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Abstract

We analyze the k-ticket lottery, which is used to allocate hunting permits in the state of

Alaska. Each participant is given k tickets to distribute among lotteries for different types of

items. Participants who win multiple items receive their favorite, and new winners are drawn

from the lotteries with unclaimed items.

When supply is scarce, equilibrium outcomes of the k-ticket lottery approximate a competi-

tive equilibrium from equal incomes (CEEI), which is Pareto efficient. When supply is moderate,

k-ticket lotteries exhibit two sources of inefficiency. First, some agents may benefit from trading

probability shares. Second, outcomes may be “wasteful”: agents may receive nothing even if

acceptable items remain unallocated. We bound both sources of inefficiency, and show that each

is eliminated by a suitable choice of k: trades are never beneficial when k = 1, and waste is

eliminated as k →∞.

The wastefulness of the k-ticket lottery has some benefits: agents with strong preferences may

prefer k-ticket lottery outcomes to those of any nonwasteful envy-free mechanism. These agents

prefer small values of k, while agents with weak preferences prefer large values of k. Together,

these results suggest that the k-ticket lottery performs well under most circumstances, and may

be suitable for other settings where items are rationed.

1 Introduction

We address the challenge of allocating heterogeneous resources to unit-demand agents without using

money. Real-world examples include the allocation of seats at public schools, affordable housing

units, spots in popular running races, and permits for popular hiking and camping destinations.

We take inspiration from the allocation of hunting permits. In the United States, this allocation

is conducted by state agencies. Prospective hunters must apply for a permit, which are limited in
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supply. Typically, permitting fees are nominal, and demand exceeds supply. Most states conduct

annual lotteries to award permits. Though procedures vary, states generally conduct separate

allocations for each species, so that a hunter might apply for and win permits for multiple species.

However, for each species, hunters are constrained to receive at most one permit.

In Alaska, the allocation for each individual species proceeds as follows. The state offers different

types of permit, which specify when and where hunting may occur, as well as the number and gender

of animals that may be killed. It sets a quota for each permit type, and publishes this information in

an annual “Draw Supplement.” 1 Each applicant can submit up to six applications, and may apply

for a given type of permit multiple times to increase their odds of winning (for example, one might

apply five times for a popular permit, and once for a second, less popular permit). Each applicant

also submits a preference ranking over permits for which they have applied. After the application

deadline, applications are drawn randomly for each permit. Applicants who win multiple permits

keep only their favorite among these, and new names are drawn for the remainder. This process

continues until each permit type has either been fully allocated or offered to all applicants.2

This inspires several natural questions. How do outcomes of this lottery compare to those that

would result from using other procedures? Are these outcomes efficient, or at least approximately

so? And what would be the effect of increasing or decreasing the maximum number of applications?

We address these questions using a model with a continuum of agents and n types of items.

In Section 3 we define the k-ticket lottery, in which agents may allocate k ∈ N tickets across

lotteries. Given agents’ actions, each item has a resulting level of competition, summarized by the

probability that a ticket entered into the corresponding lottery will be drawn. Agents take these

win probabilities into account when deciding how to use their tickets.

Our first result establishes that when there are many more agents than items, equilibrium

outcomes of the k-ticket lottery are close to outcomes of a competitive equilibrium with equal

incomes (CEEI): each agent is nearly indifferent between these mechanisms. Thus, when demand

is high, the choice of k is not very important, and k-ticket lotteries can be thought of as a virtual

currency system. In particular, their equilibrium outcomes are approximately Pareto efficient.

1The most recent supplement is available at https://www.adfg.alaska.gov/index.cfm?adfg=huntlicense.

drawsupplements, and additional information on the draw can be found at https://www.adfg.alaska.gov/index.

cfm?adfg=huntlicense.lottery.
2An alternative description of the process is as follows. A hunter who submits ti applications to permit type i is

given a random priority for i that is the first-order statistic of ti iid uniform draws from [0, 1]. Using these priorities and
the preference rankings submitted by hunters, the state runs the permit-proposing Deferred Acceptance algorithm.
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In general, k-ticket lotteries exhibit two forms of inefficiency. First, some agents may benefit

from trading probability shares. Second, outcomes may be “wasteful”: agents may receive nothing

even if acceptable items remain unallocated. Our second contribution is to bound both sources

of inefficiency. In particular, Theorem 2 states that for any equilibrium allocation, no ex ante

exchange of probability shares can increase the welfare of every agent to more than (2 − 1
k ) times

their welfare under the original allocation. Theorem 3 states that no reallocation of wasted items

can increase the welfare of any agent to more than (1 + 1
k ) times their welfare under the original

allocation. In particular, these two theorems imply that when k = 1, no beneficial trades are

possible, and as k →∞, waste is eliminated.

Our third contribution is to demonstrate that the wastefulness of k-ticket lotteries may actually

improve sorting: agents with strong preferences for popular items may prefer the k-ticket lottery to

any nonwasteful mechanism. We illustrate this by considering the scenario in which there are two

types of items and one item is universally preferred. In this scenario, CEEI is equivalent to random

matching. (This occurs because the less demanded item is available at no cost, so all agents spend

their entire budget on the highly demanded item.) By contrast, in a k-ticket lottery, securing the

second item comes at the cost of spending a ticket, which only agents with a weak preference for the

first item are willing to pay. Proposition 4 establishes that in this setting, smaller choices of k are

better for agents who strongly prefer the more popular item. In addition, we demonstrate that no

other mechanism achieves greater efficiency with the same amount of waste: Proposition 5 states

that in the two-item setting, allocating items with a k-ticket lottery is equivalent to discarding the

items wasted by the k-ticket lottery and then running CEEI.

Taken together, our results suggest that k-ticket lotteries produce good outcomes across a

range of market conditions. When demand far outpaces supply, they approximate Competitive

Equilibrium from Equal Incomes. When demand and supply are more balanced, they remain

approximately efficient and may allow agents to signal their preference intensities more effectively

than CEEI.

2 Related Work

Hylland and Zeckhauser (1979) introduce Competitive Equilibrium from Equal Incomes (CEEI), in

which agents use virtual currency to buy probability shares of items. Equilibria of CEEI are ex-ante

3



Pareto efficient and envy-free, and Ashlagi and Shi (2015) show that this is the only mechanism

with these properties. Despite its virtues, CEEI is rarely used in practice due to the challenges of

soliciting preference intensities from agents.

Several papers have argued that other mechanisms may approximate CEEI outcomes. Abdulka-

diroğlu et al. (2011) and Miralles (2009) note advantages of the “Boston” mechanism, in which items

are preferentially awarded to agents who rank them highly. Abdulkadiroğlu et al. (2015) introduce

Choice-Augmented Deferred Acceptance (CADA), which allows agents to improve their priority

at one targeted item. If items have no inherent preferences over agents, the Boston mechanism is

simply a sequence of 1-ticket lotteries, and CADA is a 1-ticket lottery followed by random serial

dictatorship. Due to the close relationship between these mechanisms and the one-ticket lottery,

our claim that the one-ticket lottery is trade efficient (Corollary 1) parallels the observation that

schools that fill in the first round of Boston are efficiently allocated (Miralles, 2009), as well as an

analogous claim for CADA (Abdulkadiroğlu et al., 2015).

Immorlica et al. (2017) introduce the “raffle”, which is the natural extension of the k-ticket

lottery with k = ∞. They show that for any equilibrium of this mechanism, it is impossible to

simultaneously increase all participants’ welfare to e
e−1 times their original welfare, and argue that

this mechanism is a practical alternative to CEEI. However, it may be difficult to allow each agent

to allocate an infinite number of tickets in practice. As such, our work can be viewed as a study of

practical variants of the raffle with finitely many tickets.

One key difference between a k-ticket lottery and the∞-ticket raffle is that the former might fail

to allocate items, even if there are unmatched agents who consider them acceptable. In fact, this

wastefulness also differentiates the k-ticket lottery from CEEI, the Boston mechanism, CADA, and

Random Serial Dictatorship. Although wastefulness seems to be a shortcoming, Section 6 shows

that it also has benefits: k-ticket lotteries may achieve more effective sorting than these other

mechanisms, benefiting agents with strong preferences. The setting in Section 6 is very similar to

that considered by Cavallo (2014). He seeks to maximize utilitarian welfare, and shows that in

some cases, random allocation is optimal, but in others, wasteful mechanisms offer improvements.

At a technical level, our paper leverages several results from other papers. Lemma 1, which

gives an agent’s best response, builds upon the work of Chade and Smith (2006). Lemma 2, which

states that every strategy profile induces a unique consistent outcome, builds upon the uniqueness

of a stable outcome established by Azevedo and Leshno (2016). The proof that 1-ticket lotteries
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have a unique equilibrium is similar to a result in Gale (1976). The proof of Theorem 2, which

states that k-ticket equilibria are (2 − 1/k)-approximately trade efficient, parallels the proof of

approximate efficiency in Immorlica et al. (2017).

3 Model

There are n types of items with quantities µ = (µ1, µ2, ..., µn) ∈ Rn+. There is mass M of agents.

Each agent is identified by a type v = (v1, v2, ...vn) ∈ Rn, where vi denotes the agent’s value for

item i. Types are distributed according to a probability measure η that is absolutely continuous

with respect to the Lebesgue measure. Agents also have an outside option with a value normalized

to zero. Without loss of generality, we consider only agent types with positive value for at least

one item and items which a positive measure of agents prefer to their outside option.

In Section 3.1, we define the optimization problem facing a single agent. Section 3.2 discusses

how agent strategies determine aggregate outcomes and defines equilibrium. Section 3.3 introduces

our efficiency metrics.

3.1 Single-Agent Decision Problem

The agent’s interaction with the k-ticket lottery is summarized by a strategy s = (t,�) consisting

of a ticket allocation vector t = (t1, t2, ..., tn) and a preference ranking � over the set of items. For

i, j ∈ [n], ti denotes the number of tickets entered in lottery i and j � i indicates that the agent

prefers j to i in her preference ranking. Let Sk denote the set of all possible strategies with at most

k tickets. A strategy profile Φ : Rn → Sk associates a k-ticket strategy with every agent type.

A strategy profile Φ induces a vector p = (p1, p2, ..., pn) of win probabilities, where pi denotes

the probability that an individual ticket entered in lottery i will be drawn during the lottery

resolution process. Agents take p as given when considering which strategy to adopt. We address

the calculation of p in Section 3.2.

Given strategy s and win probabilities p, the vector χ(s, p) = {χi(s, p)}ni=1 summarizes the

probability that an agent who adopts strategy s wins each item. We define

χi(s, p) := (1− (1− pi)ti)
∏
j�i

(1− pj)tj , (1)
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meaning that an agent wins item i so long as at least one the tickets entered in lottery i is drawn

and the agent does not win any item j for which j � i.
For fixed p, the expected welfare of an agent with type v under strategy s is

w(v, s, p) := v · χ(s, p). (2)

At any equilibrium strategy profile, each agent maximizes his or her expected welfare.

Definition 1. Let p = (p1, p2, ..., pn) be a fixed vector of win probabilities for each lottery. A

strategy profile Φ is optimal given p if

∀v,Φ(v) ∈ arg max
s∈Sk

w(v, s, p). (3)

Given p, an agent’s optimal strategy can be computed by a simple greedy algorithm. We write

s+ {i} to denote the strategy s with an additional ticket placed in the lottery for item i.

Lemma 1. For any p and any v, the following algorithm computes an optimal strategy:

1. Set s := (~0,�), where � is ordered according to the true preferences of v.

2. For j = 1, 2, .., k: select ij ∈ arg maxi∈[n](w(v, s + {i}, p) − w(v, s, p)). If the arg max is not

unique, select ij to be the agent’s most preferred item in this set. Set s := s+ {ij}.

Proof Sketch. The problem of computing an optimal k-ticket strategy can be transformed into a

downward-recursive portfolio choice problem over stochastic options. Lemma 1 then follows from

the optimality of the Marginal Improvement Algorithm introduced by Chade and Smith (2006).

The reduction to downward recursive portfolio choice is elaborated in Appendix B.1.

Multiple choices of i may maximize w(v, s + {i}, p) for two reasons. First, different strategies

may lead to the same probabilistic allocation if the agent can secure his or her most preferred item

with a single ticket. In this case, the algorithm above ensures that agents continue to enter tickets

into the lottery for their most preferred item.3 Second, an agent may be exactly indifferent between

two strategies that lead to different allocations. Because η is absolutely continuous, for any p this

occurs only for a set of agents with measure zero. Thus, the algorithm above uniquely determines

allocation probabilities for almost every agent type.

3This choice is motivated by the fact that this strategy is uniquely optimal under a small perturbation of the
vector p.
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3.2 k-Ticket Equilibria

Given a strategy profile, any win probability vector p must be consistent with the available quan-

tities µ. That is, for i ∈ [n], either the entire mass µi should be allocated or every ticket entered

into lottery i should be drawn.

Definition 2. Fix a strategy profile Φ. A vector p of win probabilities is consistent with Φ if for

all i ∈ [n],

M
∑
s∈Sk

χi(s, p) η({v : Φ(v) = s}) ≤ µi, (4)

with equality if pi < 1.

Lemma 2. For each strategy profile, there is a unique consistent win probability vector.

Proof Sketch. For a fixed strategy profile Φ, the k-ticket lottery is equivalent to a deferred accep-

tance procedure in which agents’ priority for each item i increases stochastically with the number

of tickets placed in the lottery for item i. It then follows from the results of Azevedo and Leshno

(2016) that every strategy profile Φ admits at least one vector p of win probabilities, that the set

of win probability vectors forms a lattice, and that every consistent vector p matches the same set

of agents. Because the measure of matched agents is strictly increasing in p, the lattice property

implies that the consistent p is unique. The full proof is in Appendix B.2.

Definition 3. A k-ticket equilibrium is a pair (Φ, p) consisting of a strategy profile and a vector

of win probabilities such that Φ is optimal given p and p is consistent with Φ.

Proposition 1 (k-Ticket Equilibria Exist). Every k-ticket lottery admits an equilibrium.

Proof Sketch. We describe a continuous function f that maps the space of win probability vectors

to itself such that f(p) = p if and only if p corresponds to a k-ticket equilibrium (Φ, p). Applying

Brouwer’s fixed point theorem to f demonstrates that an equilibrium exists. The full proof is in

Appendix B.2.

In fact, the 1-ticket lottery has a unique vector p of win probabilities at equilibrium. When k ≥ 2,

however, k-ticket lotteries may have multiple equilibria with distinct win probability vectors. We

prove the uniqueness of 1-ticket equilibria and provide an example illustrating the non-uniqueness

of 2-ticket equilibria in Appendices B.3 and B.4.
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3.3 Envy-Free and Pareto-Efficient Allocations

A (probabilistic) allocation is a function x : Rn → [0, 1]n that assigns each agent a chance to receive

each item. Each agent type v is allocated x(v) = (x1(v), x2(v), ..., xn(v)), where xi(v) denotes the

probability of recieving item i. Allocations satisfy the following feasibility constraints:

1. Allocations respect the quantity of each item:

∀i,M
∫
xi(v)dη ≤ µi. (5)

2. Each agent receives at most one item:

∀v,
n∑
i=1

xi(v) ≤ 1. (6)

Definition 4. When the inequality in (5) is tight, we say that item i is fully allocated under the

allocation x.

A k-ticket lottery equilibrium (Φ, p) corresponds to the allocation x such that x(v) = χ(Φ(v), p).

Definition 5. An allocation is envy-free if every agent weakly prefers her allocation to that of

every other agent. That is, for every agent type v, we have

x(v) · v = max
u∈Rn

x(u) · v. (7)

The property of envy-freeness is readily interpreted as a fairness constraint as it ensures that no

agent envies the allocation of another. However, it also arises naturally if the mechanism designer

cannot observe agent types, and must offer the same set of options to every agent. From this

perspective, envy-freeness may be thought of as a feasibility constraint that enforces anonymity.

In our continuum model, allocations produced by the k-ticket lottery are envy-free because every

agent faces the same win probability vector p.

Definition 6. Allocation x′ Pareto dominates allocation x if x′(v) ·v ≥ x(v) ·v for every v, with

strict inequality for some set of agents with positive η-measure. An allocation is Pareto-efficient

if no feasible allocation Pareto dominates it.
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4 The High Demand Setting

We start by considering the case where the number of agents is much larger than the number of

items. In this case, the win probability for each item is small. As a result, an agent’s chance of

receiving an item is roughly proportional to the number of tickets spent on that item. In other

words, tickets serve as virtual currency, and agents spend their tickets on the single item that

maximizes “bang for buck.” The resulting outcome resembles a competitive equilibrium from equal

incomes. We establish this formally by showing that as M grows, each agent becomes indifferent

between the k-ticket lottery and CEEI.

Theorem 1. Fix k, µ, and η. Let XM denote the set of allocations corresponding to k-ticket

equilibria with the given parameters and agent mass M , and let ceM denote the unique allocation

under CEEI.4 For almost every agent v, we have

lim
M→∞

sup
x∈XM

x(v) · v
ceM (v) · v = lim

M→∞
inf

x∈XM

x(v) · v
ceM (v) · v = 1. (8)

Proof sketch. According to the greedy algorithm for optimal strategy choice (Lemma 1), agents

place tickets in more than one lottery if the difference in marginal benefit between placing their

first and last ticket in the same lottery is sufficient to justify the change. If the odds of winning

each lottery are small, the marginal benefit of placing each subsequent ticket in the same lottery

is roughly constant. As a result, most agents opt to place all their tickets in a single lottery and

the resulting outcome is similar to the unique 1-ticket equilibrium. Finally, when all items are fully

allocated, the 1-ticket equilibrium allocation is equivalent to CEEI. The full proof of Theorem 1 is

in Appendix C.

5 Approximate Efficiency

Section 4 establishes that when there are far more agents than items, any k-ticket equilibrium

outcome approximates CEEI, which is Pareto efficient. In this section, we make no assumptions

about the number of agents and items. Although k-ticket equilibria are not Pareto efficient, we

4In general, CEEI may have multiple equilibria. However, if there is an equilibrium in which all items are fully
allocated, then this equilibrium is unique. Therefore, for all sufficiently large M , ceM is well defined.
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prove that they are approximately so.

We start by identifying two sources of inefficiency that may arise in a k-ticket equilibrium. First,

two or more agents may be able to profitably exchange probability shares. Second, there might

be unallocated items which can be assigned to benefit some agents. We formalize these concepts

below.

Definition 7. A trade reallocation of x is a feasible allocation x′ such that
∫
x(v) dη =∫

x′(v) dη. An allocation x is (ex ante) trade efficient if no trade reallocation of x Pareto

dominates it.

Definition 8. A waste reallocation of x is a feasible allocation x′ such that for every v and

every i that is fully allocated under x, x′i(v) ≤ xi(v). An allocation x is nonwasteful if for any

waste reallocation x′ and all v, x(v) · v ≥ x′(v) · v.

This definition implies that an allocation is wasteful whenever there is some item that is not

fully allocated and some agent with a positive probability of an outcome that is worse than receiving

this good.

If agents outnumber items and always prefer something to nothing, nonwastefulness and trade-

efficiency are equivalent to the familiar property of Pareto efficiency.

Proposition 2. If M ≥∑i µi and all agents have positive values for all items, an allocation x is

Pareto efficient if and only if it is nonwasteful and trade efficient.

Proof. Pareto efficiency trivially implies trade efficiency and nonwastefulness. In this setting, any

nonwasteful mechanism allocates all items. When all items are allocated, trade efficiency implies

Pareto efficiency.

The next sections provide definitions of approximate trade-efficiency and nonwastefulness, and

show that k-ticket lottery outcomes satisfy these properties. In particular, the k-ticket lottery is

always (2− 1
k )-trade efficient and 1

k -wasteful. Figure 1 summarizes our results.

5.1 Approximate Trade Efficiency

The k-ticket lottery is not generally trade efficient.5 In particular, if non-identical agents both

place tickets in lotteries i and j and face some risk of receiving nothing, then they can exchange

5That is, agents may be able to agree to an ex ante exchange of probability shares that offers a Pareto improvement.
The k-ticket lottery is ex post trade efficient, meaning that after the allocation occurs, no agents can exchange items
to their mutual benefit. For details, see Appendix A.
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CEEI

k-ticket

1-ticket ∞-ticket

trade efficient
(2- 1

k
)-trade efficient

nonwasteful
1
k
-wasteful

Figure 1: CEEI is both trade efficient and nonwasteful. Although k-ticket lotteries do not gen-
erally satisfy either of these conditions, they are approximately trade efficient and approximately
nonwasteful. Furthermore, trade efficiency is attained for k = 1 and nonwastefulness as k →∞.

probability shares of i and j to their mutual benefit (Appendix D.1 makes this statement precise).

We show, however, that the benefit from such trades is limited.

Definition 9. Given α ≥ 1, an allocation x is α-trade efficient if there does not exist a trade

reallocation x′ of x such that for all v,

x′(v) · v
x(v) · v ≥ α.

Theorem 2. Any equilibrium allocation of the k-ticket lottery is (2− 1
k )-trade efficient.

We prove Theorem 2 in Appendix D.2. For k = 1 we obtain the following corollary.

Corollary 1. The 1-ticket equilibrium allocation is trade-efficient.

The bound in Theorem 2 is not tight for k ≥ 2: in particular, the results of Immorlica et al.

(2017) imply that the ∞-ticket lottery is e/(e − 1) ≈ 1.58 trade efficient. However, Theorem 2

implies that for any k, it is impossible to double every agent’s welfare through an ex-ante exchange

of probability shares. By contrast, random serial dictatorship (which always produces an ex post

efficient allocation) is not α-trade efficient for any α <∞ (see Immorlica et al. (2017) for details).

5.2 Approximate Nonwastefulness

We quantify waste in terms of the value that can be gained from reallocating wasted items. In

particular, we say that an allocation is ε-wasteful if reallocating surplus items never improves any
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agent’s utility by more than an ε-fraction.

Definition 10. An allocation x is ε-wasteful if for all waste reallocations x′ and every v,

x′(v) · v
x(v) · v ≤ 1 + ε. (9)

Theorem 3. Any equilibrium allocation of the k-ticket lottery is 1/k-wasteful.

Proof. Let x be an allocation corresponding to a k-ticket equilibrium and Ax be the set of fully

allocated items under x. For a given v, the best possible waste reallocation ensures that v receives

i∗ ∈ arg maxi∈[n]\Ax
vi if she fails to win anything else, and thus

x′(v) · v = x(v) · v + (1−
∑
i

xi(v))vi∗ . (10)

Consider the process of optimal strategy selection outlined in Lemma 1. At each stage, the

agent chooses to place her jth ticket in the lottery corresponding to the item which maximizes her

marginal increase in welfare. At each stage, the agent declines to place a ticket in the lottery for

item i∗, so her marginal increase in welfare must be at least (1 −∑i xi(v))vi∗ at each step. It

follows that her total welfare

x(v) · v ≥ k · (1−
∑
i

xi(v))vi∗ . (11)

The theorem follows from substituting (11) into (10).

Theorem 3 is in fact tight.6 It implies that the mechanism designer can reduce waste to an

arbitrarily small fraction of welfare by choosing a large value of k. The next section explains why

this may not lead to desirable outcomes.

6 Wastefulness: Bug, or Feature?

To motivate our analysis, consider the real circumstances faced by moose hunters in Alaska, in

which the 6-ticket lottery is used to allocate hunting permits. Moose hunts occur across the state,

6To see this, consider a setting with two types of items, and let x be the allocation corresponding to a k-ticket
equilibrium with p = (ε, 1). Consider agent type v = (1/ε, 1 − ε), for some small ε > 0. By Lemma 1, the optimal
strategy is to place all k tickets in the lottery for item 1. As ε→ 0, x(v) ·v → k. If x′ gives the agent item 2 whenever
she fails to receive item 1, then x′(v) · v → k + 1 as ε→ 0.
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and hunt location is correlated with demand. Consider the example of moose hunts near the

Nowitna River corridor, in central Alaska. Hunts along the river are generally more popular than

hunts in the areas to the east and west of the river (the draw supplement warns hunters that the

latter areas “are remote and access is limited”). In 2018, just 10% of permit applications for moose

hunts along the river corridor were drawn during the lottery resolution process, while 96% of permit

applications for moose hunts in the remote areas were drawn (ADFG (2019a)).

To model this situation, we consider a specific scenario that we refer to as the two-item setting.

In this setting, there is a unit mass of agents and two items µ1 + µ2 ≥ 1. Agents’ values for item 1

are normalized to 1, and v2 > 0 for all agents. Given v ≥ 0, let F (v) denote the fraction of agents

with v2 ≤ v. We assume that F (1) > µ1, meaning that not all agents who prefer item 1 can receive

it. By contrast, the abundance of supply ensures that agents who wish to claim item 2 can do so.

In this sense, the two-item setting captures a situation where demand is low enough that only one

type of item is fully allocated, in contrast to the high demand setting considered in Section 4.

In the case of the moose hunters, suppose that item 1 corresponds to accessible hunts, while

item 2 corresponds to remote and inaccessible hunts. A hunter for whom the difficulty of traveling

to a remote region is prohibitive corresponds to an agent with a small v2, as a permit for a remote

hunt has little value to her. On the other hand, a hunter with more time, money or energy might

correspond to an agent with v2 ≈ v1 or v2 > v1. One might hope to assign most of the accessible

hunts to hunters who are unable to access the remote regions. However, Proposition 3 implies that

if everyone prefers accessible hunts, then any envy-free, nonwasteful mechanism awards these hunts

randomly.

Proposition 3. In the two-item setting, if all agents prefer item 1 to item 2 (F (1) = 1), the only

nonwasteful, envy-free allocation randomly allocates item 1 and allocates item 2 to the remaining

agents.

Proof. Because all agents have positive values for both items and µ1 + µ2 ≥ 1, nonwastefulness

implies x1(v) + x2(v) = 1 for all v and that item 1 is fully allocated. Envy-freeness thus implies

x1(v) = x1(v′) for every agent v, v′ < 1: that is, all agents with v < 1 receive the same allocation.

If all agents prefer item 1, the supply constraints imply that x(v) = (µ1, 1− µ1) for all v < 1.

Proposition 3 implies that Competitive Equilibrium from Equal Incomes (Hylland and Zeck-

hauser, 1979), the Boston mechanism, Choice-Augmented Deferred Acceptance (Abdulkadiroğlu
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Figure 2: Agent utility (y-axis) as a function of v2 (x-axis), in a setting with µ1 = µ2 = 1/2, v1 = 1
for all agents, and v2 ∼ U [0, 1]. In this case, CEEI results in a random allocation, so the utility
of an agent of type v2 is (1 + v2)/2. The 100-ticket lottery results in a nearly random allocation.
Decreasing the number of tickets increases welfare for agents with low v2, at the expense of agents
with intermediate or high v2.

et al., 2015), the ∞-Ticket Lottery (Immorlica et al., 2017), and Random Serial Dictatorship are

all equivalent to random allocation in the two-item setting. This holds despite the fact that agents

have different relative values for the items.

In a 1-ticket lottery, by contrast, any hunter who competes for an accessible hunt forgoes the

possibility of hunting elsewhere. This risk causes hunters with mild preferences for convenient hunts

to select hunts in less accessible areas that they are more likely to win. As a result, there are fewer

competitors for accessible hunts, and these hunts are allocated to hunters with stronger preferences

for accessibility. The same effect is present for larger k, though to a lesser extent: hunters with

strong preferences for accessible hunts will apply exclusively to them, while others will hedge their

bets by applying to at least one remote hunt.
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Figure 2 shows outcomes of the k-ticket lottery when v2 is uniformly distributed on [0, 1]. Agents

with strong preferences for item 1 spend all k tickets on it, while those with weaker preferences

spend one ticket securing item 2. When k is large, most agents use a ticket on item 2 and the

allocation is nearly random. As k shrinks, outcomes improve for agents with low value for item

2. Proposition 4 establishes that this holds more generally: agents with strong preferences for the

more highly demanded item prefer smaller values of k.

Proposition 4 (Agents with Strong Preferences Prefer Smaller k). In the two-item setting, let xi

and xj denote allocations corresponding to i-ticket and j-ticket equilibria, with i < j. If an agent v

prefers xi to xj, then so do all agents w with w2 ≤ v2.

The proof of Proposition 4 is in Appendix E.1. Proposition 4 implies that hunters with little

value for inaccessible hunts may prefer the k-ticket lottery to a nonwasteful mechanism. However,

might there be a better choice of wasteful mechanism? In particular, is it possible to design a

mechanism with comparable levels of waste that all hunters prefer? Proposition 5 states that in

the two-item setting, the answer is no: the k-ticket lottery is equivalent to running CEEI after

discarding some items, and is therefore trade efficient.

Proposition 5. In the two-item setting, each k-ticket equilibrium allocation x corresponds to a

CEEI with quantity vector µ̃ :=
∫
x(v) dF (v) ≤ µ.

The proof of Proposition 5 is in Appendix E.2. Proposition 5 implies that a version of CEEI

with preemptive disposal could replicate outcomes from the k-ticket lottery. However, the former

approach would face several obstacles to implementation, including the challenges of determining

up front how many permits to withhold and asking hunters to report cardinal utilities.

7 Conclusion

Our results have implications for the distribution of hunting permits in Alaska as well as for other

settings where items are rationed by lottery. Different results provide lessons for different markets.

Permits for bison hunts in Alaska are in very high demand. In 2018, in each lottery for bison

hunt permits, 1% or less of the submitted applications were drawn during the lottery resolution

process (ADFG, 2019a). In this case, Theorem 1 predicts that the k-ticket lottery outcome will

approximate the outcome of a CEEI, which is envy-free and Pareto efficient. Hunters, meanwhile,
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have a simple strategy: they should apply exclusively to the hunt which maximizes the ratio of

value to success probability. As a consequence, changing the maximum number of applications will

have little effect on the outcome. The application process could therefore be simplified by adopting

the 1-ticket lottery in cases where hunts are consistently oversubscribed by large margins.

In the submarket for unguided Kodiak bear hunting permits, win probabilities are more variable:

depending on the hunt, individual applications were drawn between 1% to 50% of the time in

2018, with a median of 3.5% (ADFG (2019a)). In this case, the choice to set k = 6 results in a

lottery mechanism that is 1/6-wasteful by Theorem 3, so the value of wasted permits will be low.

Theorem 2 implies that the lottery is also 11/6-trade efficient, although we believe that this bound

is pessimistic.

Theorem 3 suggests that the Alaska Department of Fish and Game could decrease the number

of unallocated permits by increasing k. However, Section 6 outlines the potential downside of this

change. Proposition 3 implies that a wasteful allocation is necessary to achieve effective sorting.

When k = 6, agents who apply to less desirable hunts must forfeit opportunities to win more popular

options, thereby increasing the odds for those aiming exclusively for these hunts. Proposition 4

suggests that reducing the number of tickets would benefit agents who are only interested in highly

demanded hunts, while potentially increasing waste. In other words, maximizing the number of

permits that are allocated is at odds with ensuring that permits are assigned to the hunters who

value them the most.

This observation has implications for the handling of unallocated permits. When permits go

unallocated, the biologist in charge of the area may reissue these permits later in the year (ADFG

(2019b)). Although one might think that reissuing these permits unambiguously helps hunters, in

fact the effect is more ambiguous. If leftover permits are reallocated, hunters who consider these

options acceptable can use all six applications to compete for popular hunts. By committing not to

reallocate leftover permits, the state could incentivize these hunters to apply to less popular hunts,

improving outcomes for hunters who are only interested in popular hunts.

Our results find further application in other settings where the k-ticket lottery is employed.

For instance, the Singapore Housing and Development Board uses the 1-ticket lottery to distribute

leases in new public housing units (Singapore HDB (2019)). Applicants are divided into submarkets

based on age and family type. Within a submarket, housing options are differentiated by maturity:

leases in mature neighborhoods with established amenities typically experience higher demand than
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leases in non-mature neighborhoods. As a consequence, the results in Section 6 indicate that the

Singapore housing lottery produces good outcomes for agents with strong preferences for mature

neighborhoods but might result in some units going unallocated. Additionally, Corollary 1 implies

that the outcome is trade-efficient.

Our analysis assumes equilibrium play. Agents may make mistakes if they are poorly informed

about the demand for each item. To address this concern, the Singapore Housing and Development

Board provides live estimates of success probabilities for each development, and allows applicants

to modify their application at any time before the deadline (Singapore HDB (2018)). The annual

Alaska hunt supplement lists the number of permits available for each hunt, as well as data from

the previous year on the number of applicants and the percentage of applications drawn (see ADFG

(2019a)). Though better than nothing, this approach suffers from at least two problems. First,

hunters are not provided with information about year-to-year fluctuations in demand caused by

the creation of new hunts, changes in the number of permits offered per hunt, and other factors.

Second, for k > 1, it is impossible to compute the win probability of a single application from the

number of successful permits and submitted applications, because some hunters may be offered

multiple permits. Creating an on online system to display live win probabilities for each hunt could

remedy these issues, helping to ensure that the appealing theoretical performance of the k-ticket

lottery is borne out in practice.
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A Ex Post Trade Efficiency

We say that an allocation is ex post trade efficient if agents cannot mutually benefit from ex post

trades of their received items. Formally, we define the envy graph of an allocation x to be a directed

graph on [n] containing a directed edge i → j for every i, j such that xi(v) > 0 and vi < vj for

every v in a set Vi→j with η(Vi,j) > 0. The edge i → j in the envy graph indicates that a set of

agents with nonzero measure will receive item i and would benefit from an ex post trade for item

j.

Definition 11. An allocation x is ex post trade efficient if its envy graph is acyclic.

Lemma 3. Ex ante trade efficiency implies ex post trade efficiency.

Proof. We prove the contrapositive. Consider an allocation x whose envy graph contains a cycle

C. Define

capacity(C) := min
i→j ∈ C

∫
Vi→j

xi(v) dη, (12)

and note that capacity(C) > 0 by definition. For each edge i→ j in C, choose a subset V ′i→j ⊆ Vi→j
such that

∫
V ′i→j

xi(v) dη = capacity(C) and exchange i for j to create an allocation that Pareto

dominates x and keeps
∫
x(v) dη constant.

Theorem 4. Any k-ticket lottery outcome is ex post trade efficient.

Proof. Consider the envy graph of an allocation x corresponding to a k-ticket equilibrium. If the

envy graph contains i → j, then there exists a set Vi→j with η(Vi→j) > 0 such that for every

v ∈ Vi→j , xi(v) > 0 and vi < vj . This implies pi > pj , as no agent in Vi→j places a ticket in the

lottery for item i otherwise. Thus a cycle in the envy graph would correspond to a cycle of strict

inequalities in win probabilities, which is impossible.

B Proofs from Section 3

B.1 Transformation of k-Ticket Strategy Choice into Downward Recursive

Portfolio Choice

Proof of Lemma 1. Fix a vector p of win probabilities, and define a multiset S of items that consists

of k copies of each item i. For each item i, we define the cardinal utility of i to be ui := vi, and the
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success chance to be αi := pi. Let �v be a total ordering on S according to the true preferences of

an agent type v, with ties between identical items broken in a consistent manner.

The Marginal Improvement Algorithm (MIA) of Chade and Smith (2006) determines a portfolio

Ŷ ⊆ S that maximizes the gross payoff

f(Y ) =
∑
i∈Y

(
αiui

∏
j∈Y | j�vi

(1− αj)
)

=
∑
i∈Y

(
pivi

∏
j∈Y | j�vi

(1− pj)
)

(13)

for an agent type v. Let� be a preference ordering of [n] consistent with�v, and let t = (t1, t2, ..., tn)

be the ticket choice vector constructed by setting each ti equal to the number of copies of item i in

Ŷ . Expanding (13), we have

f(Ŷ ) =
∑
i∈[n]

(
vi(1− (1− pi)ti)

∏
j�i

(1− pj)tj
)

= v · χ((t,�), p) = w(v, (t,�), p). (14)

Thus, given v, the MIA determines a strategy (t,�) that maximizes w(v, (t,�), p).

Let sY denote the strategy consisting of the ticket choice vector corresponding to Y ⊆ S and

a preference order � reflecting the true preferences of a fixed agent type v. On our portfolio, the

MIA proceeds as follows:

1. Begin with an empty portfolio Y0 = ∅.

2. Choose any item

i ∈ arg max
i∈S\Yj−1

w(v, sYj−1+{i}, p). (15)

3. If

w(v, sYj−1+{i}, p)− w(v, sYj−1 , p) > c(n), (16)

set Yj := Yj−1 + {i} and go to Step 2.

Our algorithm is equivalent to the MIA with the additional requirement that the process of

strategy augmentation stop after k steps. This is ensured by defining a cost function c such that

c(|Y |) = 0 if Y ≤ k and c(|Y |) = ∞ if |Y | > k (referred to in Chade and Smith (2006) as the

fixed sample size k case). The optimality of the greedy algorithm follows from the optimality of

the resulting instance of downward recursive portfolio choice.
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B.2 Existence of Equilibria

In this section, we complete the proofs that every strategy profile Φ implies a unique consistent win

probability vector p (Lemma 2) and that every k-ticket lottery has an equilibrium (Proposition 1).

Proof of Lemma 2. Given a strategy profile Φ, our setting maps directly to the two-sided matching

market defined by Azevedo and Leshno (2016). In their framework, agent types are identified by

a preference ranking of items �̃ and a score ei that determines priority for each acceptable item.

Each strategy s = (t,�) in our model corresponds to a measure over types (�̃, e) as follows:

1. �̃ ranks items with ti > 0 according to �.

2. items with ti = 0 are unacceptable according to �̃.

3. ei is distributed as the first order statistic of ti uniform random draws from [0, 1]. Scores are

independent across items.

Allocation in Azevedo and Leshno (2016) is summarized by a vector of cutoffs that lists the minimum

score required to receive each item i. Under this mapping, the vector c of market clearing cutoffs

is precisely ~1 − p, and the consistency condition is equivalent to the market clearing condition

(Definition 2 of Azevedo and Leshno (2016).)

Corollary A1 in the appendix of Azevedo and Leshno (2016) implies that we can find a set of

market clearing cutoffs c (equivalently, a vector of win probabilities p). Theorem A1 implies that

the set of market clearing cutoffs c forms a lattice with the supremum and infimum operators in

[0, 1]n. By Theorem A2, the measure of agents matched to each item i is the same under any

market clearing c (consistent p).

For each item i, the distribution of scores ei has full support for each strategy s that places at

least one ticket in the lottery for item i. As a result, any isolated decrease in a win probability for

an item that a positive measure of agents receive results in strictly fewer agents matching. Thus

the minimal and maximal elements of the lattice of consistent c coincide, implying that it contains

a unique element.

Proof of Proposition 1. Fix k, a set of items, an agent mass, and an agent type measure. We define

a function f : [0, 1]n → [0, 1]n as follows. For any win probability vector p, denote by Φp the

strategy profile determined by Lemma 1 that is unique up to a set of agents with measure zero.
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We define f(p) to be the vector of win probabilities determined by Φp, which is unique by Lemma

2.

By inspection, a fixed point of f corresponds to a k-ticket equilibrium. We show that f is

continuous, from which the existence of a fixed point follows from Brouwer’s theorem.

For s ∈ Sk, we have

(Φp)−1(s) = {v : ∀s′ ∈ Sk \ {s}, v · χ(s, p) > v · χ(s′, p)}. (17)

Because χ(s, p) is constant in v, (Φp)−1(s) is an open convex polytope in Rn (or the empty set).

Let (j) denote the item on which a given agent v uses her jth ticket according to the algorithm

specified in Lemma 1. Lemma 1 implies that the win probability of the items on which v bids is

weakly decreasing. Using this fact to unwind the algorithm, we have that Φp(v) is determined by

the unique sequence of items (1), (2), ..., (k) such that ∀i ∈ [n], j ∈ [k],

j∑
l=1

(
v(l)p(l)

j∏
m=l+1

(1− p(m))
)
≥ vipi + (1− pi)

( j−1∑
l=1

(
v(l)p(l)

j−1∏
m=l+1

(1− p(m))
))
. (18)

Because each constraint is polynomial in p, and because η is continuous, η((Φp)−1(s)) is continuous

in p for all s.

Let X(f(p)) be the matrix in which each column is the probabilistic allocation for a strategy

under f(p), that is,

X(i,s)(f(p)) := χi(s, f(p)), (19)

for all i ∈ [n], s ∈ Sk. Let H(p) be the vector containing the measure of agents who adopt each

strategy under Φp, that is,

Hs(p) := η((Φp)−1(s)), (20)

for all s ∈ Sk. If in fact f(p)i < 1 for all i ∈ [n], f(p) is the unique vector which satisfies

X(f(p)) ·H(p) = µ, (21)

as this equation is equivalent to the consistency constraints. However, the consistency constraints

allow the possibility that some items go unallocated if f(p)i = 1. We generalize (21) by defining
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the map A as follows.

Ai(f(p), p) :=
(
σ
(
Xi(f(p))H(p)− µi

)
+ (1− fi(p))

)(
Xi(f(p))H(p)− µi

)
, (22)

where σ(y) = max(0, y). By inspection, A(f(p), p) = 0 if and only if f(p) is consistent with Φp.

A(f(p), p) is continuous in f(p) and p, and by Lemma 2, p determines a unique f(p) ∈ [0, 1]n

such that A(f(p), p) = 0. Thus f(p) is continuous in p, and an equilibrium point exists by Brouwer’s

theorem.

B.3 1-Ticket Lotteries Have Unique Equilibria

The following lemma demonstrates that 1-ticket lotteries have a unique win probability vector p.

Because p is unique, every agent receives the same expected value in every equilibrium. Note that

the result is very similar to a result of Gale (1976), who considered the case where agents may

receive more than one item.

Lemma 4 (Uniqueness of 1-ticket Equilibria). if (Φ, p) and (Φ′, p′) are 1-ticket equilibria, then

p = p′.

Proof. Let (Φ, p) and (Φ′, p′) be 1-ticket equilibria. For contradiction, assume p 6= p′. Without loss

of generality, for some item i, we have pi > p′i. Because every agent has a single ticket, we can write

a closed-form expression for pi. Let t(v) denote the ticket choice vector of agent type v according

to Φ and t′(v) denote the ticket choice vector of agent type v according to Φ′. For each item i, we

have

pi = min{1, µi
η({v : ti(v) = 1})}, (23)

and the analogous statement holds for t′(v).

Thus pi > p′i implies the existence of a set of agents V with η(V ) > 0 such that for every v ∈ V ,

ti(v) = 0 and t′i(v) = 1. Let j be the item that maximizes η({v ∈ V : tj(v) = 1}). Because agents

in the set {v ∈ V : tj(v) = 1} switched from j to i, it must be the case that for all v ∈ V ,

pjvj > pivi > p′ivi > p′jvj . (24)
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Rearranging, we have
pj
p′j
>
pi
p′i
. (25)

This corresponds to the intuition that if item i is relatively fully allocated in (Φ′, p′) compared to

(Φ, p), some other item j must be more relatively fully allocated in (Φ′, p′) to create additional

demand for item i. Repeating this argument implies the existence of a sequence of items, each

more relatively fully allocated than the last. Because the number of items is finite, this presents a

contradiction, and thus p = p′.

B.4 k-Ticket Lotteries Are Not Unique for k > 1

Although every 1-ticket lottery has a unique equilibrium, k-ticket lotteries do not necessarily have

unique equilibria when k is greater than 1. The following example demonstrates a 2-ticket lottery

with multiple equilibria.

Consider a lottery with two items and µ1 = µ2 = 1. For simplicity, we consider a setting with

two discrete groups of agents.7 The first group of agents has type (1, 0). Regardless of other agents’

behaviors, these agents will always place both of their tickets in the lottery for item 1. The mass

of this group is 1/(2ε − ε2), which ensures that if only these agents apply for item 1, p1 = ε. We

set ε > 0 to be small enough that the win probability p1 is (multiplicatively) close to ε regardless

of the behavior of other agents. The second group of agents has type ( 7
32ε , 1) and mass 4/3. This

scenario is summarized in Table 1.

Agent Group Mass Type

Group 1 1/(2ε− ε2) (1, 0)
Group 2 4/3 ( 7

32ε , 1)

Table 1: A 2-ticket lottery that yields 2 equilibria.

In the first equilibrium, group 1 agents enter both tickets in the lottery for item 1 and group

2 agents put both tickets in the lottery for item 2. The resulting vector of win probabilities is

p = (ε, 1/2). In this equilibrium, a group 2 agent receives expected values of 14/32 − 7ε/32 from

putting both tickets in the lottery for item 1, 24/32 from putting both tickets in the lottery for

item 2, and 23/32− ε/2 from splitting her tickets, so the strategy profile is optimal given p.

In the second equilibrium, group 1 agents enter both tickets in the lottery for item 1 and group

2 agents split their tickets between the two lotteries. The resulting vector of win probabilities

7This assumption can be relaxed by replacing the agent point masses with Gaussians distributed tightly around
the original points.
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is p = (ε′, 3
4−4ε′ ), for some ε′ < ε with ε′ ≈ ε. In this equilibrium, a group 2 agent receives

expected values of ε′

ε (14/32 − 7ε′/32) ≈ 14/32 from putting both tickets in the lottery for item 1,

24(1−ε′)−9
16(1−ε′)2 ≈ 30/32 from putting both tickets in the lottery for item 2, and ε′

ε (7/32) + 3/4 ≈ 31/32

from splitting her tickets, so the strategy profile is optimal given p.

C Proof of Theorem 1

In this section, we prove that for almost every agent, the ratio of their expected value at any k-

ticket equilibrium to their expected value under CEEI goes to 1 as the mass of agents increases.

The proof treats µ, η, and k as fixed. When x is an allocation corresponding to a specified k-ticket

equilibrium, we write px to denote the vector of win probabilities at this equilibrium.

We begin by proving two properties of equilibria which hold for large agent masses. First, for

sufficiently large M , we prove that the maximum and minimum win probabilities for each item are

Θ(1/M) at equilibrium. Second, we show that as demand for each item increases, the η-measure of

the set of agents who bid on more than one item goes to 0. As a result, as M increases, the ratio

of expected value at any k-ticket equilibrium to expected value at the unique 1-ticket equilibrium

goes to 1 for almost every agent. Finally, we observe that the 1-ticket lottery produces the same

allocation as CEEI when all items are fully allocated.

Claim 1 (Equilibrium win probabilities are Θ(1/M)). Let µ, η, and k be fixed as above. There

exist positive constants c1, c2 such that for every M ≥ maxjµj, every x ∈ XM , and every i ∈ [n],

c1

M
≤ pxi ≤

c2

M
. (26)

Proof. Fix x ∈ XM . We have for each item i that

µi
kM

≤ pxi . (27)

This follows immediately from the fact that at most kM tickets can possibly be entered into a

single lottery, and at least µi of these are drawn if pxi < 1.

We prove the upper bound by inductively constructing a set of items with win probabilities

bounded by constant multiples of 1/M . First, observe that in any equilibrium, there exists an item
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i1 such that pxi1 ≤
∑

i µi
M . Otherwise, the quantity of items allocated by x would exceed

∑
i µi,

violating the equilibrium requirements. Furthermore, by assumption, some agents have nonzero

value for a second item j. Thus there exist constants 1 > ε1, γ1 > 0 such that

η({v : ∃j 6= i1, vj > ε1vi1}) > γ1. (28)

As a result, there exists an item i2 such that pxi2 ≤
∑

i µi
ε1γ1M

. Otherwise, by Lemma 1, a mass

γ1M of agents would place their first ticket on items other than i1. Observe that this ensures

each agent is allocated with probability at least
∑

i µi
ε1γ1M

in the 1-ticket case, and the total allocation

probability of each agent is strictly increasing in the number of tickets when px is held constant.

This presents a contradiction, as the quantity of items allocated to the set of agents with mass γiM

would exceed
∑

i µi. Repeating this argument for m = 2, 3, ..., n, we construct a series of constants

1 > εm, γm > 0 such that

η({v : ∃j 6= i1, ..., im−1, vj > εm max{vil}m−1
l=1 ) > γm, (29)

and a series of items im such that

pxim ≤
∑n

i=1 µi

M
∏m−1
j=1 εjγj

. (30)

Claim 2 (The set of ticket splitters goes to 0). For x ∈ XM , let Sx be the set of ticket splitters,

agents whose optimal strategy under Lemma 1 bids on more than one item. We have

lim
M→∞

sup
x∈XM

η(Sx) = 0. (31)

Proof. By definition, every agent in Sx adopts an equilibrium strategy in which she bids on at least

two items. Let v be an agent in Sx who places her first t − 1 tickets in the lottery for item i and
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her tth ticket in the lottery for item j. By Lemma 1, we have

pxi vi > pxj vj . (32)

pxj vj + (1− pxj )(1− (1− pxi )t−1)vi > pxi vi + (1− pxi )(1− (1− pxi )t−1)vi. (33)

Rearranging yields
pxi
pxj

>
vj
vi
>
pxi
pxj

+ (1− pxi
pxj

)(1− (1− pxi )t−1), (34)

and making use of the fact that (1− (1− pxi )t−1) ≤ kpxi for t− 1 < k, we have

Sx ⊆ {v :
vi
vj
∈ [

pxi
pxj

(1− k(pxi − pxj )),
pxi
pxj

]}. (35)

Claim 1 implies pxi /p
x
j is upper-bounded by a constant, so Claim 2 follows from the absolute

continuity of η as the interval shrinks to zero.

Lemma 5 (k-ticket utility converges to 1-ticket utility). Let x1
M denote the allocation corresponding

to the unique 1-ticket equilibrium with agent mass M . For almost every agent v, we have

lim
M→∞

sup
x∈XM

x(v) · v
x1
M (v) · v = lim

M→∞
inf

x∈XM

x(v) · v
x1
M (v) · v = 1. (36)

Proof. To prove Lemma 5, we must understand the structure of the 1-ticket lottery. Consider the

outcome of a 1-ticket lottery in a market with parameters µ, η, and M . By Lemma 4, this 1-

ticket lottery has a unique equilibrium win probability vector p which in turn determines a unique

expected value for any agent that plays an optimal strategy. Suppressing the dependence on η, we

write w1(µ,M, v) to denote the expected value of an agent v at 1-ticket equilibrium. We proceed

to show that w1 is continuous in µ and M .

Let Vi(p) denote the measure of the set of agents who bid on good i under the optimal strategy

given by Lemma 1 when the win probability vector is p. In the 1-ticket lottery, for all i, we have

µi = MpiVi(p) (37)

when M is sufficiently large. By Lemma 4, each agent v bids on a good i ∈ arg maxi∈[n] vipi
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at equilibrium. Vi(q) is thus continuous in p, as it is the measure of a polytope whose sides are

defined by linear equations in p. As a result, µ is continuous in p in the 1-ticket lottery. We write

µ1(p) := µ1(p,M, η) to indicate this.

By Lemma 4, µ determines a unique value of p satisfying the system of equations defined by

(37). Combined with the fact that µ is continuous in p, this implies that p is a continuous function

of µ. For fixed µ and sufficiently large M , scaling M by a constant c means that (37) is satisfied

by the win probability vector p/c,8 and thus p is a continuous function of M as well. Finally, the

expected value of any agent v at 1-ticket equilibrium is maxs∈S1 w(v, s, p), which is a continuous

function of p. Thus w1 is continuous in µ and M .

Define i(p, v) := arg maxi∈[n] vipi.
9 By Lemma 1, the optimal strategy for an agent v is to place

her first ticket in the lottery for good i(p, v), after which the marginal benefit for each additional

ticket weakly decreases. Thus for all M , x ∈ XM , we have

(1− (1− pxi(p,v))
k)vi(p,v) ≤ x(v) · v ≤ kpxi(p,v)vi(p,v) = w1(M,µ1(kpx), v). (38)

In (38), the first inequality follows because x(v) · v is a weakly better strategy than placing all k

tickets in the lottery for good i(p, v), the second inequality follows because x(v) · v is weakly less

than k times the marginal benefit of the first ticket placed, and the final equality follows because

kpxi(p,v)vi(p,v) is exactly the expected value of v in a 1-ticket lottery with win probability vector kpx.

From this observation and Claim 1 it follows that

lim
M→∞

sup
x∈XM

x(v) · v
w1(M,µ1(kpx), v)

= lim
M→∞

inf
x∈XM

x(v) · v
w1(M,µ1(kpx), v)

= 1. (39)

As w1(M,µ, v) = x1
M (v) · v, it remains to prove that

lim
M→∞

sup
x∈XM

w1(M,µ1(kpx), v)

w1(M,µ, v)
= lim

M→∞
inf

x∈XM

w1(M,µ1(kpx), v)

w1(M,µ, v)
= 1. (40)

As w1 is continuous in µ and M , it is sufficient to show that for all i ∈ [n],

lim
M→∞

sup
x∈Xm

µ1
i (kp

x)

µi
= lim

M→∞
inf

x∈Xm

µ1
i (kp

x)

µi
= 1. (41)

8Note that Vi(p) = Vi(cp) as long as cpi ≤ 1 for all i ∈ [n].
9Given p, we will ignore the set of agents who have multiple optimal strategies and for whom i(p, v) is undefined,

as this set has measure 0 and will not affect equilibrium parameters.
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For sufficiently large M , we have

µ1
i (kp

x) = MkpxVi(p
x) (42)

by (37). Moreover, for any M , and any x ∈ XM , i ∈ [n], we have

M(1− (1− pxi )k)V k
i (px) ≤ µi ≤M(1− (1− pxi )k)V 1

i (px), (43)

where V k
i (px) denotes the measure of the set of agents whose optimal strategy under px is to place

all k tickets into the lottery for item i, and V 1
i (px) denotes the measure of the set of agents whose

optimal strategy is to place at least 1 ticket in the lottery for item i. Equation (43) holds because

the lefthand side is the mass of item i allocated to agents who place every ticket in the lottery for

item i and the righthand side is the amount of item i which would be distributed if every agent

who bid on item i placed every ticket in the lottery for item i.

Dividing (42) by (43) yields

lim
M→∞

sup
x∈Xm

kpxi
(1− (1− pxi )k)

≤ lim
M→∞

sup
x∈Xm

µ1
i (kp

x)

µi
≤ lim

M→∞
sup
x∈Xm

kpxi
(1− (1− pxi )k)

V 1
i (px)

V k
i (px)

(44)

for sufficiently large M . The expressions on left and right both evaluate to 1, as by Claim 1 we have

limM→∞ supx∈Xm
kpx/(1 − (1 − pxi )k) = 1, and limM→∞ supx∈Xm

V 1
i (px)/V k

i (px) = 1 by Claim 2.

The analogous claim for the infimum holds by identical reasoning, so (41) follows.

Lemma 6 (1-ticket lotteries converge to CEEI). Let x1
M be an allocation corresponding to a 1-ticket

equilibrium where pi < 1 for all i ∈ [n]. For almost every agent v, x1
M (v) = ceM (v).

Proof. A market defined by µ, η and M ≥∑i µi corresponds to the instance of CEEI in which the

set of items is [n] + {o}, where o indicates an outside option with value 0 and quantity M −∑i µi.

When each agent is given a budget of 1, the price vector which assigns the price 1/p
x1M
i to

each item and 0 to the outside option clears the market. To see this, observe that each agent has

sufficient budget to buy a probability share p
x1M
i in any item i ∈ [n]. For almost every agent v ∈ V ,

there exists a unique item i ∈ K that maximizes p
x1M
i vi, and spending her entire budget on this

item maximizes her expected value. Thus almost every agent purchases a share p
x1M
i in the same

item on which she bids in the 1-ticket equilibrium, and picks up a share 1 − px
1
M
i of the outside
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option for free. By Lemma 1, this allocation is equivalent to x1
M (v).

Theorem 1 follows directly from Lemmas 5 and 6, as every item is fully allocated for sufficiently

large values of M .

D Proofs from Section 5

D.1 k-Ticket Lotteries are Not Trade Efficient

Proposition 6. For k > 1, if η has full support on Rn, any equilibrium with goods i and j such

that pj < pi < 1 corresponds to an allocation that is not trade efficient.

Proof. Let Vi,j denote the set of agent types v such that

pivi ≥ pjvj (45)

pjvj + (1− pj)pivi ≥ pivi + (1− pi)pivi (46)

∀l 6∈ {i, j}, vl < 0. (47)

By Lemma 1, agents in Vi,j place their first ticket in the lottery for good i and their remaining

tickets in the lottery for good j. Solving the two equations, we find that

Vi,j = {v :
pjvj
pivi

∈ [1− (pi − pj), 1], vl < 0 for l 6∈ {i, j}}. (48)

Because η has full support, η(Vi,j) > 0, and Vi,j contains sets of agents with nonzero measure

who have different relative values for items i and j and a chance of receiving nothing. In this case,

there exists an exchange rate at which agents benefit from exchanging shares of i and j.

D.2 Proof of Theorem 2

Let (Φ, p) be a k-ticket equilibrium and define the corresponding allocation x(v) := χ(Φ(v), p). Let

x′ be a trade reallocation of x. We will show that there is a set V with η(V ) > 0 such that for all

v ∈ V ,
x′(v) · v
x(v) · v < 2− 1

k
.
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Define the cost of a fractional allocation y to be

C(y) =
1

k

∑
i

yi/pi. (49)

Because χi(Φ(v), p) ≤ Φi(v)pi, we have that under x, every agent receives an allocation with

cost at most one:

C(x(v)) =
1

k

∑
i

χi(Φ(v), p)/pi ≤
1

k

∑
i

Φi(v) = 1.

Futhermore, the total cost of an allocation is invariant under trade reallocation:

∫
C(x(v))dη =

∫
C(x′(v))dη.

Thus there exists a subset V with η(V ) > 0, such that for all v ∈ V we have

C(x′(v)) ≤ C(x(v)) ≤ 1. (50)

For v ∈ V , we will provide an upper bound on the ratio x′(v)·v
x(v)·v by providing an upper bound for

the numerator and a lower bound for the denominator.

For a given agent v, the set

Yv := arg max
{y : C(y)≤1}

y · v (51)

consists of the solutions to the agent decision problem in an instance of CEEI in which each item i

has an equilibrium price of 1/kpi. As such, every agent has an optimal strategy which purchases at

most two items (Hylland and Zeckhauser (1979)). Fix v ∈ V and select y ∈ Yv with the minimum

number of nonzero entries y(v). It follows from (50) and the definition of y that x′(v) · v ≤ y · v.

First, suppose that yj > 0 for a single value j ∈ [n]. Then yj ≤ min(kpj , 1), and y · v ≤
min(kpj , 1)vj . Meanwhile, x(v) · v ≥ (1 − (1 − pj)k)vj , since the chosen strategy must be at least

as good as using all k tickets on item j. It follows that

x′(v) · v
x(v) · v ≤

y · v
x(v) · v ≤

min(kpj , 1)

1− (1− pj)k
≤ 1

1− (1− 1/k)k
, (52)

where the final inequality follows because the expression above is maximized at pj = 1/k. Finally,
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we have that
1

1− (1− 1/k)k
≤ 2− 1

k
,

as the expressions coincide for k = 1, the lefthand side is strictly lesser when k = 2, and finally

1− (1− 1/k)k ≥ 1− 1/e ≥ 1
2− 1

k

when k ≥ 3.

Next, suppose that y has two nonzero components. Without loss of generality, suppose that

these components are yi and yj and that pi ≤ pj . First, we observe that

pi < 1/k < pj . (53)

To see this, note that pi ≤ pj ≤ 1/k implies that 1/kpi ≥ 1/kpj ≥ 1, in which case y · v can

be weakly improved by an allocation that selects a single item from arg maxl∈{i,j} plvl. Similarly,

1/k ≤ pi ≤ pj implies 1 ≥ 1/kpi ≥ 1/kpj , in which case y · v can be weakly improved by an

allocation that selects a single item from arg maxl∈{i,j} vl. Both of these conclusions contradict our

choice of y so (53) follows.

Furthermore, if yi + yj < 1, we could weakly improve y · v by exchanging probability shares to

increase the share of arg maxl∈{i,j} plvl until yi + yj = 1 (or until we reached an allocation with a

single item, which would contradict our choice of y.) Thus we can assume

yi + yj = 1 (54)

without loss of generality.

The agent must prefer x(v) to randomizing between using all tickets on item i and using all

tickets on item j. Therefore, for any α ∈ [0, 1] we have

x(v) · v ≥ α(1− (1− pi)k)vi + (1− α)(1− (1− pj)k)vj . (55)

We can set α so that the allocation of this strategy is a scaled-down version of y:

α(1− (1− pi)k)/yi = (1− α)(1− (1− pj)k)/yj ∆
=

1

γ
. (56)
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It follows from the fact that x′(v) · v ≤ y · v and (55), (56) that

x′(v) · v
x(v) · v ≤

y · v
1
γ y · v

= γ. (57)

We now provide a upper bound for γ. Using (54) and solving (56) for α, we can solve for γ:

γ =
yi

1− (1− pi)k
+

yj
1− (1− pj)k

(58)

Solve for the choice of y satisfying yi + yj = 1 and C(y) = 1, and substitute into (58). After

simplification we get the following expression for γ, which we write in terms of the functions f and

h:

f(pi, pj) :=
pj − 1/k

pj − pi
h(pi) +

1/k − pi
pj − pi

h(pj) = γ, (59)

where

h(p) :=
pk

1− (1− p)k . (60)

By Lemma 7, f(pi, pj) = γ is maximized by taking pi → 0 and pj → 1, in which case it converges

to 2− 1
k .

Lemma 7. For 0 ≤ pi < 1/k < pj, the function f defined in (59) is decreasing in pi and increasing

in pj.

Proof. We can express f(pi, pj) as

f(pi, pj) = h(pj)− (pj − 1/k)
h(pj)− h(pi)

pj − pi
. (61)

We claim that
h(pj)−h(pi)

pj−pi is increasing in pi on [0, pj ]. This follows because

d

dpi

h(pj)− h(pi)

pj − pi
=

(pj − pi)h′(pi) + h(pj)− h(pi)

(pj − pi)2
, (62)

and the numerator is positive by the convexity of h on (0, 1) (see Lemma 8). Therefore, for pj ≥ 1/k,

the expression in (61) is decreasing in pi.

Analogously, we can express f(pi, pj) as

f(pi, pj) = h(pi) + (1/k − pi)
h(pj)− h(pi)

pj − pi
. (63)
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Because h is convex on (0, 1),
h(pj)−h(pi)

pj−pi is increasing in pj for pj > pi. Thus the expression above

is increasing in pj if pi < 1/k.

Lemma 8. The function h defined in (60) is convex on the interval (0, 1).

Proof. It is equivalent to show that g(x) = 1
kh(1 − x) = 1−x

1−xk is convex. Differentiating twice, we

see that

g′′(x) =
kxk−2((k − 1)xk+1 − (k + 1)xk + (k + 1)x− k + 1)

(xk − 1)3
. (64)

Thus g′′(x) ≥ 0 if and only if the quantity

−(k − 1)xk+1 + (k + 1)xk − (k + 1)x+ k − 1 (65)

is greater than or equal to 0. The expression in (65) is equal to 0 when x = 1, so to prove the

convexity of g(x) it suffices to show that (65) is weakly decreasing on (0, 1). The derivative of (65)

is

(k + 1)((1− k)xk + kxk−1 − 1). (66)

We claim that this quantity is weakly less than 0. Equation 66 is 0 at x = 1, and differentiating

reveals that it is weakly increasing in x on (0, 1).

E Proofs from Section 5

The following lemma is useful in the proofs of Propositions 4 and 5.

Lemma 9. At equilibrium in the two-item setting, almost every agent adopts one of three strategies:

1. Agents with v2 < p1 place k tickets in the lottery for item 1 and receive x(v) = (1−(1−p1)k, 0).

2. Agents with p1 < v2 < 1 place k − 1 tickets in the lottery for item 1, place 1 ticket in the

lottery for item 2, and receive x(v) = (1− (1− p1)k−1, (1− p1)k−1).

3. Agents with v2 > 1 place k tickets in the lottery for item 2 and receive x(v) = (0, 1).

Proof. As F (1) ≥ µ1, item 1 is fully allocated. As a result,
∫

1 − x1(v) dη = 1 − µ1 = µ2, so

p2 = 1 in any win probability vector p corresponding to a k-ticket equilibrium in the two-item
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setting. As a result, agents with v2 > 1 are guaranteed their preferred item when they adopt

Strategy 3. For agents with v2 < 1, every strategy that places less than k− 1 tickets in the lottery

for item 1 is dominated by Strategy 2. Finally, agents who adopt Strategy 1 have expected value

(1 − (1 − p1)k−1)v1 + (1 − p1)k−1p1v1, while agents who adopt Strategy 2 have expected value

(1− (1−p1)k−1)v1 + (1−p1)k−1p2v2. Plugging in v1, p2 = 1 implies that agents with v2 < p1 adopt

Strategy 1 and agents with p1 < v2 < 1 adopt Strategy 2.

E.1 Proof of Proposition 4

Proof of Proposition 4. Lemma 9 implies that in any k-ticket equilibrium in the 2-item setting,

plotting expected value in terms of v2 yields a piecewise linear function (as depicted in Figure 2.)

Specifically, all agents with v2 < p1 adopt Strategy 1 and have expected value 1− (1−p1)k. Agents

with p1 < v2 < 1 adopt Strategy 2, and expected value increases linearly to 1 on the interval [p1, v2].

Finally, agents with v2 > 1 adopt Strategy 3 and have expected value v2. Thus the geometry of

the expected value curve implies that two such curves cross at most once.

Fix a k-ticket equilibrium in the two-item setting with win probability vector p. By Lemma 9,

we have

µ1 = (1− (1− p1)k)F (p1) + (1− (1− p1)k−1)(F (1)− F (p1)). (67)

Rearranging this equation, we get

F (1)− µ1 = (1− p1)k−1(F (1)− p1F (p1)). (68)

By definition, the left side of this equation is a nonnegative value constant in p and k. As a result,

we have F (1)− p1F (p1) ≥ 0. Thus the right side of the equation is decreasing in p1 and k, which

implies that in the two-item setting, a smaller k corresponds to a larger p1 at equilibrium.

Fix i < j, and let xi and xj be allocations corresponding to i and j-ticket equilibria in the

two-item setting. The win probability for item 1 is higher in the i-ticket equilibrium, so agents

with small v2, who adopt Strategy 1 in both equilibria, prefer xi to xj . If the expected value curves

corresponding to xi and xj do not cross, then every agent with v2 < 1 prefers xi to xj . If the

expected value curves cross, then every agent with v2 less than the point of indifference prefers xi

to xj . Thus if v prefers xi to xj , the same is true of any agent w with w2 < v2.
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E.2 Proof of Proposition 5

Proof of Proposition 5. Let x be an allocation corresponding to a k-ticket lottery in the two-item

setting. Our proposed CEEI takes place in the same market, except that the two items have

quantities defined by the vector

µ̃ :=

∫
x(v) dF (v) ≤ µ. (69)

We claim that c := ( 1
1−(1−p1)k

, p1
1−(1−p1)k

) is an equilibrium price vector in this market. To see this,

consider an agent v = (1, v2) who wishes to choose (x1, x2) to maximize x1 + x2v2 subject to the

unit demand constraint x1 + x2 ≤ 1 and the budget constraint x1c1 + x2c2 ≤ 1. A straightforward

calculation verifies that for agents with v2 < p1, p1 < v2 < 1, and v2 > 1, the allocations described

in Lemma 9 solve this optimization problem and clear the market.
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