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Abstract

This paper studies probabilistic mechanisms that allocate indivisible objects to

agents by hierarchical exchange using the top-trading cycles algorithm. The main

result of this paper is a general technique for proving that seemingly different proba-

bilistic mechanisms are in fact equivalent. This approach simplifies and unifies several

equivalence results in the literature. The same technique is used to generalize these

results to mechanisms in which the priority structure for each object is given by a tree

(instead of a linear ordering of the agents).

1 Introduction

The problem of allocating a finite number of indivisible objects to a set of agents has been

studied extensively, since the pioneering work of Shapley and Scarf [15], and has served as

a useful model in many real-world settings such as the assignment of schools to students [1]

and the design of kidney exchanges [12]. The early literature was mostly on two distinct

models: the housing market model of Shapley and Scarf in which each agent was endowed

with an object; and the house allocation model, studied by Hylland and Zeckhauser [7] in

which there were no endowments. There is by now a well-developed literature on each of

these models as well as on a hybrid version, first proposed by Abdulkadiroğlu and Sönmez [2],

in which some—but not all—agents are endowed with objects. We recommend the recent

surveys of Sönmez and Ünver [17] for an overview of the literature on allocating indivisible

objects, and of Pathak [10] for applications of these ideas to student placement.
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In this paper our focus is exclusively on ordinal settings in which agents submit strict

preference orderings over the objects. Shapley and Scarf formulated their housing market

model in this setting, and described the top-trading cycle (TTC) algorithm (attributed

to Gale) that computes a unique reallocation of the objects to the agents. They further

showed that this allocation is in the core of the natural cooperative game associated with

this problem, and also that it can be sustained as a competitive equilibrium. Roth and

Postlewaite [14] later established the uniqueness of the core, and Roth [13] showed that the

core mechanism is strategyproof (submitting true preference orderings is a dominant strategy

for each agent). Bird [3] generalized this result and showed that the core is in fact group

strategyproof (submitting true preference orderings is a dominant strategy for any group of

agents).

For the house allocation problem, a fundamental mechanism in this setting is the Ran-

dom Priority (RP) mechanism (see Zhou [19], and Abdulkadiroğlu and Sönmez): a random

ordering of the agents is drawn, and the agents are invited to choose objects in this order.

The resulting allocation (for any given ordering) is Pareto efficient, so the outcome of the

mechanism can be thought of as a lottery over Pareto efficient assignments. It is easy to see

that RP is strategyproof and treats equals equally: agents with identical preference orderings

receive identical (probabilistic) allocations. The literature on these problems evolved fairly

independently until Abdulkadiroğlu and Sönmez thought of the following mechanism for the

house allocation problem: endow each agent with a random object, each possible endowment

of the objects to the agents equally likely; and find the unique reallocation given by the TTC

algorithm. They called this the random endowment (RE) mechanism. A natural question is

to understand the relationship between RP and RE. Somewhat surprisingly, Abdulkadiroğlu

and Sönmez showed that these mechanisms are equivalent: given any preference structure

for the agents, RP and RE lead to the same probability distribution over Pareto efficient

assignments. Since their result, there have been a number of papers that establish the equiv-

alence of seemingly different mechanisms for a variety of models assignment models: For

example, Pathak and Sethuraman [11] show that in assigning students to schools (using the

TTC mechanism), the mechanism in which all the schools use the same (random) priority

ordering of the agents is equivalent to the mechanism in which every school generates its

priority ordering randomly and independently.

Our paper is inspired by a recent paper of Carroll [5] that puts forth a general frame-

work that subsumes many (but not all) of the known equivalence results in the literature.

Specifically, Carroll introduces the notion of a priority framework in which the priority or-

derings of the objects are specified in terms of “roles,” which are placeholders for the agents.

The priority framework is instantiated by picking a bijection from the set of roles to the

set of agents, resulting in a priority ordering of the agents for each object. Carroll showed
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that if the bijection from roles to agents is chosen uniformly at random, and if the TTC

algorithm is used to compute the allocation, then the outcome—a probability distribution

over matchings—is independent of the priority framework! The equivalence of RP and RE

follows because each of them can be modeled by a fixed priority framework. Carroll also

introduced a more general priority structure for the objects by using an exogeneous partition

of the agents into groups. There is a fixed priority structure for the objects in terms of the

given groups, but each group is free to order its roles any way it likes across the various

objects. As before, the roles of each group are instantiated by a random bijection to the

agents in that group, and this is done independently for each group. Carroll showed that

the final outcome is the same regardless of how each group orders its roles across the various

objects. In proving his result, Carroll observed that the straightforward counting approach

of Pathak and Sethuraman does not easily extend to this model. Nevertheless Carroll used

a combination of techniques and gave essentially a bijective technique to prove his main re-

sult. In another recent paper, Ekici [6] proved a new equivalence result in the hybrid model

where some (but not all) agents are endowed with objects. For this model, Ekici showed

the equivalence of a natural random priority mechanism, first proposed by Abdulkadiroğlu

and Sönmez, to a variant of the random endowment mechanism in which some agents may

be endowed with multiple objects and others none; agents of the latter sort are nonetheless

granted an “inheritance” right. We defer the details of this mechanism to Section 4.1, but

note that this result is neither subsumed by Carroll’s general model, nor by a similar looking

equivalence result of Pathak and Sethuraman. Ekici’s proof is again bijective.

Motivated by these recent equivalence results we describe a general technique to prove

the equivalence of two mechanisms (Section 3). Our approach is related to that of Pathak

and Sethuraman: like that approach we rely on induction (on the number of agents), and

express the outcome of a mechanism in terms of its outcome on smaller instances. Given

two mechanisms, we focus on those terms that appear in one but not the other, and argue

that the overall contribution of such terms is zero. The key difference is in the way this last

fact is established. Pathak and Sethuraman used a counting argument to do this, whereas

we replace this counting argument with a simple bijection. The advantage is that one can

now apply this argument more broadly. In particular, the results of Carroll, Ekici, and

generalizations of these results can all be established easily using our general technique, see

Section 4. In Section 5 we show how the same technique can be used to prove equivalence

results when the priority structures form an inheritance tree in the sense of Papai [9]. Our

main contribution therefore is a unified approach that sheds light on all the equivalence

results in the literature, in addition to suggesting new ones.
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2 TTC Mechanisms

Let A denote the set of agents and S the set of objects, with |A| = |S|. Each agent has a strict

preference ordering over the objects. Each agent wishes to be assigned exactly one object,

and each object can be assigned to at most one agent. Our focus shall be on the family of

algorithms called top-trading cycles (TTC) invented by Gale and first described by Shapley

and Scarf [15]. This algorithm operates in phases; At the beginning of each phase, there is

a set of (remaining) agents, a set of (remaining) objects, and each object has a top-priority

agent (among the ones that remain). Consider the graph with a node for each (remaining)

agent, and an arc from node i to node k if agent i’s most preferred object is one for which

agent k has top priority. Note that self-loops are possible: an arc (i, i) exists if agent i has

the highest priority for his most-preferred (remaining) object. This graph, referred to as

the TTC graph, must have a cycle c (which may be simply a self-loop), because every node

has out-degree 1 and there are finitely many nodes. Every agent in c is matched with the

object he most prefers among the ones that remain; the agents in c along with their matched

objects are removed from the problem, and the top-priority agent for each remaining object

is updated if necessary. We will usually refer to this process as clearing the cycle c. If any

agent (equivalently object) remains, the next phase starts in which the same algorithm is

applied to the remaining objects and agents; Otherwise, all the agents have been matched

and the algorithm terminates.

Note that we talk of the TTC family of algorithms rather than the TTC algorithm because

the final allocation depends on how the top priority agent for each object is specified. Thus

the mechanisms we discuss differ in how the agents are prioritized for each object. The

following two examples, which are well-known mechanisms in the literature, give an idea of

how mechanisms can differ within the framework just described. In each case, the agents

are assigned objects using the TTC algorithm, but applied to different priority profiles for

the objects.

Example 1. Random Priority (RP). Let (σ1, σ2, . . . , σn) be a permutation of the agents

chosen uniformly at random, that is, every permutation of the agents is equally likely. Let

i∗ be the smallest i for which agent σi still remains in the problem. Then, the top-priority

agent (in any phase) for every remaining object is σi∗ . Equivalently, the top-priority agent

for every remaining object in phase k is the agent σk.

Example 2. Random Endowment (RE). Let (σ1, σ2, . . . , σn) be a permutation of the

agents chosen uniformly at random, that is, every permutation of the agents is equally likely.

For each j = 1, 2, . . . , n, the top-priority agent for the j-th object is σj. Note that if the j-th

object still remains in the problem, so will agent σj, so every remaining object will have a

top-priority agent at every point in time.
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For both RP and RE, the priority orderings of the objects are determined randomly,

so the outcome is a random matching, which can be described as a probability distribution

over perfect matchings. This naturally leads us to the notion of equivalence of mechanisms,

defined as follows.

Definition 1. Two mechanisms are equivalent if for any instance, every perfect matching

occurs with the same probability under both mechanisms.

Although RP and RE look different and are described in different terms, they lead to

the same probability distribution over perfect matchings, as was shown independently by

Abdulkadiroğlu and Sönmez [2] and Knuth [8]. Thus, RP and RE are equivalent mechanisms.

3 Equivalence of Mechanisms: A general approach

Recent results have shown equivalences between mechanisms that allow for more complex

priority structures [5, 6, 11]. We review in Section 4 two of these results and show how

their proofs can be simplified. We unify and generalize these recent results in §5, where we

formulate a model in which the priority structure for each object is given by an inheritance

tree. The proof technique used in all of our proofs is essentially the same, and is discussed

explicitly in this section.

Recall that different mechanisms in the TTC family differ only in how the priority struc-

tures for the various objects are determined. All the TTC mechanisms we consider satisfy

the following persistence property:

(i) Once an agent has top priority for an object, he retains it until he is matched (to that

object or a different one);

and the following inheritance property:

(ii) The top-priority agent for a remaining object at any time may depend only on the set

of remaining agents and objects as well as the partial matching guaranteed by the all

past cycles formed in the TTC graph.

Note that on a given priority profile for the objects it is possible for the corresponding

TTC graph for M to have multiple cycles; by property (i), however, any cycle that is not

cleared will persist in the TTC graph until it is cleared. This enables us to write the outcome

of mechanism M as a simple recursion. To do this, we first set up some notation.

Let M(A, π) be the probability that mechanism M applied to the set of agents A results in

the matching π.1 For any l ≥ 1, let ClM be the collection of l disjoint top-trading cycles (also

1Strictly speaking, we should also specify the set of objects that are “available.” However the set of
available objects will be clear from the context, justifying the notation.
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called a cycle product of size l) that could be simultaneously present initially when mechanism

M is used. Each cycle can be written in a canonical way: the smallest-numbered agent in

the cycle appears as the first agent in the cycle; for a cycle-product of size l, we arrange the

cycles in ascending order of the first agents. Note that this representation is unique. For any

cycle product c, let ν(c) be the induced matching, and PM(c) be the probability that cycle

product c is present in the TTC graph under mechanism M. Finally, for matchings π and

π′, π′ ⊆ π if π′ is a submatching of π (i.e., every matched pair in π′ is also a matched pair

in π); in that case, π \ π′ denotes the matching π restricted to the agents and objects that

do not appear in π′. Then:

M(A, π) =
∑
l≥1

∑
c∈ClM
ν(c)⊆π

(−1)l−1PM(c) M(A \ c, π \ ν(c)). (1)

Eq. (1) can be justified in a straightforward way using the inclusion-exclusion principle and

property (i).2 Note that the information about the cycles that have been cleared is implicit

in the definition of the residual problem.

As priority structures grow increasingly complex so does the behavior of the mechanism,

so comparing different TTC mechanisms is not always easy. However, Eq. (1) suggests a

simple way to think about the equivalence of two TTC mechanisms. Suppose there is another

TTC mechanism M′ satisfying properties (i) and (ii) such that

(iii) every collection of cycles that could be simultaneously present in the TTC graph of M
can also be simultaneously present in the TTC graph of M′. That is, ClM ⊆ ClM′ for any

l; and

(iv) for any c ∈ ⋃
l≥1 ClM, PM(c) = PM′(c).

Then,

M′(A, π)

=
∑
l≥1

∑
c∈ClM′
ν(c)⊆π

(−1)l−1PM′(c) M′(A \ c, π \ ν(c))

=
∑
l≥1

∑
c∈ClM′∩ClM
ν(c)⊆π

(−1)l−1PM′(c) M′(A \ c, π \ ν(c)) +
∑
l≥1

∑
c∈ClM′\ClM
ν(c)⊆π

(−1)l−1PM′(c) M′(A \ c, π \ ν(c))

=
∑
l≥1

∑
c∈ClM
ν(c)⊆π

(−1)l−1PM(c) M′(A \ c, π \ ν(c)) +
∑
l≥1

∑
c∈ClM′\ClM
ν(c)⊆π

(−1)l−1PM′(c) M′(A \ c, π \ ν(c)), (2)

2We appeal to the inclusion-exclusion principle to avoid double-counting. Properties (i) and (ii) together
imply that the outcome of the mechanism does not depend on which subset of cycles of the TTC graph is
cleared during a phase of the TTC algorithm.
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where the first term of the last equality follows from properties (iii) and (iv) of mechanism

M′.
Suppose we are able to show that∑

l≥1

∑
c∈ClM′\C

l
M

ν(c)⊆π

(−1)l−1PM′(c) M′(A \ c, π \ ν(c)) = 0. (3)

Then expression (2) simplifies to

M′(A, π) =
∑
l≥1

∑
c∈ClM
ν(c)⊆π

(−1)l−1PM(c) M′(A \ c, π \ ν(c)).

Notice that this is exactly the recursion defining M(A, π), assuming M(A′, π′) = M′(A′, π′)
for all A′ ( A and all matchings π′ involving the agents in A′. This sets the stage for an

inductive proof.3

We shall therefore focus on proving (3), which we do using the following general idea.

For any c ∈ ⋃
l≥1 ClM′ \ ClM pick two special agents x1 and x2 from c and write the cycles in c

such that x1 appears at the beginning of its cycle, x2 appears at the beginning of its cycle if

it is in a different cycle than x1, and all other cycles not containing x1 or x2 are written in

the canonical fashion4:

if x1 and x2 appear in the same cycle, say (x1a0a1 . . . akx2b0b1 . . . bl), then split the cycle

into two cycles (x1a0a1 . . . ak) and (x2b0b1 . . . bl); if x1 and x2 appear in distinct cycles, say

(x1a0a1 . . . ak) and (x2b0b1 . . . bl), then merge the two cycles as (x1a0a1 . . . akx2b0b1 . . . bl). We

call this the transformation T applied to the cycle product c. Suppose that for any cycle

product c ∈ ⋃
l≥1 ClM′ \ ClM, there is a method of picking the two agents x1 and x2 such that

the following properties hold:

(a) The choice of x1 and x2 depends only on the set of agents in c, not on its cycle structure;

(b) T (c) ∈ ⋃
l≥1 ClM′ \ ClM, and PM′(T (c)) = PM′(c).

We record a few properties of this transformation T : first, T (T (c)) = c, so that T is self-

inverse; second, T (c) has one less or one more cycle than does c; and finally, the matchings

induced by c and T (c) are identical, therefore the residual problems are identical as well.

These observations collectively imply that T is a bijection between {c ∈ ClM′ \ ClM′ : ν(c) ⊆
3Any assumption on the priority structure for the problem involving the agents in A must be preserved

for the reduced problem A′. This is generally easily verified.
4In all the applications of this idea, every c ∈ ⋃

l≥1 ClM′ \ ClM has at least two candidates for the roles of
x1 and x2, so this can always be done.
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π, l odd} and {c ∈ ClM′ \ ClM′ : ν(c) ⊆ π, l even}. Furthermore, PM′(T (c)) = PM(c) for any

c ∈ ⋃
l≥1 ClM′ \ ClM. Rewriting Eq. (3) as∑
l odd

∑
c∈ClM′\C

l
M

ν(c)⊆π

PM′(c) M′(A \ c, π \ ν(c)) =
∑
l even

∑
c∈ClM′\C

l
M

ν(c)⊆π

PM′(c) M′(A \ c, π \ ν(c)),

we note that its validity is immediate from the preceding discussion: for each term involving

a cycle product c on the left, there is a corresponding term (involving cycle product T (c))

on the right such that the expressions are identical, and vice-versa.

Example 3. Consider an instance with 4 agents, with A = {1, 2, 3, 4} and S = {a, b, c, d},
where the agents have strict preferences given by Table 1.

1 2 3 4

a b c a
b a d c
c c a b
d d b d

Table 1: Agent preferences for Example 3, from most- to least-preferred.

Let RP be M and RE be M′. Consider the sets of cycle products under RP. These are

simply

C1M = {(1), (2), (3), (4)},
C2M = C3M = C4M = ∅.

Similarly, the sets of cycle products under RE are

C1M′ = CM ∪ {(12), (13), (23), (24), (34), (123), (132), (234), (243)};
C2M′ = {(1)(2), (1)(3), (2)(3), (2)(4), (3)(4), (1)(23), (13)(2), (2)(34),

(12)(3), (24)(3), (23)(4)};
C3M′ = {(1)(2)(3), (2)(3)(4)};
C4M′ = ∅.

Note that it is impossible for agents 1 and 4 to be part of the same cycle product since

they both have a as their most preferred object. Any cycle product in RE that is not

in RP must have at least two agents; let x1 and x2 be, respectively, the lowest-numbered

agent and the second lowest-numbered agent in that cycle product. It is easy to verify

that the associated transformation T (with this choice of x1 and x2) satisfies the claimed
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properties. For the cycle c = (23) ∈ CM′ \ CM, note that T (c) = (2)(3) ∈ CM′ \ CM, and

that PM′(c) = 1/12 = PM′(T (c)). If c′ = (243), T (c′) = (24)(3); and PM′(c
′) = 1/24 as is

PM′(T (c′)). Finally, if c̃ = (2)(3)(4), T (c̃) = (23)(4); again, PM′(c̃) = 1/24 as is PM′(T (c̃)).

We leave it to the reader to verify the bijection for each of the other cycle products.

We can summarize the discussion so far as follows: To prove that mechanisms M and M′

satisfying properties (i)-(iv) are equivalent, it is sufficient to verify the equivalence of M and

M′ when there is a single agent and to prove Eq. (3). The latter can be done by showing

how to choose x1 and x2 such that the associated transformation T satisfies properties (a)

and (b). In the sections that follow, we shall carry out these (two) steps for various pairs of

mechanisms.

4 Linear Priority Structures

4.1 RP and RE in a model with endowments

We consider an assignment model in which some of the agents are endowed with objects.

The most prominent application is in the setting of house allocation where some of the

houses already have existing tenants who are willing to move but only to other houses that

are better for them. The RP and RE mechanisms can be generalized in many ways to this

setting, and several recent papers show the equivalence between the generalized RP and RE

mechanisms, see Sömnez and Ünver [16], Pathak and Sethuraman [11] and Ekici [6]. To

illustrate our general approach, we provide a simple proof of Ekici’s result, which is also the

most recent.

Suppose the agents A are partitioned into N and E, and the objects are partitioned into

V and O, such that |E| = |O| and |N | = |V |. The interpretation is that every agent in E

is an “existing tenant,” and every object in O is an “occupied house.” The agents in N are

“new tenants”, and the “houses” in V are “vacant”. Each agent in E is endowed with an

object in O, for which he has the highest priority. Ekici [6] proposes natural generalizations

of the RP and RE mechanisms to this setting (we abuse notation and continue to call these

RP and RE), which we describe next. (Recall that the matching is found by applying the

TTC mechanism to a priority structure for the objects; the RP and RE mechanisms differ

only in how the priority structure—to which the TTC algorithm is applied—is generated.)

RP. Let (σ1, σ2, . . . , σn) be a permutation of the agents chosen uniformly at random, that

is, every permutation of the agents is equally likely. Let i∗ be the smallest i ∈ {1, 2, . . . , n}
for which agent σi is still in the problem. The priority structure for the remaining objects

is determined as follows: each object in V has σi∗ as the top-priority agent; if the agent
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endowed with o ∈ O still remains in the problem, he retains top-priority for o, otherwise σi∗

has top priority for o.

RE. Let (σ1, σ2, . . . , σn) be a permutation of the agents chosen uniformly at random, that

is, every permutation of the agents is equally likely. Suppose the objects are ordered in

an arbitrary (but fixed) manner so that there is a first object, a second object, and so on.

For each j = 1, 2, . . . , n, if the j-th object is in V , then its initial top-priority agent is σj;

otherwise, the jth object is in O and its initial top-priority agent is the agent i ∈ E to

whom it is endowed. In this latter case, agent σj becomes the “inheritor” of that agent i:

When agent i departs, every object for which i has top-priority at that stage but is still

unassigned will now have σj as its top-priority agent. Note that the inheritor of an agent

i ∈ E may be another agent i′ ∈ E who has already been assigned an object, triggering a

chain of inheritances until an inheritor yet to be assigned an object is found. It is a simple

matter to verify that each remaining object will have a top priority agent at any stage.

We now give an alternative proof that RP and RE are equivalent in this setting. First

observe that both mechanisms satisfy properties (i)-(iv), with RP playing the role of M and

RE the role of M′ in the definitions of those properties. Additionally, when there is a single

agent it is clear that these mechanisms are equivalent. Finally, the residual problem after

clearing a cycle product c is simply a smaller instance of the original problem, under both

RP and RE. For RP this is immediate; for RE, it is possible that some objects in O remain,

but without the agents who owned them, as these agents departed with other objects; in

that case, we simply place these objects in V (for the smaller problem). Consequently, we

may use the induction argument from Section 3.

To complete the proof of equivalence, we need to be precise about the choice of x1 and

x2, given any cycle that is present in the TTC graph of RE, but not in that of RP. Let A∗

be the agents whose most-preferred object is in V . Notice that each cycle product in the

TTC graph for RP involves at most one agent from A∗; the TTC graph for RE contains all

of these cycle products but could contain other cycle products involving two or more agents

from A∗. Consequently, any cycle product c ∈ ⋃
l≥1 ClM′ \ ClM contains at least two agents

from A∗. Given any cycle product c that could be present in the TTC graph of RE, but

not in that of RP, let x1 and x2 be, respectively, the smallest and second smallest-numbered

agents in c∩A∗. This choice of x1 and x2 satisfies property (a). It is simple to verify that the

cycle products c and T (c) occur with the same probability in RE, satisfying property (b).

4.2 Assignment models with agent groups

We turn now to a model, introduced by Carroll [5], in which we are given an exogenous

partition of the agents into groups. Furthermore, for each object, we are given a (fixed)
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priority ordering of the groups. This is useful in modeling situations in which agents within

a group should be treated equally, but agents across groups can be prioritized. Carroll

showed that this model, described in more detail next, is rich enough to subsume most of

the equivalence results in the literature, the only notable exception being the result of Ekici

discussed in the previous section. In this model, Carroll proposed two mechanisms—the

Random Serial Dictatorship in Groups mechanism (RSDIG) and the Within-Groups Top

Trading Cycles mechanism (WGTTC)—and showed that they are equivalent.

As before, we are given a set A of agents, a set S of objects, with |A| = |S|. Agents

have strict preferences over the objects. Suppose the agents are partitioned into groups

G1, G2, . . . Gm, for some m ≥ 1. Each group Gi has an associated role group with the same

number of members, Ri = {ri1, ri2, . . . , ri|Gi|}. Each object’s priority structure is given by an

ordering of the roles, such that all the roles belonging to a given group occur consecutively

(a property Carroll [5] calls group-respecting); however the roles of a given group can be

ordered differently in the priority orderings of different objects. One interpretation of these

two features is as follows: each object is first endowed to some group and passes to a different

group only when all the members of the orginal group have all been matched; however, a given

group may choose to distribute the object it owns among its roles any way it pleases. (This

latter feature allows constraints such as objects a and b cannot have the same top-priority

agent.) The priority structure for the objects is specified in terms of roles, so following

Carroll [5] we call this a priority framework. The two mechanisms studied by Carroll differ

only in the priority frameworks to which the TTC algorithm is applied:

RSDIG. The roles Ri of each group Gi always appear in the order ri1, r
i
2, . . . , r

i
|Gi|.

WGTTC. For each group Gi, there is no restriction on the ordering of roles, and the

ordering may differ from object to object.

In each of these cases the roles have to be instantiated before applying the TTC algorithm.

This is done by choosing, for each group Gi, a bijection uniformly at random from its set

of roles Ri to the set of agents Gi. In such a case, Carroll showed that the RSDIG and

WGTTC mechanisms are equivalent. We give an alternative proof of this result.

Observe that both mechanisms satisfy properties (i)-(iv), with RSDIG as M and WGTTC

as M′. Furthermore, it is clear the two mechanisms are equivalent where there is a single

agent. Also, the residual problem after clearing a cycle product c is simply a smaller version of

the original problem, for both RSDIG and WGTTC. So we may use the induction argument

of §3. It remains to show there is an appropriate way to pick x1 and x2 for transformation

T so that PM′(c) = PM′(T (c)).
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Observe that each cycle product in the TTC graph for RSDIG involves at most one agent

from each group. The TTC graph for WGTTC contains all of these cycle products, but also

includes those containing two or more agents from some group. Let c be a cycle product

containing two or more agents from some group. Consider the smallest labeled group with

two or more agents in c. Let x1 be the smallest and and x2 the second-smallest labeled

agents from that group in c, and consider the canonical transformation T described earlier.

The resulting cycle product T (c) corresponds to the cycle product induced by the same role-

to-agent map as c except that the roles of x1 and x2 are swapped. Since x1 and x2 are in

the same group, it follows that the role-to-agent maps inducing c and T (c) both occur with

the same probability. This verifies properties (a)-(b) so the equivalence result follows.

5 Tree-based inheritance with groups and endowments

We are ready to formulate a general object assignment model. As before we have a set A of

agents and a set S of objects. Each agent wishes to be assigned exactly one object. Suppose

the agents are partitioned into A and E and the objects are partitioned into V and O. Each

object o ∈ O is endowed to an agent ρ(o) ∈ E, and each agent i ∈ E is endowed with at

least one object in O. (Different objects in O may be endowed to the same agent.) Thus

|O| ≥ |E| and ρ(O) = E. As in our earlier discussion, one can think of the agents in E as the

existing tenants and the objects in O as the houses they occupy in a house allocation model;

in that case, the agents in N and the houses in V are, respectively, the new tenants and the

new houses. Agents have strict preferences over the objects. The priority structure of the

objects—a distinguishing feature of our model—is specified by an inheritance tree, which

generalizes the models of Carroll [5], as well as the earlier models of Papai [9] and Svensson

and Larsson [18]. In particular, the priority structure allows for objects to be endowed to

certain agents, admits group hierarchies, and additionally allows the inheritance of an object

to depend on the partial matching at that stage.

The agents are also partitioned into groups G1, G2, . . . , Gm so that Gi ∩ Gj = ∅ for all

i 6= j and
⋃
Gi = A. Note that composition of each of these groups is unrestricted: Gi may

have a non-empty intersection with A or E or both. However the group membership of an

agent may affect his priority for certain objects. Each agent group Gi is associated with a

set of roles Ri with |Ri| = |Gi|, with Ri ∩ Rj = ∅ for all j 6= i. The priority structure for

each object is specified in terms of roles. When the mechanism is run, the roles, Ri, are

instantiated with the agents in Gi, uniformly at random: each mapping of the roles Ri to

the agents in Gi is equally likely. We say that an agent a or role r owns an object o if a or

r has the topmost priority for o.
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5.1 Inheritance Trees

The priority structure of each object is specified in terms of an inheritance tree as introduced

by Papai [9], with one key difference: the nodes of the tree are populated by roles rather

than the agents.

Every object o ∈ S has an associated inheritance tree Γo, which is a rooted tree graph

with directed arcs. If there are n agents in all, Γo has one root node (level 0), n− 1 nodes at

level 1, (n− 1)(n− 2) nodes at level 2, etc., each of which is labeled with a role. Each node

has exactly one incoming arc except the root (which has none), and each node at level k has

(n − k − 1) outgoing arcs, each of which terminates at a node at level k + 1 and is labeled

with an object other than o and the k objects appearing as labels in the unique path from

the root to that node. Moreover, in any path from the root to a leaf, each role label should

appear exactly once. The agent who owns the object is the one whose role is the label of the

root.

The tree Γo defines an inheritance plan for the object o in the following sense: consider a

path from the root node to a node at level k, and suppose the labels of the nodes and arcs in

the path are r0−o0−r1−o1−r2− . . .−rk−1−ok−1−rk. Then the agent with role rk owns o if

for all i = 0, . . . , k− 1 the agent with role ri is assigned object oi, and the agent with role rk

is still unassigned. (The assignment of agents with roles other than ri, i = 0, . . . , k to objects

other than o, o0, o1, . . . , ok−1 is immaterial.) Note that the definition of an inheritance tree

ensures that in any partial assignment of objects to agents, either object o is assigned, or

there is a unique maximal path originating from the root of Γo using only agents and objects

in that partial assignment whose terminal node is the role of an unmatched agent, who next

owns o.

We are now ready to specify the priority structure for each object o ∈ S. For o ∈ V , the

priority structure is given by the inheritance tree Γo, with the roles instantiated uniformly

at random from the corresponding groups; each object o ∈ O is owned by the agent ρ(o)

until that agent is assigned an object; if ρ(o) is assigned an object, but o is still unassigned,

its ownership will be governed by its inheritance tree Γo.

Suppose the TTC mechanism is applied to a problem where the priority structure for

each object is given by an inheritance tree. We describe how the trees are updated when a

cycle c is cleared. Typically this process involves trimming branches and contracting arcs so

that information that is no longer useful is discarded; the resulting updated tree will involve

only those objects and roles that are still “unassigned”. Let X be the set of objects that are

assigned and let Y be the roles that these objects are assigned to when the TTC mechanism

is applied. For each x ∈ X, let λ(x) be the role in Y that x is assigned to. The inheritance

trees are updated as follows:

• Discard the inheritance trees Γo for each o ∈ X;
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• For each x ∈ X, and for each node labeled λ(x) in every remaining inheritance tree,

delete every outgoing arc from that node with a label other than x (and the subtree

rooted at the other end of that arc). So for each x ∈ X, the only arc that emanates

from any node labeled λ(x) will be labeled x.

• Contract every arc with a label of x emanating from a node labeled λ(x) (this is the

same as deleting the arc x, and moving the subtree rooted at its head node to its tail

node).

Observe that the updates to the inheritance trees removes all the paths that can no longer

be realized and retains the paths that may still be realized. We end this section with an

illustrative example.

Example 4. Consider an instance of the problem with 4 agents {1, 2, 3, 4} and 4 houses

{a, b, c, d}, and suppose role ri is mapped to agent i for each i. Focus on object a, whose

inheritance tree is given by Γa in Figure 1(a). We illustrate in Figures 1(b)–(d) how ownership

and the inheritance tree of object a evolves under some sequence of submatchings, say

(1 ← b), (3 ← d), (2 ← c), and (4 ← a) in the given order. Initially, a is owned by agent

1, who is assigned b in phase 1. Following this, a’s inheritance tree is updated to Γ′a, and

agent 2 becomes the new owner of a. When agent 3 is assigned d, 2 continues to own a, but

a’s inheritance tree is updated to Γ′′a. Then, agent 2 is assigned c at which point agent 4

becomes the owner of a; this is shown in the tree Γ′′′a . Finally 4 is matched with a so a is

removed from the problem.

Γa

b c d

c d b d b c

d c d b c b

r1

r2 r3 r4

r3 r4

r3r4

r4 r4 r3 r3

r2 r2 r2 r2

(a) Phase 1

Γ′a

c d

d c

r2

r3 r4

r3r4

(b) Phase 2

Γ′′a

c

r2

r4

(c) Phase 3

Γ′′′a
r4

(d) Phase 4

Figure 1: The evolution of Γa in Example 4.

5.2 Equivalence results

We generalize the equivalence results discussed earlier to settings in which the priority struc-

ture for each object is an inheritance tree. To state the equivalence result formally, we need
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the following definitions.

Given an inheritance tree Γ, define G(Γ) to be the tree obtained by replacing each role

at the nodes of Γ with the group to which that role belongs. Inheritance trees Γ and Γ′ are

G-similar if G(Γ) and G(Γ′) are identical.

An inheritance tree is a random priority inheritance tree if in every root-to-leaf path, the

roles belonging to each group Gi appear in ascending order (from the lowest index to the

highest index). Notice that when all the inheritance trees in the problem are random priority

inheritance trees, each o ∈ V owned by a member of a group Gi will be owned by the same

role. Given an arbitrary inheritance tree Γ, there is a natural relabeling of the nodes that

gives rise to the associated random priority inheritance tree RP (Γ): find G(Γ) and apply the

random-priority labeling to it. It follows that if Γ and Γ′ are G-similar, RP (Γ) = RP (Γ′).

For a partial assignment (or matching) π, and an object s ∈ S, let gπ(s) be the group

to which s is assigned; if s is not assigned to any agent in π, define gπ(s) to be zero. Two

partial assignments π and π′ are G-equivalent if gπ(s) = gπ′(s) for all s ∈ S. In other words,

π and π′ must assign the same objects, and each object assigned by them must be assigned

to the same group under both π and π′ (although the actual agents or roles to which s is

assigned may differ). Given an inheritance tree Γ and a partial assignment π, let Γπ be the

updated inheritance tree after the objects and roles in π are removed from the problem. An

inheritance tree Γ is G-invariant if G(Γπ) = G(Γπ
′
) for any G-equivalent partial assignments

π and π′. Note that if Γ is G-invariant, then so is any inheritance tree Γ′ that is G-similar

to Γ.

Γa

b c d

c d b d b c

d c d b c b

r1

r2 r3 r4

r3 r4

r3r4

r4 r4 r3 r3

r2 r2 r2 r2

(a) Inheritance tree

G(Γa)

b c d

c d b d b c

d c d b c b

G1

G2 G3 G3

G3 G3

G3G3

G3 G3 G3 G3

G2 G2 G2 G2

(b) Replacing roles with
groups

RP (Γa)

b c d

c d b d b c

d c d b c b

r1

r2 r3 r3

r3 r3

r4r4

r4 r4 r4 r4

r2 r2 r2 r2

(c) Induced random priority
inheritance tree

Figure 2: A role-inheritance tree Γa; G(Γa), the tree after replacing its roles with groups, and
RP (Γa) the random-priority inheritance tree induced by Γa when the groups are G1 = {1},
G2 = {2}, G3 = {3, 4}.

Example 5. Consider the inheritance tree Γa in Figure 2(a). Let the groups be G1 = {1},
G2 = {2}, G3 = {3, 4}. After relabeling the roles with their associated groups, we get G(Γa)

15



as shown in Figure 2(b). The random-priority tree induced by Γa, RP (Γa), is shown in Figure

2(c): in every path from the root to any leaf the roles of each group appear consecutively,

and in ascending order. Moreover, both Γa and RP (Γa) are G-invariant.

Theorem 1. Fix A = (E,N), S = (O, V ) and ρ. Let {Γs} be a set of inheritance trees on

(A, S) that are G-invariant. Then the TTC mechanism using {Γs} and the TTC mechanism

using {RP (Γs)} are equivalent.

Proof. Let M be the TTC mechanism applied to {RP (Γs)} and let M′ be the TTC mech-

anism applied to {Γs}. With this interpretation, property (i) is immediate; property (ii)

follows from the G-invariance of {Γs} for M′, and from the G-invariance of {RP (Γs)} for M.

(Note that G-invariance of {RP (Γs)} is implied by G-invariance of {Γs}.) Properties (iii)

and (iv) are also easily verified for the two mechanisms. Futhermore, it is clear that the two

mechanisms are equivalent when there is a single agent.

Consider the TTC graph for M and M′ in the residual problem under any sequence of

cleared cycles. Since the sequence of cycles cleared are the same, the inheritance trees are

updated in both mechanisms similarly (the same arcs are deleted and contracted, though the

role labels removed may differ). Moreover, the remaining agents and objects are the same in

both mechanisms. It follows that the updated inheritance trees under M are the same as the

the random-priority trees induced by the updated inheritance trees under M′ (a relabeling

of roles may be necessary), so we can use the induction argument from §3.

It remains to show that there is an appropriate way to pick x1 and x2 for transformation

T that satisfy properties (a)-(b). Let A∗ be the agents whose most-preferred object is in V .

Observe that each cycle product in the TTC graph for M has at most one agent in A∗ ∩Gk

for each k. The TTC graph for M′ contains these cycle products as well (in addition to

zero or more cycle products containing at least two agents from A∗ from the same group).

Consider the lowest labeled group G∗ with at least two agents from A∗ ∩ c. Let x1 and x2

be, respectively, the lowest and second-lowest labeled agents in A∗ ∩ c ∩ G∗. This satisfies

property (a). Additionally, the resulting cycle product T (c) is exactly the cycle product

induced by the same role-to-agent map as c except that the roles mapping to x1 and x2 are

swapped. Since x1 and x2 are in the same group, the role-to-agent maps inducing c and T (c)

both occur with the same probability, so property (b) is satisfied as well, and the equivalence

result follows.

Corollary. Fix A = (E,N), S = (O, V ) and ρ. Let {Γs} and {Γ′s} be two sets of inheritance

trees on (A, S) that are G-invariant, and let Γs be G-similar to Γ′s for each s ∈ S. Then the

TTC mechanism using {Γs} and the TTC mechanism using {Γ′s} are equivalent.

Proof. As {Γs} and {Γ′s} are G-similar, {RP (Γs)} and {RP (Γ′s)} are identical, and the result

is immediate from Theorem 1

16



Remark. One can think of G-invariance as a natural generalization of the notion of a

group respecting priority structure as defined by Carroll [5] (see §4.2). While this restriction

is a technical necessity in the equivalence proof, it is not an unreasonable one: For example,

in allocating public housing with agents grouped by income level, it may be undesirable for

a house to pass from a low income group to a high income group and back to the low income

group. This cannot occur if the inheritance structure is group respecting. Following Carroll,

we could define an inheritance tree to be group respecting if in any path from the root to a

leaf, all roles from the same group appear consecutively. It is easy to verify that every G-

invariant tree is group respecting, but the converse is not true. Example 6 demonstrates the

necessity of G-invariance for the equivalence result to hold. It also shows that equivalence

may not hold when trees are group respecting but not G-invariant. If the inheritance tree

is equivalent to a linear priority order as in Carroll [5], it can be shown that an inheritance

tree is G-invariant if and only if it is group-respecting.

Example 6. To demonstrate the necessity of G-invariance of all trees, consider the following

4-agent example. Let A = {1, 2, 3, 4}, S = {a, b, c, d}, with three groups G1 = {1, 2} (with

corresponding roles {r1, r2}), G2 = {3} (with roles {r3}) and G3 (with roles {r4}). Suppose

the agents’ preferences are given by Table 2, and that the inheritances for the objects are

defined by the following trees: for a, Γa as given in 3(a); for b, Γb induced by the linear

ordering of roles r1 � r2 � r3 � r4; for c, Γc induced by the linear ordering r2 � r1 � r3 � r4;

and for d, Γd induced by the linear ordering r1 � r2 � r3 � r4. Notice that Γb, Γc and Γd

are G-invariant. On the other hand, although Γa is group-respecting it is not G-invariant

since the two matchings (1← b, 2← c) (induced by the role mappings r1 → 1, r2 → 2) and

(1← c, 2← b) (induced by r1 → 2, r2 → 1) are G-equivalent but result in top-priority roles

from different groups for a (G2 and G3 respectively).

1 2 3 4

c c a a
b b d d
a a c c
d d b b

Table 2: Agent preferences for Example 6.

It is simple to verify the following: under {Γs} two matchings (1← b, 2← c, 3← a, 4←
d) and (1← c, 2← b, 3← a, 4← d) are output with equal probability; under {RP (Γs)} two

matchings (1 ← b, 2 ← c, 3 ← d, 4 ← a) and (1 ← c, 2 ← b, 3 ← d, 4 ← a) are output with

equal probability. Notice that under {Γs} 3 is always assigned a and b is always assigned

b, whereas under {RP (Γs)} the situation is reversed in that 3 is always assigned b and 4 is

always assigned a. So the two mechanisms are not equivalent.
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Γa

b c d

c d b d b c

d c d b c b

r1

r2 r2 r2

r3 r4

r3r4

r4 r4 r4 r4

r3 r3 r3 r3

(a) Non-G-invariant

Γ∗a

b c d

c d b d b c

d c d b c b

r1

r2 r2 r2

r3 r4

r3r4

r3 r4 r4 r4

r4 r3 r3 r3

(b) G-invariant

Figure 3: Two inheritance trees for object a in Example 6.

Now, consider if a has the G-invariant inheritance tree Γ∗a given in Figure 3(b) instead,

while the inheritance trees of the other objects Γ∗s are the same as Γs. It is not difficult to

check that the mechanisms induced by {Γ∗s} and {RP (Γ∗s)} are equivalent, in particular both

output two possible matchings (1 ← b, 2 ← c, 3 ← a, 4 ← d) and (1 ← c, 2 ← b, 3 ← a, 4 ←
d) with equal probability.

Remark. It is not difficult to see that inheritance trees allows for inheritance structure that

cannot be captured by any linear ordering of roles. For example, consider a 4-agent instance

where the agents {1, 2, 3, 4} are in three groups G1 = {1, 2} (roles {r1, r2}), G2 = {3} (roles

{r3}) and G3 = {4} (roles {r4}), and the objects are {a, b, c, d}. Suppose the inheritance

tree a is given by Γa in Figure 4, which is G-invariant. If 1 is assigned b and 2 is assigned c,

3 becomes the owner of a. However, if instead 1 is assigned b and 2 is assigned d, 4 becomes

the owner of a. It is not difficult to see that no group-respecting linear orderings may capture

this sort of branching behavior.

Γa

b c d

c d b d b c

d c d b c b

r1

r2 r2 r2

r3 r4

r3r4

r3 r3 r4 r3

r4 r4 r3 r4

Figure 4: A G-invariant tree that cannot be represented by any linear inheritance.

18



6 Discussion

Our approach suggests the following general framework for thinking about allocating indivis-

ible objects to a group of agents. Suppose we are given a set of agents with strict preferences

over objects, an exogenous partition of the agents into groups; suppose also that agents

are partitioned into “existing tenants” and “new agents,” and objects into “occupied” and

“vacant” objects. Each occupied object has an obvious top-priority agent, namely, the agent

who occupies it. Assume each vacant object is endowed to a unique group. Finally, each

group can assign the top-priority role any way it pleases for all of the vacant objects endowed

to it. Each group instantiates its roles uniformly at random, either without repetition (a

given role is equally likely to be mapped to any remaining agent in that group who is not

yet mapped) or with repetition (each role is equally likely to be mapped to any remaining

agent in that group). Each group make this decision independently, and can choose either

type of mapping, regardless of what the other groups do. The TTC mechanism is used to

clear (a subset of) cycles. If a vacant object remains, but its occupant does not, it is treated

as a new object. If an object is endowed to a group, and its top-priority agent is no longer

present, it is endowed to a different agent in the same group, assuming at least one such

agent exists. If an object is endowed to a group, its top-priority agent is no longer present

and no agent from that group is present, control of that object passes to another group (in a

G-invariant) way. Our general approach shows that the final outcome is the same regardless

of how the groups assign the objects they control amongst themselves. It is easy to see that

all the mechanisms considered in our paper fit into this framework.

Consider the special case in which none of the agents are endowed with an object. Note

that in this case all the mechanisms that fit this framework are strategyproof (SP), and always

yield a Pareto efficient (PE) assignment. Furthermore, agents with identical preferences

receive identical (probabilistic) allocations (ETE). The aforementioned result boils down to

the statement that every mechanism in this framework is equivalent to the RP mechanism.

An intriguing conjecture that suggests itself, in light of these equivalence results, is that

the RP mechanism is characterized by these three properties. If we only require a subset

of these properties, there are other mechanisms: giving an equal share of each object to

each agent satisfies SP and ETE, but not PE; a serial dictatorship with an exogenous order

of the agents satisfies SP and PE, but not ETE; and the probabilistic serial mechanism of

Bogomolnaia and Moulin [4] satisfies PE and ETE, but not SP. The characterization result

is, of course, of independent interest. We note, however, that this characterization of RP

may be an alternative approach to the proof of the equivalence results established here.
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