases, a set of indivisible objects must be allocated to a set of agents
where each agent needs exactly one object. Examples include the allocation of tasks to
workers, spots at public schools to pupils, and kidneys to patients with renal failure. We
consider the mixed ownership case of this problem (some objects are initially owned
by some agents while the other objects are unowned) and introduce a market-based
mechanism that is procedurally reminiscent of the Walrasian Mechanism from equal-
division. Our mechanism is strategy-proof and procedurally fair, and it leads to Pareto-
efficient allocations. We obtain that it is equivalent to a well-known priority-order
based mechanism. The equivalence result in the classical paper by Abdulkadiroglu and
Sonmez (Econometrica’ 1998) follows as a corollary.
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1 Introduction

We consider the problem of allocating n indivisible objects to n agents where each agent
needs exactly one object and agents’ preferences over objects are strict. Monetary transfers
are not allowed.! There are numerous real-life applications of this problem, such as the
allocation of tasks to workers, spots at public schools to pupils, kidneys to patients with
renal failure, dormitory rooms to college students, and legislators to committees [1, 2, 3, 5,
9, 15]. The purpose of this paper is to design a mechanism (a systematic allocation rule)
which has a market-based approach, is fair in a certain sense, and leads to efficient (Pareto
optimal) allocations (matchings of agents and objects). A core issue to pay attention to
when designing a mechanism is that preferences are elicited from agents who may respond

strategically rather than truthfully.

As is the convention in this literature, we employ the paradigm of allocating “houses”
to agents. There are three cases of this problem in the literature, varying in the initial
ownership structure. In the private ownership case, called a housing market, initially each
agent (privately) owns a house (see Shapley and Scarf [18]). In the social ownership case,
called a house allocation problem, initially houses are unowned (meaning that they are socially
owned by all agents; see Hylland and Zeckhauser [9]). In the mixed ownership case, called a
house allocation problem with existing tenants, the previous two cases are generalized: There
are k “newcomers” who initially do not own any houses; k£ “vacant houses,” which are initially
unowned; and n — k “existing tenants” and n — k “occupied houses” such that each existing

tenant owns her occupied house (see Abdulkadiroglu and Sénmez [2]).

This paper considers the mixed ownership case. Besides being more general, it draws
attention because of a number of interesting real-life applications of it. A prominent example
is kidney exchange with Good Samaritan Donors. In the most serious forms of renal disease,
the preferred treatment is kidney transplantation. As of March 2009, there were about
79,000 patients waiting for a kidney transplant in the United States. While some patients

(“existing tenants”) have friends or relatives willing to donate them their kidneys ( “occupied

'We do not take a normative standpoint against the use of money. In many real-life applications, however,
the use of money is not permissible.



houses”), there are also patients (“newcomers”) who do not have donors. There are also
kidneys obtained from Good Samaritan Donors and cadavers (“vacant houses”) which are
donated to patients collectively. In many cases a patient cannot be transplanted the kidney
of her donor due to medical incompatibilities. A common practice is then kidney exchange in
which patients are transplanted the kidneys of one another’s donors. A kidney exchange may
also involve patients without donors and kidneys obtained from Good Samaritan Donors and
cadavers [15, 17, 22]. Another real-life application of the mixed ownership case is allocation
of on-campus housing units at college campuses . Fach returning student (“existing tenant”)
occupies a room from the previous year. There are also incoming freshmen (“newcomers”),

who initially do not occupy any rooms, and vacant rooms, vacated by the graduated class [2,

7.

The mechanism that we will introduce is inspired from the “Walrasian Mechanism from
equal-division,” which is arguably the most widely advocated mechanism to allocate a socially
owned bundle of (infinitely) divisible goods to a set of agents fairly and efficiently. This
mechanism proceeds in a simple manner. First, the bundle is equally divided among agents. If
agents also have private endowments, the natural idea is to add agents’ equal-division shares of
the bundle to their private endowments. This results in a private ownership exchange market,
in which the Walrasian Mechanism is operated, producing a Walrasian allocation, which
is Pareto-efficient under standard assumptions on preferences.? This mechanism has been
shown to be compatible with many equity criteria that has been proposed in the literature

(see Thomson [21]).

Clearly, “indivisible” objects cannot be equally “divided.” A probabilistic equal-division
idea can still be employed, however, using random distribution. In an indivisible object allo-
cation problem, the first mechanism that involves random distribution has been introduced
by Abdulkadiroglu and Sénmez [1]. In the context of a house allocation problem, they pro-
posed the core from random endowments mechanism (in short, CFRE), which proceeds as

follows:

Distribute n houses to n agents uniformly at random such that each agent receives

2 A Walrasian allocation is an allocation that can be attained in a Walrasian equilibrium. The Walrasian
mechanism is the rule that maps a private ownership exchange economy to a Walrasian allocation.
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exactly one house. In the induced exchange market, reallocate houses to agents by

executing the top trading cycles mechanism® (in short, TTC), as described below:

Step 1: Let each agent “point” to her most preferred house and let each house “point”
to its owner. There exists at least one “cycle,” characterized by a list a',a?,--- ,a/ of
agents where a' points to a?’s house which points to a?; a? points to a®’s house which
points to a®;---; a’~! points to a’’s house which points to a’; and a’/ points to a'’s
house which points to a'.* Assign the agents in cycles the houses they point to and

then remove these agents and houses from the market.

Step t > 1: Let each remaining agent point to her most preferred house among re-
maining ones and let each remaining house point to its owner. There exists at least
one cycle. Assign the agents in cycles the houses they point to and then remove these

agents and houses from the market.

Roth [13] showed that TTC is strategy-proof (truthful preference revelation is a dominant

strategy), from which it immediately follows that CFRE is also strategy-proof.

There are interesting procedural and theoretical parallels between the Walrasian Mech-
anism from equal-division and CFRE. For both mechanisms, first a private ownership ex-
change market is generated by distributing the socially owned resources to agents employing
an equal-division idea. In the former, equal-division is in the physical sense; in the latter, in
a probabilistic sense, as each socially owned vacant house is given to each agent with exactly
the same probability, 1/n. For both mechanisms, market outcomes are calculated in the
induced exchange markets. In the former, the Walrasian Mechanism is operated producing
a Walrasian allocation, which is Pareto-efficient. In the latter, TTC is executed, which is
the exact counterpart of the Walrasian Mechanism in this context, as it produces the unique
Walrasian allocation, which is again Pareto-efficient (see Shapley and Scarf [18]). In the for-
mer, under certain assumptions that guarantee core convergence (see Aumann [4]) and the
uniqueness of a Walrasian allocation (see Mas-Colell [11]), the Walrasian Mechanism pro-

duces the exchange market’s unique core allocation. In the latter, similarly, TTC produces

3This mechanism is credited to David Gale in Shapley and Scarf [18].
4The existence of a cycle arises from the fact that the number of agents and houses is finite.



the exchange market’s unique core allocation (see Shapley and Scarf [18]).

We want to employ a similar approach in the mixed ownership case. The random distrib-
ution in the mixed ownership context is a more delicate issue, however. To highlight the key
challenges, consider the following two mechanisms, the first of which is due to Sénmez and

Unver [19):

(1) Distribute k& vacant houses to k newcomers uniformly at random such that each new-
comer receives exactly one vacant house. Then reallocate houses to agents by executing

TTC.

(2) Distribute £ vacant houses to n agents uniformly at random such that out of n agents

k of them receive a vacant house. Then reallocate houses to agents by executing TTC.

In (1), random distribution results in a housing market and TTC produces its unique
core allocation. There is no probabilistic equal-division, however, as a vacant house, which
is socially owned, is given to a newcomer with 1/k probability but to an existing tenant
with zero probability. To emphasize the fairness shortcoming of this mechanism, consider an
existing tenant whose occupied house is the least desired house of every agent. Then in (1) she
will be assigned her least desired house. In a sense, she is punished for owning a house, which
is not what we desire. Arguably, this feature of the mechanism may also cause an incentive
shortcoming. The agent who owns the least desired house may respond strategically by first

giving up her house and then participating in the mechanism as a newcomer.

In (2), there is a probabilistic equal-division, as each vacant house is given to each agent
with exactly 1/n probability. There is an efficiency shortcoming of this mechanism, however.
After vacant houses have been distributed, if an existing tenant e receives a vacant house and
a newcomer a does not, then, in the induced exchange market, e owns two houses (a vacant
house besides her occupied house) while a owns none. When TTC is executed, a cannot join
a cycle and remains unassigned, and when e departs from the market by joining a cycle, one

of her two houses remains, which becomes “wasted.”

We introduce a mechanism that resolves the fairness and efficiency tension in (1) and (2)



in an intuitive way. The core from random distribution mechanism (in short, CFRD) proceeds

as follows:

Besides the £ vacant houses, introduce n — k “inheritance rights” associated with n —k
existing tenants. Distribute k vacant houses and n — k inheritance rights to n agents
uniformly at random such that each agent receives exactly one vacant house or one
inheritance right. If an agent receives an inheritance right, she becomes the “inheritor”
of the associated existing tenant; if she receives a vacant house, she then owns that
vacant house. Therefore, in the induced exchange market, a newcomer owns a house or
an inheritance right, and an existing tenant owns two houses (a vacant house besides
her occupied house) or an inheritance right and a house. We call this an inheritors
augmented housing market. In this market reallocate houses to agents by executing the

following inheritors augmented top trading cycles mechanism (in short, TATTC):

Step 1: Let each agent point to her most preferred house and let each house point to its
owner. There exists at least one cycle. Assign the agents in cycles the houses they point
to and then remove these agents and houses from the market. If an existing tenant in
a cycle owns two houses, one of her two houses remains. Then let her remaining house
be owned by her inheritor. If her inheritor is an existing tenant who has already been
assigned a house, let her remaining house be owned by the inheritor of her inheritor,

and so on.

Step t > 1: Let each remaining agent point to her most preferred house among re-
maining ones and let each remaining house point to its owner. There exists at least
one cycle. Assign the agents in cycles the houses they point to and then remove these
agents and houses from the market. If an existing tenant in a cycle owns two houses,
one of her two houses remains. Then let her remaining house be owned by her inheritor.
If her inheritor is an existing tenant who has already been assigned a house, let her

remaining house be owned by the inheritor of her inheritor, and so on.

The innovation in CFRD is the role played by inheritance rights in the execution of IATTC.
When an existing tenant who owns two houses is removed after joining a cycle, her remaining

house is not wasted; rather, it is given to her inheritor (or to the inheritor of her inheritor
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and so on). Note that this has no negative welfare implications for her. She can trade any of
her two houses to join a cycle and be assigned the best house that she can. Her remaining
house is given to another agent only after she departs from the market. It can be shown that

IATTC is strategy-proof.” Then it immediately follows that CFRD is also strategy-proof.

Observe that there is a probabilistic equal-division in CFRD; each vacant house is given to
each agent with exactly 1/n probability. Further, IATTC is the counterpart of the Walrasian
Mechanism in this context, as it produces a Walrasian allocation.’ In Theorem 1 we show
that, as TTC produces the unique core allocation in a housing market, IATTC produces the
unique core allocation in an inheritors augmented housing market. The core allocation notion
in this context is more subtle, however. The definition should incorporate the rights of
inheritors (see Definition 2). Also, observe that in an inheritors augmented housing market
where each agent owns exactly one house, IATTC proceeds just like TTC; in this sense, an
inheritors augmented housing market and IATTC can be seen as generalizations of a housing

market and TTC.

Our main theoretical contribution is a surprising equivalence result, similar to the one in
Abdulkadiroglu and Sénmez [1]. In a house allocation problem, they showed that CFRE is
equivalent to random-priority (also known as “random serial dictatorship”),” which proceeds
as follows: (If two mechanisms are equivalent, it means, given any preference profile, any

given allocation is produced by the two mechanisms with exactly the same probability.)

Choose a priority-order (an ordering of agents) uniformly at random. Then execute the
associated priority-rule as follows: Assign the first agent her most preferred house, the

second agent her most preferred house among remaining ones, and so on.

In Theorem 2 we show that CFRD is equivalent to random You request my house - I get
your turn (in short, random Y-I), a mechanism due to Abdulkadiroglu and Sénmez [2] and

which proceeds as follows:

5We do not include a proof for this, as it follows as a corollary of Theorem 2.
OThis is due to Theorem 2 and the fact that a Y-I mechanism produces a Walrasian allocation (Ekici [8]).
"Knuth [10] also proved this equivalence result in an independent study.



Choose a priority-order uniformly at random. Then execute the associated You request
my house - I get your turn mechanism (in short, Y-I) as follows:® Assign the first agent
her most preferred house, the second agent her most preferred house among remaining
ones, and so on, until an agent requests the occupied house of an existing tenant. If
at that point that existing tenant has already been assigned a house, do not disturb
the procedure. Otherwise, update the remainder of the order by inserting that existing
tenant to the top and proceed. If at any point a loop forms, it is formed exclusively by
a subset of existing tenants who request the occupied houses of one another. In such
cases remove the existing tenants in the loop by assigning them the houses they request

and proceed.

In a house allocation problem, random Y-I reduces to random-priority and CFRD reduces
to CFRE. Therefore, the equivalence result in Abdulkadiroglu and Sténmez [1] is a corollary

of our more general equivalence result.

Our equivalence result contributes to our understanding of the links between popular
mechanisms in divisible and indivisible resource allocation problems. In allocating indivisible
resources, priority-order based mechanisms—random Y-I and random-priority, are popular,
perhaps owing to their simplicity in formulation. Procedurally, however, they cannot be given
interpretations from a market point of view. On the other hand, CFRE and CFRD have explicit
market interpretations by formulation: First, they induce private ownership exchange markets
via probabilistic equal-division, and then they produce Walrasian allocations in the resulting
exchange markets. The way they proceed is analogous to the Walrasian Mechanism from
equal-division, the popular mechanism in allocating divisible resources. Thus the equivalence
results in our paper and in [1] expose that, although this is not explicit by formulation, the
popular divisible and indivisible resource allocation mechanisms in the literature are indeed

analogous.

The rest of the paper is organized as follows. The next subsection briefly mentions the
related literature. Section 2 introduces the model, describes random Y-I and CFRD, and

presents our equivalence result. The proof is bijective and fairly involved, which we cover

8See Sonmez and Unver [20] for a characterization of this mechanism.
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exclusively in Section 3 (where we present an alternative specification of IATTC and explore
its properties). Section 4 concludes the paper. We present the proof of Theorem 1 in the

Appendix.

Related Literature

In addition to [1], there are several other papers with equivalence results in the literature:

Sonmez and Unver [19] showed that the TTC based mechanism in (1) in Section 1 is equiv-
alent to the following priority-order based mechanism: Choose a priority-order by ordering %
newcomers at the top uniformly at random and placing n — k existing tenants at the bottom

(in any order); then execute the Y-I mechanism defined by that priority-order.

In two recent papers random-priority has been shown to be equivalent to certain mecha-
nisms that execute TTC based upon “inheritance tables.” An inheritance table is a collection
of orderings of agents. Each ordering relates to a house. While TTC is executed, an agent
points to her most preferred house in the market (as usual) and a house points to the agent
in the market who is ordered highest in its ordering. Pathak and Sethuraman [12] show that,
if TTC is executed based upon a randomly generated inheritance table where every agent is
included in every ordering, the resulting mechanism is equivalent to random-priority. They
also extend this equivalence to the houses-with-quotas case (e.g., a public school with a quota
of ¢ can be assigned to ¢ students). Also, they show that, in the houses-with-quotas case, if
TTC is executed based upon a randomly generated inheritance table where the ordering for a
house with quota ¢ includes only ¢ agents and each agent is included in the ordering of only
one house, the resulting mechanism is again equivalent to random-priority. Carroll [6] later

showed a general equivalence result that implies and extends the preceding ones.

There is a conceptual difference between IATTC based CFRD and the above-mentioned TTC
based mechanisms. The execution of TTC in these mechanisms is based upon a randomly
generated inheritance table, while the execution of IATTC is based upon randomly generated
“inheritor relationships between agents.” This innovation in CFRD promises a new line of
research. Future research papers may study how to execute IATTC in the houses-with-quotas

case, or when an existing tenant may initially own multiple houses, which may potentially
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lead to the design of other IATTC based mechanisms that are equivalent to variants of random

Y-I. The tools that we introduce in Section 3 may become useful in these efforts.

2 House Allocation with Existing Tenants

2.1 Preliminaries

A house allocation problem with existing tenants is a five-tuple < Ay, Hy, Ag, Ho, P > where
— Ay :{ay,a9,...,a;} is a finite set of “newcomers”;

— Hy : {hy,ho,... hi} is a finite set of “vacant houses”;

— Ap : {ekt1, €kr2, ..., €} is a finite set of “existing tenants”;

— Ho : {0k41,0k42,---,0,} 1s a finite set of “occupied houses” such that existing tenant e

owns (or, equivalently, occupies) os for s =k +1,--- n;

— P : (P,)acayua, is the profile of agents’ strict preference relations over the set of houses.”

A house allocation problem with existing tenants is a housing market if every agent is an

existing tenant (i.e., & = 0), and it is a house allocation problem if every agent is a newcomer

(i.e.,, k =n).

We fix Ay, Hy, Ag, Ho throughout the paper, and we denote Ay U Ag and Hy U Hp

respectively by A and H.

We assume that every agent prefers being assigned any house to not being assigned a
house. For a € A and h, h’ € H we write h P, h' if a prefers h to h’. We denote the domain
of admissible preference relations by P (so, P € P™). We use R, to represent the “at least

as good as” relation for a € A derived from P, (i.e., h R, h' means h P, h' or h = h').

An allocation p : A — H is a bijection from the set of agents to the set of houses. We

denote the set of admissible allocations by M.

Given P € P™, an allocation u € M is:

%i.e., no agent is indifferent between two distinct houses.
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— Pareto-efficient if there exists no p/ € M such that p/(a) R, pu(a) for every a € A and

W' (a) P, p(a) for an agent a € A.
— individually-rational if p(es) Re, 05 for s =k +1,--- n.

— group-rational if there exists no triplet <C’, HC, t9> where C' C Ap; HY C H is the set
of houses owned by agents in C; and 6 : C — H¢ is a bijection such that 0(a) R, u(a)
for every a € C' and 6(a) P, u(a) for an agent a € C. If there exists such a triplet then

C' is called a “blocking coalition” and we say that p is “blocked” by C.

In the context of a housing market a group-rational allocation is also called a core allo-

cation.

An allocation p € M is a Walrasian allocation (with transfers) if there exists a non-
negative price function p : H — R* U {0} and a non-negative transfer function tr : A —

R* U {0} such that

1. the budget function w : A — R* U {0} is given by w(a) = tr(a) for a € Ay and

w(es) = tr(es) +p(03> for s =k + 17 AR

2. p(pu(a)) < w(a) for every a € A;

3. Ztr(a) < Z p(h);

acA he Hy

4. if h P, u(a) for any a € A and h € H, then w(a) < p(h).

In words, at a Walrasian allocation, vacant houses are sold in the market and the raised
revenue is distributed to agents, existing tenants raise additional revenue by selling their
occupied houses, and then agents buy in the market their most preferred affordable houses.

Ekici [8] shows that the inequalities in (2) and (3) are binding,.

A random assignment X\ : M — R is a probability distribution over allocations. We

denote the domain of admissible random assignments by A. Note that for every A € A,

A(p) > 0 for every u € M, and Z Ap) = 1.
HeM
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A mechanism (or, an allocation rule) is a systematic way to choose an allocation at any
given preference profile. Formally, a “deterministic” mechanism ¢” : P* — M is a function
that maps the domain of admissible preference profiles to the codomain of allocations (so
at P € P its allocation choice is certain), and a “lottery” mechanism ¢* : P* — A is a
function that maps the domain of admissible preference profiles to the codomain of random
assignments (so, at P € P" it chooses an allocation randomly based upon ¢*(P)). We have
given these definitions in the context of a house allocation problem with existing tenants, but
we will also talk about mechanisms in more restricted domains, such as a housing market or
a house allocation problem. Therefore, in what follows, a “mechanism” should be understood

as a systematic way to choose an allocation in the context of a well-specified class of problems.

A lottery mechanism is ex-post (Pareto) efficient if it maps every preference profile to a
random assignment at which positive probability weights are given to only Pareto-efficient
allocations. For a lottery mechanism, the properties of ex-post individually-rationality and

ex-post group-rationality are defined accordingly.

In the remainder of the paper we will consider a representative problem Il :< Ay, Hy, Ag, Ho, P >,

which stands for the class of house allocation problems with existing tenants.

2.2 Random You request my house - I get your turn

In this subsection we present a lottery mechanism in the context of a house allocation problem
with existing tenants. It is derived from the class of “You request my house - I get your turn”

(Y-I) mechanisms, introduced by Abdulkadiroglu and Sénmez [2].

A priority-order is a bijection from the set of agents A to the set of numbers {1,2,...,n}.
We denote a generic priority-order by f, and the domain of admissible priority-orders by F.
For instance, if f(a) = 4 for a € A and f € F, it means that agent a is ordered fourth in the

priority-order f.

Each priority-order f € F defines a separate Y-I mechanism, which allocates houses to

agents at a given preference profile as described below.
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The Y-I mechanism defined by f € F: Assign the agent ordered first in f to her most
preferred house; assign the agent ordered second in f to her most preferred house among
remaining ones; and so on, until an agent requests the occupied house of an existing
tenant. If at that point the existing tenant whose occupied house is requested has already
been assigned a house, do not disturb the procedure. Otherwise, update the remainder
of the priority-order by inserting that existing tenant to the top and proceed. If at any
point a loop forms, it is formed exclusively by a subset of existing tenants who request
the occupied houses of one another. In such cases remove all agents in the loop by

assigning them the houses they request and proceed.

There are appealing properties of the class of Y-I mechanisms. They are strategy-proof
(truthful preference revelation is a dominant strategy) (Abdulkadiroglu and Sénmez [2]); for
any given preference profile, they lead to Pareto-efficient and individually-rational allocations
2], and the set of allocation induced by them coincides with the set of Walrasian allocations

(Ekici [8]). The following example demonstrates the workings of a Y-I mechanism.

ExXAMPLE 1 Consider a house allocation problem with existing tenants in which the prefer-

ence profile of agents is as in the following table:

ap az as a4y as G A7 €3 €9 €19 €11 €12

hs hy hs he hs o011 og o9 hy hi o010 hs

010 : og hiy : 011
012 : 010
h7

Let the priority order f order agents as ay, as, €s, €11, G4, G5, €10, €9, A3, Gg, €12, a7 (S0 f(ay) =

1,--+, flay) = 12). The following figure illustrates how the Y-I mechanism specified by f pro-

13



ceeds.

Stepll: Noltycles
Step: a; —> hj
THEN
aa —>hy

Step3: I €10 —> O11
| o<

Step®@:

THEN
e —> hy

THEN
€g —> 09

THEN
Ay —m> hs

THEN
as —> hy

THEN
ds > O12

THEN
€17 E— h_r,

THEN
a3 —> 0,

THEN
dg —> Og

THEN
az E— h7

The allocation induced is as follows:

(assigned)

(assigned)

each@gentdn@heRyclefsEssignedi®he
houseBhe@pointsio

ownedyRg;RdbecomesEhegent@vith

highestriority@mong@#emaining®bnes

(assigned)

(assigned)

(assigned)

(assigned)

ownedbyR ;& ,dbecomes@he@gent@vith

highestriority@mong@emainingnes

(assigned)

(assigned)

(assigned)

(assigned)
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ap az as g a5 Aag a7 €8 €9 €10 €11 €12

hs hi o012 he hy o0 hy o9 hy o011 019 hs
In our representative problem II, let x¥ 7/ denote the allocation chosen by the Y-I
mechanism defined by f € F, and let F# C F be the subset of priority-orders for which the

resulting Y-I mechanisms choose 1 € M (i.e., F* = {f € Flu¥ 15 = pu}).

Despite its other appealing properties, a Y-I mechanism suffers on grounds of fairness.
If in a priority-order f € F we have f(a) < f(a’) for two agents a,a’ € A, then the Y-I
mechanism defined by f clearly favors a over a/. A natural way to introduce fairness is
randomization. That is, one may first choose a priority-order uniformly at random and then
execute the Y-I mechanism defined by the chosen priority-order. This is what we call the

random You request my house - I get your turn mechanism (in short, random Y-I).

Random Y-I: Choose a priority-order of agents f € F uniformly at random, and then

allocate houses to agents by executing the Y-I mechanism defined by f.

Having been derived from the class of Y-I mechanisms, random Y-I is strategy-proof,

ex-post efficient, and ex-post group-rational.

In our representative problem II, let \™ 7 denote the random assignment induced by

random Y-I. Then,
| F*]

rY —1I o

2.3 Core from Random Distribution

In this subsection we introduce an alternative lottery mechanism in the context of a house
allocation problem with existing tenants. For this purpose we first recall Gale’s reputable
top trading cycles mechanism (in short, TTC), an allocation rule defined in the context of a

housing market that proceeds as follows.

TTC: Step 1: Let each agent “point” to her most preferred house, and each house “point”
to its owner. There exists at least one "cycle,” characterized by a list a*,a?,--- ,a’ of

agents where a* points to a®’s house which points to a?; a® points to a®’s house which

15



points to a3;---; a’~! points to a’’s house which points to a’; and o’ points to a'’s
house which points to a'. Assign the agents in cycles the houses they point to and then

remove these agents and houses from the market.

Step t > 1: Let each remaining agent point to her most preferred house among remaining
ones and let each remaining house point to its owner. There exists at least one cycle.
Assign the agents in cycles the houses they point to and then remove these agents and

houses from the market.

TTC is strategy-proof (Roth [13]), and in a housing market it chooses the unique core

allocation, which is also the unique Walrasian allocation (Roth and Postlewaite [14]).

We also need to introduce what we call an “inheritors augmented housing market,” which

is generated from our representative problem II.

DEFINITION 1 From Il : < An,Hy, Ag,Ho, P > an inheritors augmented housing
market 11" : < Ay, Hy, Ag, Ho, P,v > is generated by specifying a bijection v : Ay U Ag —

Hy U I such that:

— I : gy, -+ ,in} is the set of “inheritance rights,” where i is the inheritance right asso-

ciated with existing tenant eg;
— agent a € Ay U Ap owns v(a) (which is a vacant house or an inheritance right).

In words, an inheritors augmented housing market is generated from a house allocation
problem with existing tenants by distributing to agents vacant houses and inheritance rights
associated with existing tenants. Note that in an inheritors augmented housing market it is
possible that an existing tenant owns two houses (a vacant house besides her occupied house)

and a newcomer owns none (she then owns only an inheritance right).

For a € Aif v(a) = i,, then we call a the “inheritor” of e, and e, the “bequeather” of a. If
we talk of “bequeathers” of a, the agents we mean by it are a’s bequeather, a’s bequeather’s
bequeather, and so on. We denote by V' the domain of admissible bijections from Ay U Ag to
Hy UI. Note that |V| = n!l, and by separately augmenting n! bijections to our representative

problem II we can generate n! distinct inheritors augmented housing markets. If we talk of an
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“allocation” in an inheritors augmented housing market, we mean by it, as usual, a bijection

from A to H.

The essential component of our alternative lottery mechanism is the “inheritors aug-
mented top trading cycles” (in short, IATTC), a mechanism that operates on an inheritors

augmented housing market; as described below, IATTC resembles TTC.

IATTC: Step 1: Let each agent point to her most preferred house, and each house point to its
owner. There exists at least one cycle. Assign the agents in cycles the houses they point
to, and then remowve these agents and houses from the market. If an existing tenant in
a cycle owns two houses, one of her two houses remains. Then let her remaining house
be owned by her inheritor. If her inheritor is an existing tenant who has already been
assigned a house, let her remaining house be owned by the inheritor of her inheritor,

and so on.

Step t > 1: Let each remaining agent point to her most preferred house among
remaining ones, and each remaining house point to its owner. There exists at least one
cycle. Assign the agents in cycles the houses they point to, and then remove these agents
and houses from the market. If an existing tenant in a cycle owns two houses, one of
her two houses remains. Then let her remaining house be owned by her inheritor. If her
inheritor is an existing tenant who has already been assigned a house, let her remaining

house be owned by the inheritor of her inheritor, and so on.

It is simple to verify that TATTC is well-defined. The key observation is that while TATTC
operates on an inheritors augmented housing market, any newcomer who does not own a
house eventually inherits a house from one of her bequeathers, and so she joins a cycle in
which she trades that house. Let a' be a newcomer who does not own a house and let a?
be the existing tenant who is her bequeather. There are two possibilities: either a? owns
two houses or a? has a bequeather—say, a®. If the former is true, a? joins a cycle in which
she trades one of her two houses; when she departs, a' inherits the house that remains. If
the latter is true, there are again two possibilities: either a® owns two houses or she has a

4

bequeather—say, a*. If the former is true, a® joins a cycle in which she trades one of her
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two houses; when she departs, a' inherits the house that remains if a® has departed earlier;
if @ has not departed yet, a? inherits the remaining house ending up owning two houses (her
occupied house and the house she inherited), and after she departs by joining a cycle one of
these two houses will again be inherited by a'. By iterating similarly, we conclude that a'

always inherits a house and hence joins a cycle.
The following example demonstrates the workings of 1ATTC.

EXAMPLE 2 Consider an inheritors augmented housing market generated from the house
allocation problem with existing tenants in Fxample 1 by distributing to agents vacant houses

and inheritance rights as in the following table:

ap az a3 a4 0aAs Qg Q7 €3 €9 €190 €11 €12

hl h2 Z'10 h4 h5 Z'11 i12 h3 Z-9 Z'8 h6 h7

Thus, the distribution of houses and inheritance rights to agents in this inheritors aug-

mented housing market is as in the following table:

ay az a3 a4 a5 Qg ar €8 €9 €10 €11 €12

hi he 410 ha hs 411 t12 hs,08 d9,09 ig,010 hg,011 N7, 012

We will illustrate how IATTC proceeds in a series of figures. For visual ease we indicate

cycles in the figures in dashed rectangles.

When each house points to its owner and each agent points to her most preferred house,
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the resulting figure is as follows:

Stepfl: NoRycles

StepR:
as / Og<— ay
r \1, Z each@gentAnheRyclel@sEssigned@he
I ay > h; > e —> 0g I house@he@ointsio
€10 —Eh1 a; h, €9 I
/[\ —
O10 €11 011 < as
S~ he as h4>
012 > €12 > hs > as
h;

Step3: I €10——> 011 I each@gentlnihelycled@sEssigned@he

¢ J/ house@helpointsio
Lotoe——sl )

Ste p3: each@gentAnheRyclel@sEssigned@he
houseBhe@ointsio

h;
THEN
ay I each@gentAnhe®yclef@sEssigned@he
\L/[\ houseBhe@ointsio
| hy I

As prescribed by the cycle in the figure, ay, es, eg, as are assigned hz, og, ha, h1, Tespectively.

The house og of eg remains, which is received by her inheritor e1q.

When each remaining house points to its owner and each remaining agent points to her
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most preferred house among remaining ones, the resulting figure is as follows:

As prescribed by the cycle in the figure, eyg and ey, are assigned 011 and 01g, respectively.
The houses hg of e11 and og of e1g remain, which are received by their inheritors ag and as,

respectively.

When each remaining house points to its owner and each remaining agent points to her

most preferred house among remaining ones, the resulting figure is as follows:

As prescribed by the cycle in the figure, eis,as,aq,aq,as are assigned hs, ha, hg, 08, 012,

respectively. The house h; of e;s remains, which is received by her inheritor az.

The last cycle is formed by a; and hy; thus, a; is assigned hy:

The allocation chosen by IATTC is the same as the one we obtained in Fxample 1.

In our representative problem II, let ;%Y denote the allocation chosen by IATTC in IIY,
and let V# C V be the set of bijections from Ay U Ag to Hy U I such that, in the inheritors
augmented housing markets generated by augmenting them to II, the allocation chosen by

IATTC is p (i.e., V¥ = {v € V|p'*tev = ).

We should point out that, in essence, an inheritors augmented housing market generalizes
a housing market, and 1IATTC generalizes TTC. If IT is a housing market (i.e., & = 0) and
ITY is an inheritors augmented housing market generated from II, in IIV every agent owns
exactly one house. Then no house ever remains from an agent who departs from the market,
rendering the distribution v without significance, and hence IATTC proceeds just the same
as TTC. As it turns out, in this generalization the desirable theoretical properties of TTC
are retained by TATTC: It can be shown that IATTC is strategy-proof; also, the allocation

it chooses in an inheritors augmented housing market is the unique core allocation if the
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“core allocation” notion is properly redefined taking account of the rights of inheritors to the

houses of their bequeathers.

DEFINITION 2 An allocation i : A — H is a core allocation in 11" : < Ay, Hy, Ag, Ho, P,v
(v € V) if there exists no four-tuple < C,H®,0,Claim > where C C A, H® C H, and

0:C — HC and Claim : C — HC are bijections such that:
(1) 0(a) Ry p(a) for every a € C and 0(a) P, ju(a) for an agent a € C;

(ii) for any a € C, a owns Claim(a); or a is the inheritor of an agent a’ € C' who owns
Claim(a); or a is the inheritor of an agent a’ € C who is the inheritor of another agent

a” € C who owns Claim(a); or so on.

If there ewists such a four-tuple we say that p is “blocked” by < C, H® 0, Claim > and

we call C' a “blocking coalition.”

The subtle part in the above definition is the C'laim function. It states that in a blocking
coalition every agent needs to claim (bring into the coalition) a distinct house, which should
be a house that she or one of her bequeathers owns. In case an agent, say a, claims a house
owned by one of her bequeathers, say a”, inheritors of a” that are more closely related to
her than a should also be in the blocking coalition. That is, if a” is the bequeather of ¢’ and
a’ is the bequeather of a, then a’ should also be in the blocking coalition. This requirement
ensures that the allocation is not blocked to benefit the distant inheritor a at the expense
of the more immediate inheritor a’. If every agent owns precisely one house, Definition 2

reduces to the familiar core allocation notion in a housing market.

THEOREM 1 For v € V the allocation 1**®*“* is the unique core allocation in the inheritors

augmented housing market 11°.

Proof. See Appendix. =

We are now ready to introduce our alternative lottery mechanism in the context of a

house allocation problem with existing tenants.

Core from Random Distribution: Distribute n “items”—k vacant houses and n — k in-

heritance rights associated with n—k existing tenants, to n agents uniformly at random
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(each agent receives exactly one vacant house or one inheritance right). In the generated

inheritors augmented housing market, reallocate houses to agents by executing IATTC.

We shortly call this mechanism CFRD. From the theoretical properties of its main com-
ponent, TATTC, it is not difficult to show that CFRD is strategy-proof, ex-post efficient, and

ex-post group-rational.

In our representative problem II, let A" denote the random assignment induced by

CFRD. Then,
cfrd _ |V,u,‘
Theorem 2 presents the main result of our paper. Its proof is bijective and fairly involved,

which we cover exclusively in Section 3.

THEOREM 2 Random Y-I and CFRD are equivalent. That is, for any € M,

)\rYfI(Iu) _ )\cfrd(/o'

3 The Proof of Theorem 2

In this section we provide an alternative specification of TATTC. As we proceed, we introduce
some tools, make certain observations about this alternative specification, and present four
lemmas, which help us prove Theorem 2. The proof involves the construction of a bijection
as in Abdulkadiroglu and Sénmez [1], but our construction is fairly more involved due to the

presence of existing tenants.

Recall that, in CFRD, first n items (k vacant houses and n — k inheritance rights) are
distributed to n agents uniformly at random, and then, in the generated inheritors augmented
housing market, houses are reallocated to agents by executing IATTC. In the execution of
IATTC an existing tenant is assigned a house by joining a cycle, in which the house that she
trades comes from one of two resources. It is either her occupied house, or a house that she
receives due to the item that she received in the random distribution (i.e., a vacant house

that she received in the random distribution, or a house that is accrued to her because of an
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inheritance right that she received in the random distribution). The distinguishing feature
of our alternative specification of IATTC is that, it “monitors” the potential benefits to an
existing tenant from these two resources by representing her in the exchange market with two
copies of her, one of them owning her occupied house, and the other owning the item that she
received in the random distribution. This separation allows us to construct a priority-order of
agents from the distribution of items to agents. Our construction turns out to be a bijective

mapping and leads to the proof of Theorem 2.

From a given inheritors augmented housing market I1° : < Ay, Hy, Ag, Ho, P,v >, we
construct its “ab-representation” 11" : < Ay, Hy, A%, A%, Ho, P,v > in the following man-

ner:

— We preserve the set of newcomers Ay: a € Ay owns v(a).

— We replace the set of existing tenants Ag by two disjoint sets, A% and A%: Each existing
tenant e, € Ap in I1V is now “represented” in I1"% by two distinct agents, a, € A%, who
owns v(e,), and b, € A% who owns o,. The preferences of a, and b, are the same as
the preferences of e,. Although technically a, and b, are two separate agents, they are

both to serve the interests of e;, and hence we call them the “sisters” of one another.

In the ab-representation, we refer to the agents in Ay U A%, as “a-type” agents, and to
the agents in A%, as “b-type” agents. As an illustration, we present below how inheritance

rights and houses are distributed to agents in the inheritors augmented housing market in
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Example 2 and in its ab-representation:

inheritors augmented housing market in Example 2
A N AE

a3 az asz a4 a5 Gag ar €s €9 €10 €11 €12

hi hy 410 ha hs 11 412 | 03,hs 09,19 010,%8 ©011,he 012, h7

4

ab-representation
a-type agents b-type agents
An Ap Bg

a; ay az a4 as Gg Q7 | ag a9 aip a1 a2 | bg by big bix b2

hi  he 110 ha h5 111 12 h3 19 18 hﬁ h7 0g Og 010 011 O12

We are now ready to introduce the “ab-representation specification” of IATTC, or, shortly,

IATTC?P,

TATTC?P: Given an inheritors augmented housing market I1°, construct its ab-representation
1% In T1V%, reallocate houses and inheritance rights to a-type and b-type agents by

the following iterative procedure:

Step 0,1: (b-step) Let every remaining house and inheritance right point to its
owner. Among remaining agents, let only b-type agents point. A b-type agent b, € A%,
points to her most preferred house among remaining ones if as € A, has not been
assigned a house yet, and she points to is if as has already been assigned a house.
If there exists one or more cycles, remove the agents in cycles by assigning them the

houses and inheritance rights they point to.
Step 0,r: (b-step) Same as Step 0,1. (Continue until there exists no cycles)

Step 1,0: (a-step) Let every remaining house and inheritance right point to its owner.
Now, let every remaining agent (both a-type and b-type) point. A newcomer a € Ay
points to her most preferred house among remaining ones. Of two sister agents as € A%,

and by € AY,, if neither has been assigned a house yet, let them both point to their most
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preferred house among remaining ones; if one of them has been assigned a house before,
let the remaining one point to is. There exists at least one cycle. Remove the agents

in cycles by assigning them the houses and inheritance rights they point to.
Step 1,1: (b-step) Same as Step 0,1.
Step 1,r: (b-step) Same as Step 0,1. (Continue until there exists no cycles)
Step t,0: (a-step) Same as Step 1,0.
Step t,1: (b-step) Same as Step 0,1.
Step t,r: (b-step) Same as Step 0,1. (Continue until there exists no cycles)

Stop when the procedure assigns every a-type and b-type agent a house or an inheritance
right. Then, in 11V, let the houses assigned to agents be as follows: For a newcomer a € Ay,
the house assigned to her is the house the above procedure assigns a € Ay in I11V%; and for
an existing tenant e, € Ag, the house assigned to her is the house the above procedure assigns

as € A% or by € A% (the procedure assigns a house to only one of them, the other is assigned
is).

Notice that IATTC*" proceeds just like TTC, by identifying cycles and then carrying out
the trades in cycles, but it gives precedence to the trades in cycles that involve only b-type
agents. At prior b-steps, trades are carried out in cycles that involve only b-type agents, and
when no such cycle remains, IATTC*” moves to an a-step at which it carries out the trades in

cycles that involve both a-type and b-type agents.
Two observations are useful to better understand the design of 1ATTC?P.

T Observation 1: Suppose for an existing tenant e; € Ag in 11V (v € V) it happens
that v(es) € Hy (so, e; owns two houses, v(es) and o,). Notice how IATTC and IATTC *
proceed analogously:

When IATTC is executed in 11V, at initial steps v(es) and os point to es and es points
to her most preferred house among remaining ones; when IATTC ™ is executed in 11V, at
initial steps v(es) and os respectively point to as and bs (the agents that represent es), and

as and by point to ez’s most preferred house among remaining ones.
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In IATTC’s execution in 11V, when e, joins a cycle in which she exchanges v(es) or o,
in parallel to that, in IATTC “’s execution in II"%, a, or by joins the analogous cycle in

which she exchanges v(es) or 0.

In IATTC’s execution in I1", the house that remains from e, is given to her inheritor; in
TATTC s execution in 11V, the analogous thing happens: The remaining house (v(es) or
0s) points to the remaining sister agent (as or bs); the remaining sister agent points to is; is
points to the a-type or b-type agent that represents the inheritor of es; and hence, in essence,

the remaining house is transferred to the inheritor of e,.

For v € V let u®? denote the allocation chosen by 1ATTC®® in II¥. Given Observation 1

the following lemma is evident.

LEMMA 1 TATTC and IATTC® are equivalent. That is, for any v € V,

tattc,v . abw

7

T Observation 2: In IATTC ®, at a b-step only b-type agents point (to houses or inher-

itance rights), and thus:
(i) a cycle at a b-step consists of only b-type agents and occupied houses;

(ii) a-type agents, vacant houses, and inheritance rights are part of the cycles at a-steps,

but a cycle at an a-step may also include b-type agents and occupied houses.

The separation of the steps in IATTC® as a-steps and b-steps is fundamental to our proof

of Theorem 2. In the following example we demonstrate the workings of IATTC?.

ExaMPLE 3 Consider the ab-representation of the inheritors augmented housing market in
Example 2. The table below presents the distribution of houses and inheritance rights to

a-type and b-type agents:

a-type agents b-type agents

a; ay az a4 G5 Qg Gy Qg QA9 Q1o Q11 Giz | bg by big bii b

hi hy i190 ha hs d11 412 hs i 18 e hz | og 09 o019 011 o012
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We illustrate in a series of figures below how IATTC® proceeds. While looking into the
figures, recall that remaining houses and inheritance rights point (to their owners) at both
a-steps and b-steps; remaining b-type agents also point (to houses and inheritance rights) at
both a-steps and b-steps; but remaining a-type agents point (to houses and inheritance rights)

only at a-steps. For visual ease we indicate cycles in the figures in dashed rectangles.

StepEl: NolXycles

StepR:
ijp —> as bs 0g az i12
Is \Il, I each@gen'tE]n@heEtycIéﬁls@ssigned@he
\L a; > h; S ag —> 04 itemBhe@ointsio

aio I /[\ $I\
b10$h1 ay hz/ by I ag < iy

010 < by < 011 < s i11
CEE he CH! h4>
012 > b1y > hs > as
h; —>ap,

each@gentAniheycle@sEssigned®he
itemBhe@oints@o

Step: each@gentdn@heycledsEssigned@he
a; <— i Iag ﬁ :l itemBhe@oints@o
I J
Irjf < Os as i11 ai he <— as <— ?1\4 I
is a1o S ET) > a3 > O s b1 s hs S ds

I A J

I

h7 —_ dio

THEN

a; <— ilzl each@gentln@he@ycle@s@ssigned®he
Ii 1\ itemBhe@ointsio
_— a12|

E2
I
I
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There are no cycles at Step 0,1. IATTC® proceeds to Step 1,0.

There is one cycle at Step 1,0. As prescribed by the cycle, aq,as,bg,as are assigned

hs, 09, ha, h1, Tespectively. IATTC® proceeds to Step 1,1.

There is one cycle at Step 1,1. As prescribed by the cycle, by and by, are assigned o011

and o019, respectively. IATTC® proceeds to Step 1,2.

At Step 1,2 there are two remaining b-type agents, bg and bia, who respectively point to ig
and hs. The resulting figure would be the same as the preceding figure except that the cycle

in the figure is removed. There are no cycles and thus IATTC® proceeds to Step 2,0.

There are two cycles at Step 2,0. As prescribed by the cycles, as, b2, as, as, ai1, ag, bs, a1g, ag

are assigned 012, hs, ha, hg, 111, 0s, is, 110, i9, respectively. IATTC® proceeds to Step 2,1.

Since there is no remaining b-type agent, there are no cycles at Step 2,1, and the mecha-

nism proceeds to Step 3,0.

There is one cycle at Step 3,0. As prescribed by the cycle, a; and a15 are assigned hg and

112, respectively, and the procedure terminates.

The houses the procedure assigns to a-type and b-type agents, and the implied assignments

to agents made by IATTC® in the inheritors augmented housing market, are as follows:
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Assignments of a-type agents Assignments of b-type agents

ap ay a3 a4 as G A7 Gg A9 Qi Gi11 G2 | bg by big b1y b12
hs hi o012 he hsa o3 hy o9 9 119 11 t12 | g h2 o011 O hs

Assignments of newcomers and existing tenants

a3 az a3 a4 a5 Aag a7 €g €9 €10 €11 €12

hs hi o012 he hs o0s hy 09 hy o011 010 hs

O

In what follows we introduce some tools about IATTC??, and based upon these tools we

make certain observations.

1 TOOL 1, sets defined by the order of cycle groups: In the execution of 1ATTC?
in 1% (v € V), houses and inheritance rights are assigned to a-type and b-type agents in
a well-defined order of cycle groups. Based upon this order of cycle groups, we define below

certain sets of agents, houses, and inheritance rights:

— Aj,: the set of a-type and b-type agents that are assigned a house or an inheritance right

in a cycle at Step t,r.
— Ag = A UAG, U -+ and AY = AU A}, U--- fort > 1.
— Hy,: the set of houses assigned to agents in Ay,.
— Hy=Hg,UHj,U--- and H = H/qUH; U--- fort > 1.

— I}y the set of inheritance rights assigned to agents in A}, for £ > 1. (Recall from Obser-

vation 2 (i) that in the cycles at b-steps there are no inheritance rights.)

T TOOL 2, a-blocks at an a-step: In the execution of IATTC® in 1% (v € V), we de-
fine an “a-block” at an a-step Step t,0 (¢ > 1) as an ordered list bl} (a) : (@, 0r,,bry, -+, 0x,s brys YY)
(or blf(a) : (a,y)) where
—a€ Ay N(ANUAg); y € (HYg N Hy) U Iy
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—k+1<m,<nforp=1,---,¢

— at Step t,0 a points to or,, by, points to or,, ---, and b, points to y (if bl}(a) : (a,y) then

simply a points to y).

We call a the “source” and y the “sink” of the a-block bl}(a). With some abuse of notation,

we denote the set {a, 0x,,bx,, -+, 0r,,br,,y} (or {a,y}) also by bly(a).

More simply, an a-block is a segment of a cycle that arises at an a-step in the execution
of 1ATTC®. It starts with the only a-type agent of that a-block, and ends with a vacant
house or an inheritance right owned by another a-type agent. At an a-step sinks of a-blocks
(vacant houses and inheritance rights) point to the sources of a-blocks (a-type agents), and
hence the cycles form. As an illustration, in the figure below we indicate in enclosed boxes

the a-blocks at Step 2,0 in Example 3.

Step®,0:@Ekblocks bl,¥(as)
dg %; i9
bl,Y(ag) bl,¥(ay,) bl,¥(a,)

bs < Og asl < 11 Ay |h6 a4l h,

\ d

is %|alo > i10| >Ia3 > 01 > I:)12 > h5| > | 35
bl,v(a;0) bl,"(as) bl,"(as)

The following observation summarizes our preceding discussion on a-blocks.

T Observation 3: In the execution of IATTC ® in 1% (v € V), the cycles that arise
at an a-step Step t,0 (t > 1) consist of a-blocks. The sinks of a-blocks point to the sources of

a-blocks, and hence the cycles form. So,

(Z) U blf(a) = Af,o U Hf,o U ]go;'

a€AY )N(ANUAY)
(i) and for a,a’ € A}y N (Ay U A%) and a # o, bl (a) N blY(a’) = 0.
The following is another simple observation pertaining to a-blocks, which later proves

useful.

T Observation 4: Suppose we are given the list of sets (A;?’O N(Ay U A‘IE));,:1 but we do

not know v € V. (That is, we are given the sets of a-type agents that are assigned houses
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at Step 1,0, Step 2,0, ---, Step t,0 when IATTC® is executed in I1¥%.) Then, we can
determine

(i) to which house or inheritance right a remaining agent points to up to Step t+1,0;

(ii) the assignments made by IATTC ®* up to Step t+1,0;

and we can identify

(i) the a-block blj(a) for any a € A%, N (Ax U AL) and j € {1,--- ,t}.

Explanation: The execution of IATTC ® in II"® at Step 0,1, Step 0,2, and so on, is
independent of v. Then, to which house or inheritance right a remaining agent points to, and
the assignments made, can be determined up to Step 1,0. For the subsequent steps, we can
iteratively apply the following arguments for j=1,- - - t:

Given the assignments made prior to Step j,0, we know to which house or inheritance
right a remaining agent points to at Step j,0. So, for any a € Aj, N (Ax U A%), we can
identify bl}’(a). But then we can also determine the assignments made at Step j,0: FEach
agent in an a-block is assigned the house she points to in that a-block.

Given the assignments made at Step 5,0 and prior to it, the execution of IATTC ® in T1V%
at Step j,1, Step 3,2, and so on, is independent of v. Then, to which house or inheritance
right a remaining agent points to, and the assignments made, can be determined for Step 7,1,

Step 7,2, and so on.

t TOOL 3, chains at an a—step: Consider the execution of TATTC?*" in [1"% (v € V).
The elements of AY,; U Hy, o U I, (t > 1), which form the cycle(s) at Step t+1,0,
form at Step t,0 what we call “chains.” Formally, a chain at Step t,0 is an ordered list

chy(z1) : (T1, 91, ,Tq,yg) (t > 1, ¢ > 1) where
- Tp € A§+1,0 and y, € H§)+1,0 U ]Z)—i-l,o forp=1,---,¢;

— at Step t,0 7 points to a house or an inheritance right in Hy U I}y; y1 points to z; (i.e.,

T1 OWDS Yy ); T2 points to yi;- - - ; y, points to x, (i.e., z, owns y,);

— there exists no z,11 € A}, |, who points to y, at Step t,0.
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We call 21 the “head” of chy(z;) and y, the “tail” of chf(x1). With some abuse of notation,

we denote the set {x1,y1, -+, x,,Y,} also by chf(x1).

More simply, a chain at Step t,0 is a connected (by pointers) elements of A7, , U H{,; U

IY 1 o- At Step t+1,0, the heads of chains at Step t,0 point to the tails of chains at Step t,0,

hence the cycles form. As an illustration, in the figures below we indicate in enclosed boxes

the chains at Step 1,0 in Example 3, and how they form the cycles at Step 2,0.

Stepll,0:Xhains
h,%(a) ch,"(bg) ch,"(ay) ch,¥(a)

C
i1 > 3y \l Og > b8| |39 <— g | A <— isl
L = v X!

CH > h; > dg > Og > by > h a > hy

Iilz > by, > hs > as—> hy >
/P ch¥(ay,)

Step®,0:HowRhethains@tBteprl,0FormRycles ch;"(ag)
a i ag ——> i
, 7 <— 2 ch,¥(a.) 9 < 9
Ch1 (bg) \l/ Ch1v(3s) 1\911
|b8 Og | | CH i11| aig he ay h,

ig alOl \l i10 33| > |01 by, > }/15 as

ch,"(ay,) ch,(a,) |
hy —> ay,

Notice that at Step t,0 (¢ > 1) the head of a chain, which by definition points to a house
or an inheritance right, indeed always points to a house: By construction of 1ATTC®?, an
inheritance right ¢, is pointed by only one agent—a, or by, whoever is assigned later. But if
the head of a chain at Step t,0 points to an inheritance right, it means she is not assigned
that inheritance right, which would be a contradiction. (As an illustration, notice that in the

second preceding figure all heads of chains point to houses.)
The following observation summarizes our preceding discussion on chains.

T Observation 5: In the execution of IATTC® in 11>% (v € V), let X be the set of

heads of chains at Step t,0 (t > 1). Then,
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(i) a head of a chain x € X points to a house in HYy at Step t,0, and to a house or an
inheritance right in Hy\, o U I7 o at Step t+1,0;
(ii) an agent a € A,/ X points to the same house or inheritance right in Hf , (UI{,

at Step t,0 and Step t+1,0.

For the chains at Step t,0, at Step t+1,0 their heads point to their tails, and hence the

cycles at Step t+1,0 form. Then,

(iii) UX chi(z) = Agﬂ,o U Hf+1,0 U ]tv+1,0;
S

() and for x,a’ € X and x # 2, chi(x) Nchy(a') = 0.

From the head to the tail of a chain, we call the a-type agent ordered first the “a-head” of
the chain, and the a-type agent ordered last the “a-tail” of the chain. For instance, looking
into the second preceding figure above, the a-head and a-tail of ch{(a;1) are respectively aj;
and as. Looking into that figure, also note that in a chain (i) the head and a-head can be
the same (e.g., chy(a11)); (ii) there may be only one a-type agent and so its a-head and a-tail
can be the same (e.g., ch}(a3)); (iii) there may be no a-type agents, in which case we call it

an “empty chain” (e.g., chy(bg)).

I TOOL 4, the chain-order o), of a-type agents

For v € V, the “chain-order” oY, : AyUA% — {1,2,--- ,n} of a-type agents is a bijection

that orders a-type agents according to the following three rules:

Chain-order Rule 1: In the chain-order op,, order a-type agents in Aj, N (Ay U A%)
before a-type agents in A5, N (Ay U A%); order a-type agents in A3, N (Ay U A%) before

a-type agents in Az, N (Ayx U A%); and so on.

Chain-order Rule 2: In the chain-order oy, order a-type agents in A7, N (Ay U A%)

in order of the indices of vacant houses and inheritance rights that they are assigned at v.

Chain-order Rule 3: In the chain-order o}, order the a-type agents in A{ ;N (Ay U
A%)) (t > 1) in the following manner: Consider the chains at Step t,0. Order the a-type

agents in a non-empty chain from its a-head to its a-tail, consecutively. Order non-empty
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chains in order of the indices of vacant houses and inheritance rights that their a-tails are

assigned at v.

As an illustration, consider the execution of IATTC®® in the ab-representation of the

inheritors augmented housing market in Example 3:

By Chain-order Rule 1, in oY, the a-type agents assigned at Step 1,0 (i.e., aj,as,ag) are
ordered before the a-type agents assigned at Step 2,0 (i.e., a1, a4, as, a10, ag, as, ag), who are

ordered before the a-type agents assigned at Step 3,0 (i.e., aio, az).

By Chain-order Rule 2, in o}, the three a-type agents assigned at Step 1,0 are ordered
as aj, as, ag. (Note that aj,as, ag own respectively hq, ho, hs, whose indices are respectively

1,2,3)

By Chain-order Rule 3 and looking into the second preceding figure above, the order of
non-empty chains at Step 1,0 is ch¥(a11), chy(a1o), chy(ag), chy(as),chi(as) (a-tails of these
chains own respectively hs, is, i9, 110, 711; indices are respectively 5,8,9,10, 11), and hence the

chain-order of a-type agents in A3 is a1y, as, as, axo, ag, az, as.

The figure below shows the chains at Step 2,0 in Example 3, formed by the elements of

Step®,0:&hains

3y <— ip dg 2 ig
ch,'(a;)
bg Og as i11 an he a4 h,
\’ 1
ig > 3djg > gp > 33 > Oy > by, > hs > 35
ch,'(ay,) /P
hy —> ayp,

By Chain-order Rule 3 and looking into the preceding figure, the order of non-empty
chains at Step 2,0 is chj(a12), chl(ar) (a-tails of these chains respectively own hr, i19; indices

are respectively 7 and 12), and hence the chain-order of a-type agents in A3 is a1», ar.

Therefore, the chain-order of a-type agents that we obtain in Example 3 is:
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Och a1, a2, ag ai1, A4, 45, A10, a9, A3, A6 Q12, a7
—— S——

-~

AN (AyUAE) AN (AyUAS) A3 (Ay U A)

I TOOL 5, the chain priority-order f! of newcomers and existing tenants: For
v € V, from the chain-order 0, of a-type agents, we derive the “chain priority-order” f4 € F
of newcomers and existing tenants in a straightforward way. Simply set f% (a) = o2, (a) for

a € Ay, and f} (es) = 0% (as) for e; € Ap.

For instance, the chain order given above, and the chain priority-order derived from it,
are as follows:

v .
O - G1,0ag,as,0a11,04,0s, a1, ag, A3, e, @412, A7

v .
ch - Q1,02,€s8,€11,04,0s, €10, €9, a3, ag, €12, A7

Observe that fY is precisely the same priority-order as the one considered in Example 1.
Also, recall that the allocations chosen in Example 3 by 1aATTc?", and in Example 1 by the

Y-I mechanism defined by f},, are the same. Lemma 2 states that this holds in general.

LEMMA 2 For anyv €V,

ab,v Y-I, :»Jh

Pt = p

Proof. It is plain to see that the lemma holds once the following observation is made.
Considering the execution of the Y-I mechanism defined by f% in II, and the execution of
IATTC® in I1"%, a loop in the former one corresponds to a cycle at a b-step in the latter
one, and an out-of-loop assignment made in the former one corresponds to an a-block at an

a-step in the latter one. We elaborate below.

In the execution of the Y-I mechanism defined by f2 in II, let it be the turn of agent
a € A to request a house. Also, in the execution of IATTC*" in 1", let Step t,0 be when the
a-type agent that represents a is assigned a house or an inheritance right. When a requests

a house, one of the following five cases occurs:

(1) Agent a requests a house that triggers the formation of one or more loops (if a is an

existing tenant, she may also be part of one of these loops). In the execution of TATTC* in
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I1"% these loops correspond to certain cycles that arise at b-steps prior to Step t,0: The
agents in the cycles are the b-type agents that represent the existing tenants in the loop, and

they are assigned the same houses at p®v and p¥ —17/en.

(2) Agent a requests a vacant house h € Hy. In the execution of TATTC? in I1V% this
case corresponds to the a-block bl?(a) : (a, h) at Step t,0. Agent a is assigned h at both ;%
and pY 1o,

(3) Agent a requests the occupied house os of e, € Ap, who has already been assigned
a house before. In the execution of TATTC*, this case corresponds to the a-block bl?(a) :
Y—Lfy

ch

(a, 04, bs,%s) at Step t,0. Agent a is assigned o, at both p®* and u

(4) Agent a requests the occupied house o, of e,, € Ap; e,, moves to the top of
the remainder of the priority-order and requests the occupied house o, of e,, € Ag;
*; e, moves to the top of the remainder of the priority-order and requests a vacant
house h € Hy. In the execution of IATTC® in 1", this case corresponds to the a-block
bly(a) : (a,05,,bxy,++ ,0n,, b, h) at Step t,0. Agents a,er,, - ,er, are assigned the houses
Omys***  On,, B, Tespectively, at both p®¥ and p~1Jen,

(5) The same thing happens as in (4) except that e, requests the occupied house o, of
es € Ap, who has already been assigned a house before. In the execution of 1ATTC®® in
I1*?, this case corresponds to the a-block blf(a) : (a,0x,, by, + , On,, br,, 05, bs, is) at Step
t,0. Agents a,er,, -+ ,er, are assigned the occupied houses or,, -, 0r,,0s, Tespectively, at
both p®* and p¥ /. m

The following lemma states that if the executions of IATTC® in two inheritors augmented

housing markets induce the same chain priority-order, then a-type agents join cycles at the

same a-steps for the two inheritors augmented housing markets.

LEMMA 3 For vy, vy € V if fii = fif, then Ajy N (Ax U AL) = A5 N (Ax U A%) for every

C

t>1.

Proof. If f3} = f%, then p®" = ;%2 (by Lemma 1 and Lemma 2). Also, 0} = 0"
(by definition). Let 0 : {1,2,--- ,n} — {1,2,--- ,n} be the bijection such that o} (ass)) =
07 (as(s)) = s for s =1,2,--- ,n. The proof is by induction.

Base Case:
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Suppose ATy N (Ay U AL) # A7 N (Ay U A%). W.lo.g. let

AToN(AvUAL) = {as), ase), -, asa) )

AToN(AvUAL) = {asw), as@), -, Gsa), As(ar1), - 5 as@) } (e, B> a>1).

We present our arguments in four steps:

(1) Show that bl* (as(s)) = bly*(ases)) for s =1,2,--

The execution of 1IATTC* prior to Step 1,0 is independent of v; and v, (i.e., the same
assignments are made prior to Step 1,0). Then, for II"* and II"? the same a-type agents,
b-type agents, houses, and inheritance rights remain at Step 1,0, and remaining a-type and
b-type agents point to the same houses and inheritance rights. So, bl}" (as(s)) = bl;?(as(s)) for
s=1,2,--- ,«

Let bl}*(as(a+1)) © (a5a+1), Orrs brys o+ 5 0nyy Uy y) Where k+1 <, <nforp=1,--- ¢
and y € Hy U 1. (The arguments are essentially the same if bl;*(asa+1)) : (@5a+1),¥))-

(2) Show that y ¢ Hi* U I1:

Since y € bl1*(as(a+1)), We get y & bli?(ases)) for s =1,--- ,a (by Observation 3 (ii)), and
hence y ¢ bl}"(as()) for s = 1,--- ,a. Then, y ¢ H), U I}, (see Observation 3 (i)). Since
y € Hy U, we get y ¢ Hy, also for 7 > 1 (by Observation 2 (i)). Then, y ¢ H;* U I}

(3) Show that bl3' (asa+1)) = bli*(asas1)):

From bl}*(as(a-+1)) we know that for II"2 at Step 1,0 as(a-1) points to ox,; 0, points to by, ;

; and b, points to y. Since the execution of IATTC* prior to Step 1,0 is independent of
vy and vy, also for II"* at Step 1,0 as(a41) points to oy, ; oy, points to by ; - - -; and b, points
to y. Since y ¢ H)" U I}, for TI"* this sequence remains unaffected until Step 2,0. Then,
bly' (as(a+1)) = by (as(at1))-

(4) Find a contradiction:

Since in A3y N (Ay U A%) the a-type agent who comes first in oy} is asa+1), at Step 1,0
a5(a+1) should be the a-head of a non-empty chain. In this chain either as41) is the head,

or a b-type agent in bly' (as(a1)) is the head, say b, for some j € {1,2,--- ,q}.

If as(a+1) is the head of the chain, then at ;**** she is not assigned her most preferred
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house in H \ Hg'. But for IT** since as(,+1) is assigned at Step 1,0, at p**** she is assigned
her most preferred house in H\ H? (= H\ H{"), which contradicts that pvt = vz,
If b, is the head of the chain, then from
b1y (@5(at1)) * (@n(at1)s Omys Drys o+ 5 Oy Uy ),
in the execution of 1ATTC?" in II%2, br, points at Step 1,0 to o, (or y). From the fact
that in the execution of IATTC®® in II* at Step 1,0 br; is the head of a chain, by Observation
5 (i) she points at Step 1,0 to a house not in bl3' (ar(at1)) (= bl7?(@s(a+1)), Which contradicts

that for I1"* and I1"? at Step 1,0 remaining agents point to same houses an inheritance rights.

Inductive Step: (The arguments are exactly parallel to the base case. For the sake of

completeness, we reproduce them below, where changes have been made as necessary).
Suppose A7 N (Ay U Ag) = A7 N (Ay U Ag) for j=1,--- ¢ but AL, o N (Axv U Ag) #

At-{—l o N(AvUAE) = {a5 » A5(141) 7a5(a)}7

Ao N (AN UAE) = {asqy; asasn)s 5 06(a)s As(at1),  + »as(p)} (e, B> a >1).

We present our arguments in four steps:

(1) Show that bl}}(ass)) = bli% (as)) for s=11+1,---

By Observation 4, for II* and II*? the same assignments are made by 1ATTC*® prior to
Step t+1,0; the same a-type agents, b-type agents, houses, and inheritance rights remain at
Step t+1,0; remaining a-type and b-type agents point to the same houses and inheritance
rights; and bly}, (as(s)) = bl;3, (ass)) for s =1,1+1,-

Let b2 1 (as(a+1)) © (@s(a+1), Onys Orys - - ; Oy Uy y) where k+ 1 <m,<nforp=1,--- ¢
and y € Hy U 1. (The arguments are essentially the same if b/, (as(a41)) : (@5(at1):Y))-

(2) Show that y ¢ H{}, U I} -

Since y € bl;%(as(a+1)), We get y ¢ bl;% (ass)) for s = 1,--- ,a (by Observation 3 (ii)),
and hence y ¢ bl;},(ass)) for s = 1,---,a. Then, y ¢ H{}, U I}, o (see Observation 3
(i)). Since y € Hy U I, we get y ¢ H;},, also for r > 1 (by Observation 2 (i)). Then,

y & Hf UL .
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(3) Show that bl}y(as+1)) = bli%, (asat1)):

From bl}% | (a5(a41)) we know that for I1"2 at Step t41,0 as(a+1) points to ox,; o, points to
bry; -+ -5 and by, points to y. Given that A7, N (AyUAg) = AN (AxvUAg) for j=1,--- ¢
the execution of IATTC?® prior to Step t+1,0 is the same for IT** and I1*? (see Observation 4).
Then, also for I1** at Step t+1,0 a1y points to oy, ; or, points to by ; - - -; and b, points to
y. Since y ¢ H/}, U I}l ,, for TI" this sequence remains unaffected until Step t+2,0. Then,
blto(as(a+1)) = bli21 (as(art))-

(4) Find a contradiction:

Since in A}, N (Ay U A%) the a-type agent who comes first in o} is asa+1), at Step
t+1,0 as(a+1) should be the a-head of a non-empty chain. In this chain either as1) is the
head, or a b-type agent in bl;} y(as(+1)) is the head, say b, for some j € {1,2,---,q}.

If a5(a+1) is the head of the chain, then at 1?1 she is not assigned her most preferred house
in H\ (Hy"UH{'U---UH{"). But for IT*2 since ag(q+1) is assigned at Step t+1,0, at p®>*2 she is
assigned her most preferred house in H \ (Hy?UH{?U---UH;?) (= H\ (Hy*UH*U---UH;")),

abvr __ ,,ab,va

which contradicts that p
If by, is the head of the chain, then from
blfil(aé(aﬂ)) : (an(aﬂ)» Oryy Uxyy* v 5 Onys Uy s Y),
in the execution of 1ATTC?® in I1%2, br, points at Step t+1,0 to o, , (or y). From the
fact that in the execution of 1IATTC*" in II"* at Step t+1,0 br; is the head of a chain, by
Observation 5 (i) she points at Step t+1,0 to a house not in bl;},(ar(a+1)) (= b3 (as(a+1))s
which contradicts that for I1"* and II"? at Step t+1,0 remaining agents point to same houses

an inheritance rights. m

LEMMA 4 If [} = f.} forvi,vs € V, then vy = vs.

Proof. Let fi' (= f.?) be given but not v;. By Lemma 3 f! uniquely identifies the sets
AN (AnUAL) (= Ay N (Av U AE)) fort =1,2,--- (i.e., to identify them we do not need
vy and vg). Also, from f! we can derive 0%} (= 0%;) (by definition). We will show that, from
Ao N (Av U Ag) for t = 1,2,--- and oy}, we can uniquely identify v; (and hence also vy),

which proves the lemma.
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Let 6 : {1,2,---,n} — {1,2,---,n} be the bijection such that oy} (asw)) = s for s =
1,2,--- ,n. By Observation 4 (ii), from the sets A/ N (Ay U A%) for t = 1,2,--- we can
determine the a-blocks at every a-step. The proof is in two parts.

(I) Let the a-blocks at Step 1,0 be

bl?fl(aa(n) : (%(1),"',@1)7

bqul(aa(z)) : (aé(z),"',?f),

blijl (a(;(a)) . (ag(a), e ,ya).

By Chain-order Rule 2, at v; the a-type agents as),- - ,as,) are assigned the vacant
houses and inheritance rights y!,--- ,4“ in order of the indices of vacant houses and inheri-
tance rights. Since this is well-defined, we can uniquely identify how y!,-- -,y are assigned
to asy, - -+, as(a) at v1.

(IT) For ¢ > 1 let the a-blocks at Step t+1,0 be

bl (asime))  © (@sme)s =+ > ¥™),
bl:i_l(a/(j(m0+]_)) . (aé(m0+l)7 o 7ym0+1)7
DI (@sem-1) ¢ (Gsgmy1y,- - y™ )

bl (asmy) o (@smy)s o5 y™)
blf_}_l(aé(mq—l)) : (aﬁ(mq—l)a e 7me71>

DIt (asomg) ¢ (@smg)s - y™)

bt (ase) = (as@), -,y

(i.e., 1 < m0<m1<~~~<mq§5)
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such that asime), - , Gs(m,) are a-heads of chains at Step t,0. (By Observation 5 (i), we
can determine the heads of chains at Step t,0. They are the agents in A;},, who point
to a house in Hy, at Step t,0, and to a house or an inheritance right in Hy, U I}, at
Step t+1,0. Then we can also determine the a-heads of chains at Step t,0. An a-type agent
a € Aty o N (Ax U AE) is the a-head of a chain at Step t,0 if an agent in bl{}, (a) is the head

of a chain at Step t,0.)

Then, the a-type agents as(), " - , Gs(m,—1) are in the same chain at Step t,0, and at vy,

by Chain-order Rule 3, y™*! is assigned t0 as(n,), ¥y is assigned t0 asimg+1)), =+, and

y™ ! is assigned t0 ag(m,—2). Similarly, asum,), - , @sms—1) are in the same chain at Step t,0,

mi1+2

and at vy, by Chain-order Rule 3, y"™ ! is assigned to as(m,), ¥ is assigned to @s(m,11)),

.-+, and y™ ! is assigned to a§(my—2); and so on.

Then, at v; the a-tails of chains at Step t,0 (i.e., asum,—1), @s(ma—1)," " » As(mg—1)> G5(3))
are assigned the remaining vacant houses and inheritance rights (i.e., y™°,y™, .-+, y™). By
Chain-order Rule 3 these houses and inheritance rights are assigned to as(m, 1), @s(ma—1), ** * > A5(mq—1)> @5(8)

in order of their indices. Since this is well-defined, we can also uniquely identify how

ymo ym .. Jy™e are assigned to Ag(m1—1), As(ma—1)s " " * » A6(mg—1), s(g) at v1. W
Given Lemma 2 and Lemma 4 the proof of Theorem 2 is easy.

Proof of Theorem 2. Consider the mapping f.;, : V — F such that f.,(v) = f, forv e V.
By Lemma 4 f,, is an injection. By the facts that f., is an injection and |V| = |F| = n!, fo,

is a bijection. By Lemma 2 and the fact that f., is a bijection, we get ™Y 1 = X" m

4 Conclusion

We studied the mixed ownership case of the indivisible resource allocation problem, also
known as the “house allocation problem with existing tenants.” A mechanism due to Ab-
dulkadiroglu and Sénmez [2] for this class of problems is random Y-I, which is strategy-proof,
ex-post efficient, and ex-post group-rational. We proposed in this context a market-based
alternative mechanism, CFRD, which can also be shown to be strategy-proof, ex-post efficient,

and ex-post group-rational. There are interesting methodological and theoretical parallels
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between CFRD and the Walrasian Mechanism from equal-division, the popular rule used in
divisible resource allocation problems. We obtain that CFRD and random Y-I are equivalent
mechanisms. In the public ownership case, Abdulkadiroglu and Sénmez [1] showed the equiv-
alence of “random-priority” and CFRE. Our result generalizes theirs to the mixed ownership
setting. The equivalence results in our paper and in theirs expose that, although this is
not explicit by formulation, there is a hidden methodological analogy between the popular
divisible and indivisible resource allocation mechanisms in the literature. These mechanisms

also have interesting theoretical similarities.

In two recent papers, Pathak and Sethuraman [12] and Carroll [6] show the equivalence
of random-priority to certain mechanisms that execute TTC based upon randomly generated
“inheritance tables.” The key component of CFRD, IATTC, however, executes based upon
randomly generated “inheritor relationships between agents.” This innovation promises a
new line of research. Future research papers may study how to execute IATTC in problems
where an object can be assigned to multiple agents (e.g., in the school choice setting), or when
an existing tenant may initially own multiple houses. This line of research may potentially
lead to the design of other IATTC based lottery mechanisms that are equivalent to variants

of random Y-I. The tools that we introduced in Section 3 may become useful in these efforts.
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APPENDIX
Proof of Theorem 1.

While IATTC operates on I1V, cycles appear in an order. First, a group of cycles form—call
Group 1; agents in these cycles are assigned the houses that they point to; then they depart
from the market and houses that remain are inherited by those agents that are still in the
market. Then, a second group of cycles forms—call Group 2, and the execution similarly
proceeds.

Let A and H be partitioned into {A,}!_, and {H,}’_, according to cycle groups: A, and
H are respectively the sets of agents and houses that join a cycle in Group s for s =1,--- T

Let #: AUH — {1,2,--- T} be the function such that #(z) = s if x € A, U H,. (It
specifies to which group of cycles a house or an agent belongs.)

Let Points : A — H be the function such that for an agent a € A, Points(a) is the house

that she trades (the house that points to her) in the cycle that she joins. Clearly,

#(a) = #(Points(a)) Va € A.

The proof is in two parts:
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(I) for any p € M if pu # =¥, then p is not a core allocation in II':

Suppose p # p'@¢? but u is a core allocation in I1°.

If pu(a) # p't*e?(a) for an agent a € Ay, then a finds u(a) less preferable than p'*'?(q)
(because ;%% (a) is a’s most preferred house in H). Then y is clearly blocked by the four-
tuple < Ay, Hy,0,Claim > where 0(a) = p'®“v(a) and Claim(a) = Points(a) for every
a € A;. Then we should have pu(a) = pte?(a) for every a € A;.

Given that p(a) = pe?(a) for every a € Ay, if u(a) # p'**?(a) for an agent a € A,,
then a finds ju(a) less preferable than 1V (a) (because p'®*?(a) is a’s most preferred house
in H\ H, and pu(a) € H\ Hy). Then p is clearly blocked by the four-tuple < A; U Ay, H; U
Hsy, 0, Claim > where 0(a) = ;'*"¥(a) and Claim(a) = Points(a) for every a € A; U A,.
Then we should have p(a) = p?“¥(a) for every a € Ay U A,.

If we iterate similarly we conclude that p = p*®?, which is a contradiction.

(IT) piettev is a core allocation in I1V:

Suppose p"" is blocked by a four-tuple (C, H, 6, Claim).
While 1ATTC operates on 11V, whenever an agent is assigned a house, that house is her

most preferred house among remaining ones. Therefore, for a € A if 6(a) R, """ (a), then

#(0(a)) < #(u'"(a)), and if 0(a) P, p*™""(a), then #(6(a)) < #(u'*"*“"(a)). Then,

Y #(h) <Y #(a). (%)

heHC acC

By Definition 2 (ii), agents and houses in CUH® can be partitioned into subsets according
to the houses that they claim. Such a subset consists of a list of agents a',a? ---,a™ C C

and a list of houses h', h2,--- ,h™ C H® where

U Claim(a) = {h',--- "™},

ac{al,-,am}

and which adopts one of the following three structures.

STRUCTURE 1: a! is the inheritor of a2, a? is the inheritor of a3, ---, a™ ! is the
inheritor of a™; a® owns h', a® owns h%, ---, a™ ! owns A2, a™ owns A" ! and h™. A

graphical representation, in which agents point to their bequeathers and to the houses they
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own, is as follows:

31% aZ am% am
hl hm hm hm

While IATTC operates on 1", in the cycles that they join, a™ trades a house in {A™~, ™},

a™ ! trades a house in {R™"2 h™~1 h™} ... a? trades a house in {h',---  h™}. Then,

{Points(a®), Points(a®),-- - , Points(a™)} C {R*,h? --- ,h™},

and let b = {h', 1%, --- W™} \ {Points(a®), Points(a®),- - , Points(a™)}.

Then a' trades in the cycle that she joins either h or a house that she owns which is not

1

in H (in which case a! is an existing tenant who trades in that cycle her occupied house,

which is not in HY). If the former holds, we get

U Points(a) = {h',--- h™},

a€{al, - ,am}

and so Z #(h) = Z #(a).
he{hl,- hm} ac{al, - ,am}
If the latter holds, then % joins a cycle after a! joins a cycle, and hence #(h) > #(al).

Then, we get

S #h) > D #(a).

he{hl, - ,hm} acf{al, - am}

In either case, for Structure 1, we get

Yoo #m= D> #a).

he{hl, - hm+1} ac{al, - am}
STRUCTURE 2: a! is the inheritor of a2, a? is the inheritor of a3, ---, a™ ! is the
inheritor of a™; a' owns h', a® owns h2, ---, a™ ! owns A1, and @™ owns h™. A graphical

representation, in which agents point to their bequeathers and to the houses they own, is as
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follows:

alﬁ a a —> a
\l/ 2 mel m
hl \kz hm \rl]/m

While 1ATTC operates on I1”, an agent joins a cycle before or at the same time as a house
that she owns. Then, #(h®) > #(a®) for s = 1,2,--- ,m. Note that, according to Definition

2, agents under this structure claim the houses that they own.

STRUCTURE 3: a'! is the inheritor of a2, a? is the inheritor of a®, ---, a™ ! is the

m

inheritor of a™, @™ is the inheritor of a!; a' owns h!, a? owns h?, ---, a™ owns h™. A

graphical representation, in which agents point to their bequeathers and to the houses they

own, is as follows:

h" <— am/ \ 2
\

hm

By the same argument as in Structure 2, we get #(h*) > #(a®) for s =1,2,--- k. Note
that, according to Definition 2, an agent under this structure does not necessarily claim the

house that she owns.

From the arguments in Structure 1, Structure 2, and Structure 3, we get,

which contradicts (¥%). =
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