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Abstract

We analyze the parallel lottery which is used to allocate hunting permits in the state of

Alaska. Each participant is given tickets to distribute among lotteries for different types of

items. Participants who win multiple items receive their favorite, and new winners are drawn

from the lotteries with unclaimed items.

When supply is scarce, equilibrium outcomes of parallel lotteries approximate a competitive

equilibrium from equal incomes (CEEI), which is Pareto efficient. When supply is moderate,

parallel lotteries exhibit two sources of inefficiency. First, some agents may benefit from trading

probability shares. Second, outcomes may be “wasteful”: agents may receive nothing even if

acceptable items remain unallocated. We bound both sources of inefficiency, and show that each

is eliminated by giving applicants a suitable number of tickets k: trades are never beneficial when

k = 1, and waste is eliminated as k →∞.

In addition, we show that the wastefulness of the k-ticket parallel lottery has some benefits:

agents with strong preferences may prefer parallel lottery outcomes to those of any nonwasteful

envy-free mechanism. These agents prefer small values of k, while agents with weak preferences

prefer large values of k. Together, these results suggest that the k-ticket parallel lottery performs

well under most circumstances, and may be suitable for other settings where items are rationed.

1 Introduction

We address the challenge of allocating heterogeneous resources to unit-demand agents without

using money. Real-world examples include the allocation of hunting, hiking, camping and fishing

permits, affordable housing units, seats at public schools, and scholarships.

We take inspiration from the allocation of hunting permits. In the United States, this allocation

is conducted by state agencies. Prospective hunters must apply for a permit, which are limited
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in supply. In many cases, permitting fees are nominal, and demand exceeds supply. Most states

conduct annual lotteries to award permits. Though procedures vary, states generally conduct

separate allocations for each species, so that a hunter might apply and win permits for multiple

species. However, for each species, hunters are constrained to receive at most one permit.

In Alaska, the allocation for each individual species proceeds as follows. The state offers different

types of permit, which specify when and where hunting may occur, as well as the number and gender

of animals that may be killed. It sets a quota for each permit type, and publishes this information in

an annual “Draw Supplement.”1 Each applicant can submit up to six “applications,” and may apply

for a given type of permit multiple times to increase their odds of winning (for example, one might

apply five times for a popular permit, and once for a second, less popular permit). Each applicant

also submits a preference ranking over permits for which they have applied. After the application

deadline, applications are drawn randomly for each permit. Applicants who win multiple permits

keep only their favorite among these, and new names are drawn for the remainder. This process

continues until each permit type has either been fully allocated or offered to all applicants.2

This inspires several natural questions. How do outcomes of this lottery compare to those that

would result from using other procedures? Are these outcomes efficient, or at least approximately

so? And what would be the effect of increasing or decreasing the maximum number of applications?

We address these questions using a model with a continuum of agents and n types of items. In

Section 3 we define the k-ticket parallel lottery, in which agents may allocate k ∈ N tickets across

lotteries. Given agents’ actions, each item has a resulting level of competition, summarized by the

probability that a ticket entered into the corresponding lottery will be drawn. Agents take these

win probabilities into account when deciding how to use their tickets.

Our first result establishes that when there are many more agents than items, equilibrium

outcomes of the k-ticket parallel lottery are close to outcomes of a competitive equilibrium with

equal incomes (CEEI): each agent is nearly indifferent between these mechanisms. Thus, when

demand is high, the choice of k is not very important, and parallel lotteries can be thought of

as a virtual currency system. In particular, their equilibrium outcomes are approximately Pareto

1The most recent supplement is available at https://www.adfg.alaska.gov/index.cfm?adfg=huntlicense.

drawsupplements, and additional information on the draw can be found at https://www.adfg.alaska.gov/index.

cfm?adfg=huntlicense.lottery.
2An alternative description of the process is as follows. A hunter who submits ti applications to permit type i is

given a random priority for i that is the first-order statistic of ti iid uniform draws from [0, 1]. Using these priorities and
the preference rankings submitted by hunters, the state runs the permit-proposing Deferred Acceptance algorithm.
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efficient.

In general, parallel lotteries exhibit two forms of inefficiency. First, some agents may benefit

from trading probability shares. Second, outcomes may be “wasteful”: agents may receive nothing

even if acceptable items remain unallocated. Our second contribution is to bound both sources

of inefficiency. In particular, Theorem 3 states that for any equilibrium allocation, no ex ante

exchange of probability shares can increase the welfare of every agent to more than 1
1−(1−1/k)k

times their welfare under the original allocation. Theorem 5 states that no reallocation of wasted

items can increase the welfare of any agent to more than (1 + 1
k ) times their welfare under the

original allocation. In particular, these two theorems imply that when k = 1, no beneficial trades

are possible, and as k →∞, waste is eliminated. In addition, we prove that the k-ticket parallel

lottery is 1
1−(1− 1

k+1
)k

-Pareto efficient (Theorem 2).

Our third contribution is to demonstrate that the wastefulness of parallel lotteries may actually

improve sorting: agents with strong preferences for popular items may prefer the k-ticket parallel

lottery to any nonwasteful mechanism. We illustrate this by considering the scenario in which there

are two types of items and one item is universally preferred, while the other is abundant. In this

scenario, CEEI is equivalent to random matching. (This occurs because the less demanded item

is available at no cost, so all agents spend their entire budget on the highly demanded item.) By

contrast, in a k-ticket parallel lottery, securing the second item comes at the cost of spending a

ticket, which only agents with a weak preference for the first item are willing to pay. Proposition

5 establishes that in this setting, smaller choices of k are better for agents who strongly prefer the

more popular item. In addition, we demonstrate that no other mechanism achieves greater efficiency

with the same amount of waste: Proposition 4 states that in the two-item setting, allocating items

with a parallel lottery is equivalent to discarding the items wasted by the parallel lottery and then

running CEEI.

We provide advice for choosing k and practical recommendations for implementing the k-ticket

parallel lottery in Sections 6 and 7. In Section 8, we apply our decision criteria to provide provisional

recommendations for several real-world settings.

Taken together, our results suggest that parallel lotteries produce good outcomes across a range

of market conditions. When demand far outpaces supply, they approximate a competitive equilib-

rium from equal incomes. When demand and supply are more balanced, they remain approximately

efficient and may allow agents to signal their preference intensities more effectively than CEEI.
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2 Related Work

Reeling and Verdier (2018) also study the allocation of hunting permits. They use bear hunting

permit data from the Michigan Department of Natural Resources to calibrate a structural model,

and then use this model to compare alternative allocation policies. They highlight that the current

dynamic mechanism allows hunters to match efficiently across time.

Hylland and Zeckhauser (1979) introduce Competitive Equilibrium from Equal Incomes (CEEI),

in which agents use virtual currency to buy probability shares of items. Equilibria of CEEI are ex-

ante Pareto efficient and envy-free, and Ashlagi and Shi (2015) show that this is the only mechanism

with these properties. Despite its virtues, CEEI is rarely used in practice due to the challenges of

soliciting preference intensities from agents.

Several papers have argued that other mechanisms may approximate CEEI outcomes. Abdulka-

diroğlu et al. (2011) and Miralles (2009) note advantages of the “Boston” mechanism, in which items

are preferentially awarded to agents who rank them highly. Abdulkadiroğlu et al. (2015) introduce

Choice-Augmented Deferred Acceptance (CADA), which allows agents to improve their priority

at one targeted item. If items have no inherent preferences over agents, the Boston mechanism

is simply a sequence of 1-ticket parallel lotteries, and CADA is a 1-ticket parallel lottery followed

by random serial dictatorship. Due to the close relationship between these mechanisms and the

1-ticket parallel lottery, our claim that the one-ticket lottery is trade efficient (Corollary 1) is anal-

ogous to the observation that schools that fill in the first round of Boston are efficiently allocated

(Miralles, 2009), as well as an analogous claim for CADA (Abdulkadiroğlu et al., 2015).

Immorlica et al. (2017) introduce the “raffle”, which is the natural extension of the k-ticket

parallel lottery with k =∞. They show that for any equilibrium of this mechanism, it is impossible

to simultaneously increase all participants’ welfare to e
e−1 times their original welfare, and argue

that this mechanism is a practical alternative to CEEI. However, it is hard to imagine deploying a

mechanism that requires applicants to allocate an infinitely divisible mass of tickets. As such, our

work can be viewed as a study of more practical variants of the raffle.

One key difference between a k-ticket parallel lottery and the ∞-ticket raffle is that the former

might fail to allocate items, even if there are unmatched agents who consider them acceptable. In

fact, this wastefulness also differentiates the parallel lottery from CEEI, the Boston mechanism,

CADA, and Random Serial Dictatorship. Although wastefulness seems to be a shortcoming, Section
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6 shows that it also has benefits: parallel lotteries may achieve more effective sorting than these

other mechanisms, benefiting agents with strong preferences. The setting in Section 6 is very similar

to that considered by Cavallo (2014). He seeks to maximize utilitarian welfare, and shows that in

some cases, random allocation is optimal, but in others, wasteful mechanisms offer improvements.

At a technical level, our paper leverages several results from other papers. Lemma 1, which

gives an agent’s best response, builds upon the work of Chade and Smith (2006). Lemma 2, which

states that every strategy profile induces a unique consistent outcome, builds upon the uniqueness

of a stable outcome established by Azevedo and Leshno (2016). The proof that 1-ticket lotteries

have a unique equilibrium is similar to a result in Gale (1976). The proofs of Theorems 2, 3, and

4 are inspired by the proof of approximate efficiency in Immorlica et al. (2017).

3 Model

There are n types of items with quantities µ = (µ1, µ2, ..., µn) ∈ Rn+. There is mass M of agents.

Each agent is identified by a type v = (v1, v2, ...vn) ∈ Rn, where vi denotes the agent’s value for

item i. Types are distributed according to a probability measure η that is absolutely continuous

with respect to the Lebesgue measure. Agents also have an outside option with a value normalized

to zero. Without loss of generality, we consider only agent types with positive value for at least

one item and items which a positive measure of agents prefer to their outside option.

In Section 3.1, we define the optimization problem facing a single agent. Section 3.2 discusses

how agent strategies determine aggregate outcomes, and defines our equilibrium concept. Section

3.3 introduces several efficiency metrics.

3.1 Single-Agent Decision Problem

The agent’s interaction with the k-ticket parallel lottery is summarized by a strategy s = (t,�)

consisting of a ticket allocation vector t = (t1, t2, ..., tn) and a preference ranking � over the set of

items. For i, j ∈ [n], ti denotes the number of tickets entered in lottery i and j � i indicates that

the agent prefers j to i in her preference ranking. Let Sk denote the set of all possible strategies

with at most k tickets. A strategy profile Φ : Rn → Sk associates a k-ticket strategy with every

agent type.

A strategy profile Φ induces a vector p = (p1, p2, ..., pn) of win probabilities, where pi denotes
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the probability that an individual ticket entered in lottery i will be drawn during the lottery

resolution process. Agents take p as given when considering which strategy to adopt. We address

the calculation of p in Section 3.2.

Given strategy s and win probabilities p, the vector χ(s, p) = {χi(s, p)}ni=1 summarizes the

probability that an agent who adopts strategy s wins each item. We define

χi(s, p) := (1− (1− pi)ti)
∏
j�i

(1− pj)tj , (1)

meaning that an agent wins item i so long as at least one the tickets entered in lottery i is drawn

and the agent does not win any item j for which j � i.
For fixed p, the expected welfare of an agent with type v under strategy s is

w(v, s, p) := v · χ(s, p). (2)

At any equilibrium strategy profile, each agent maximizes his or her expected welfare.

Definition 1. Let p = (p1, p2, ..., pn) be a fixed vector of win probabilities for each lottery. A

strategy profile Φ is optimal given p if

∀v,Φ(v) ∈ arg max
s∈Sk

w(v, s, p). (3)

If agents have a single ticket, the optimal strategy is clear: spend it on the item i∗ that maximizes

pivi. With multiple tickets, one might conjecture that the optimal strategy spends them all on i∗.

However, this is not necessarily the case. Because an agent might have multiple tickets drawn, but

can keep only one item, tickets have diminishing marginal returns. This gives agents an incentive

to spend tickets on items which are both more desirable and more competitive than i∗.

Despite this complexity, an agent’s optimal strategy can be computed by a simple greedy al-

gorithm. The algorithm starts by spends its first ticket on i∗. It then allocates each subsequent

ticket to maximize the marginal gain in utility from that ticket. As a consequence, later tickets are

spent on increasingly competitive items.

Below, we write s+ {i} to denote the strategy s with an additional ticket placed in the lottery

for item i.
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Lemma 1. For any p and any v, the following greedy algorithm computes an optimal strategy:

1. Set s := (~0,�), where � is ordered according to the true preferences of v.

2. For j = 1, 2, .., k: select ij ∈ arg maxi∈[n](w(v, s + {i}, p) − w(v, s, p)). If the arg max is not

unique, select ij to be the agent’s most preferred item in this set. Set s := s+ {ij}.

Proof Sketch. The problem of computing an optimal k-ticket strategy can be transformed into a

downward-recursive portfolio choice problem over stochastic options. Lemma 1 then follows from

the optimality of the Marginal Improvement Algorithm introduced by Chade and Smith (2006).

The reduction to downward recursive portfolio choice is elaborated in Appendix A.1.

Multiple choices of i may maximize w(v, s + {i}, p) for two reasons. First, different strategies

may lead to the same probabilistic allocation if the agent can secure his or her most preferred item

with a single ticket. In this case, the algorithm above ensures that agents continue to enter tickets

into the lottery for their most preferred item.3 Second, an agent may be exactly indifferent between

two strategies that lead to different allocations. Because η is absolutely continuous, for any p this

occurs only for a set of agents with measure zero. Thus, the algorithm above uniquely determines

allocation probabilities for almost every agent type.

3.2 k-Ticket Equilibria

Given a strategy profile, any win probability vector p must be consistent with the available quan-

tities µ. That is, for i ∈ [n], either the entire mass µi should be allocated or every ticket entered

into lottery i should be drawn.

Definition 2. Fix a strategy profile Φ. A vector p of win probabilities is consistent with Φ if for

all i ∈ [n],

M
∑
s∈Sk

χi(s, p) η({v : Φ(v) = s}) ≤ µi, (4)

with equality if pi < 1.

Lemma 2. For each strategy profile, there is a unique consistent win probability vector.

3This choice is motivated by the fact that this strategy is uniquely optimal under a small perturbation of the
vector p.
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Proof Sketch. For a fixed strategy profile Φ, the k-ticket parallel lottery is equivalent to a deferred

acceptance procedure in which agents’ priority for each item i increases stochastically with the

number of tickets placed in the lottery for item i. It then follows from the results of Azevedo and

Leshno (2016) that every strategy profile Φ admits at least one vector p of win probabilities, that

the set of win probability vectors forms a lattice, and that every consistent vector p matches the

same set of agents. Because the measure of matched agents is strictly increasing in p, the lattice

property implies that the consistent p is unique. The full proof is in Appendix A.2.

Definition 3. A k-ticket equilibrium is a pair (Φ, p) consisting of a strategy profile and a vector

of win probabilities such that Φ is optimal given p and p is consistent with Φ.

Proposition 1 (k-Ticket Equilibria Exist). Every k-ticket lottery admits an equilibrium.

Proof Sketch. We describe a continuous function f that maps the space of win probability vectors

to itself such that f(p) = p if and only if p corresponds to a k-ticket equilibrium (Φ, p). Applying

Brouwer’s fixed point theorem to f demonstrates that an equilibrium exists. The full proof is in

Appendix A.2.

In fact, the 1-ticket parallel lottery has a unique vector p of win probabilities at equilibrium.

When k ≥ 2, however, parallel lotteries may have multiple equilibria with distinct win probability

vectors. We prove the uniqueness of 1-ticket equilibria and provide an example illustrating the

non-uniqueness of 2-ticket equilibria in Appendices A.3 and A.4.

3.3 Envy-Free and Pareto-Efficient Allocations

A (probabilistic) allocation is a function x : Rn → [0, 1]n that assigns each agent a chance to receive

each item. Each agent type v is allocated x(v) = (x1(v), x2(v), ..., xn(v)), where xi(v) denotes the

probability of receiving item i. Allocations satisfy the following feasibility constraints:

1. Allocations respect the quantity of each item:

∀i,M
∫
xi(v)dη ≤ µi. (5)
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2. Each agent receives at most one item:

∀v,
n∑
i=1

xi(v) ≤ 1. (6)

Definition 4. When the inequality in (5) is tight, we say that item i is fully allocated under the

allocation x. Otherwise, we say that item i is underdemanded.

A k-ticket equilibrium (Φ, p) corresponds to the allocation x such that x(v) = χ(Φ(v), p).

Definition 5. An allocation is envy-free if every agent weakly prefers her allocation to that of

every other agent. That is, for every agent type v, we have

x(v) · v = max
u∈Rn

x(u) · v. (7)

The property of envy-freeness is readily interpreted as a fairness constraint as it ensures that no

agent envies the allocation of another. However, it also arises naturally if the mechanism designer

cannot observe agent types, and must offer the same set of options to every agent. From this

perspective, envy-freeness may be thought of as a feasibility constraint that enforces anonymity.

In our continuum model, allocations produced by the k-ticket lottery are envy-free because every

agent faces the same win probability vector p.

Definition 6. Allocation y Pareto dominates allocation x if y(v) · v ≥ x(v) · v for every v, with

strict inequality for some set of agents with positive η-measure. An allocation is Pareto-efficient

if no feasible allocation Pareto dominates it.

4 The High Demand Setting

We start by considering the case where the number of agents is much larger than the number of

items. In this case, the win probability for each item is small. As a result, an agent’s chance of

receiving an item is roughly proportional to the number of tickets spent on that item. In other

words, tickets serve as virtual currency, and agents spend their tickets on the single item that

maximizes “bang for buck.” The resulting outcome resembles a competitive equilibrium from equal

incomes. We establish this formally by showing that as M grows, each agent becomes indifferent

between the k-ticket parallel lottery and CEEI.
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Theorem 1. Fix k, µ, and η. Let XM denote the set of allocations corresponding to k-ticket

equilibria with the given parameters and agent mass M , and let ceM denote the unique allocation

under CEEI.4 For almost every agent v, we have

lim
M→∞

sup
x∈XM

x(v) · v
ceM (v) · v = lim

M→∞
inf

x∈XM

x(v) · v
ceM (v) · v = 1. (8)

Proof sketch. According to the greedy algorithm for optimal strategy choice (Lemma 1), agents

place tickets in more than one lottery if the difference in marginal benefit between placing their

first and last ticket in the same lottery is sufficient to justify the change. If the odds of winning

each lottery are small, the marginal benefit of placing each subsequent ticket in the same lottery

decreases very slowly. As a result, most agents opt to place all their tickets in a single lottery and

the resulting outcome is similar to the unique 1-ticket equilibrium. Finally, when all items are fully

allocated, the 1-ticket equilibrium allocation is equivalent to CEEI. The full proof of Theorem 1 is

in Appendix B.

5 Approximate Efficiency

Section 4 establishes that when there are far more agents than items, any k-ticket equilibrium

outcome approximates CEEI, which is Pareto efficient. In this section, we make no assumptions

about the number of agents and items. Although k-ticket equilibria are not Pareto efficient, we

prove that they are approximately so. We adopt the notion of approximate Pareto efficiency

proposed by Immorlica et al. (2017), which says that an allocation is α-Pareto efficient if it is

impossible to simultaneously improve each agent’s welfare by a multiplicative factor of α.

Definition 7. Allocation x is α-Pareto efficient if for every feasible allocation y

η

({
v :

y(v) · v
x(v) · v ≤ α.

})
> 0. (9)

Immorlica et al. (2017) show that equilibria of the ∞-ticket lottery are e/(e− 1) ≈ 1.58-Pareto

efficient. Our next result establishes approximate Pareto efficiency for any k-ticket equilibrium. It

implies that equilibria of the the 1-ticket lottery are 2-Pareto efficient. The approximation factor

4In general, CEEI may have multiple equilibria. However, if there is an equilibrium in which all items are fully
allocated, then this equilibrium is unique. Therefore, for all sufficiently large M , ceM is well defined.
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improves as k increases, and converges to e/(e− 1) as k →∞.

Theorem 2. Any equilibrium of the k-ticket parallel lottery is 1
1−(1− 1

k+1
)k

-Pareto efficient.

The proof of Theorem 2 is located in Appendix C.4. Although this result bounds the inefficiency

of any k-ticket equilibrium, it does not explain why these equilibria may be inefficient in the first

place. Our next step is to identify two sources of inefficiency that may arise. First, two or more

agents may be able to profitably exchange probability shares. Second, there might be unallocated

items which can be assigned to benefit some agents. We formalize these concepts below.

Definition 8. A trade reallocation of x is a feasible allocation y such that
∫
x(v) dη =

∫
y(v) dη.

Allocation x is α-trade efficient if for any y that is a trade reallocation of x, (9) holds. An

allocation is trade efficient if it is 1-trade efficient.

Definition 9. A waste reallocation of x is a feasible allocation y such that for every v and every

i that is fully allocated under x, yi(v) ≤ xi(v). Allocation x is ε-wasteful if for any y that is a

waste reallocation of x, and any v, v·y(v)
v·x(v) ≤ 1 + ε. An allocation is nonwasteful if it is 0-wasteful.

Definition 9 implies that an allocation is wasteful if there is some item that is not fully allocated

and some agent with a positive probability of an outcome that is worse than receiving this item.

It quantifies waste not by the number of unallocated items, but rather by the value that an agent

could obtain from them.

If agents outnumber items and always prefer something to nothing, nonwastefulness and trade-

efficiency are equivalent to the familiar property of Pareto efficiency.

Proposition 2. If M ≥∑i µi and all agents have positive values for all items, an allocation x is

Pareto efficient if and only if it is nonwasteful and trade efficient.

Proof. Pareto efficiency trivially implies trade efficiency and nonwastefulness. In this setting, any

nonwasteful mechanism allocates all items. When all items are allocated, trade efficiency implies

Pareto efficiency.

In the remainder of this section, we establish that k-ticket equilibria are approximately trade

efficient and nonwasteful. When k = 1, the equilibrium allocation is perfectly trade efficient, and

the allocation becomes nonwasteful as k →∞. For intermediate k, both sources of inefficiency are

present, but modest in magnitude. Our findings are summarized in Figure 1.
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CEEI

k-ticket

1-ticket ∞-ticket

trade efficient
1

1−(1−1/k)k
-trade efficient

nonwasteful
1
k
-wasteful

Figure 1: CEEI is both trade efficient and nonwasteful. Although parallel lotteries do not gen-
erally satisfy either of these conditions, they are approximately trade efficient and approximately
nonwasteful. Furthermore, trade efficiency is attained for k = 1 and nonwastefulness as k →∞.

5.1 Approximate Trade Efficiency

The k-ticket parallel lottery is typically not trade efficient. This is because agents may have multiple

items selected, but can keep only one. As a result, each additional ticket delivers diminishing

marginal value. This distortion incentivizes agents to spend later tickets on increasingly competitive

items, creating the possibility of mutually beneficial trades.5

To illustrate, consider a setting with two items and an equilibrium of the 2-ticket parallel lottery

in which p1 = 1/4, p2 = 2/3. Note that the fractional allocations (1/2, 0) and (0, 1) are not feasible.

However, the average of these allocations, (1/4, 1/2), is obtained by spending one ticket on each

item and ranking item one first. Two agents who both adopt this strategy but have different relative

values for items 1 and 2 may wish to trade so that the agent with a stronger preference for item

1 receives allocation (1/2, 0) and the agent with weaker preference for item 1 receives allocation

(0, 1).6

In fact, the opportunity for mutually beneficial exchange of probability shares occurs whenever

non-identical agents both place tickets in lotteries for items i and j and are not assured of being

allocated (see Appendix C.2 for details). In this section, we show that although mutually beneficial

5That is, there are mutually beneficial trades of probability shares ex ante. The k-ticket parallel lottery does
satisfy the weaker notion of ex post trade efficiency: after the allocation occurs, no agents can exchange items to their
mutual benefit. For details, see Appendix C.1.

6To make this concrete, suppose that Agent 1 has value v1 = (8/3, 1) and Agent 2 has value v2 = (5/3, 1). In a
2-ticket equilibrium with p1 = 1/4, p2 = 2/3, both agents find it optimal to spend one ticket on each item and receive
allocation (1/4, 1/2). This results in utilities of 7/6 and 11/12, respectively. Reallocating these probability shares to
give Agent 1 allocation (1/2, 0) and Agent 2 allocation (0, 1), increases their utilities to 8/6 and 1, respectively.
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k 1 2 3 4 5 6 10 15 20 100

Lower Bound 1 1.207 1.189 1.166 1.155 1.150 1.142 1.136 1.132 1.125
Upper Bound 1 1.207 1.421 1.463 1.487 1.504 1.535 1.551 1.559 1.577

Table 1: Bounds on approximate trade efficiency of k-ticket parallel lotteries. The upper bounds
are established in Theorems 3 and 4. The lower bounds are derived from an exhaustive search in
a setting with two types of items, in the limit as the win probability of the more competitive item
tends to zero. For k = 1, 2, the upper and lower bounds coincide. For k > 2, we conjecture that
the lower bounds are tight.

trades frequently exist, the potential benefit from these trades is modest.

Theorem 3. Any equilibrium allocation of the k-ticket parallel lottery is 1
1−(1−1/k)k

-trade efficient.

We prove Theorem 3 in Appendix C.3.1. For k = 1 we obtain the following corollary.

Corollary 1. The 1-ticket equilibrium allocation is trade-efficient.

This result has practical importance for a mechanism designer. Although the 1-ticket parallel

lottery is only 2-Pareto efficient, it is perfectly trade efficient. Therefore, in settings where waste

is not a concern, the 1-ticket lottery may be good choice.

Although the bound in Theorem 3 is not tight, it approaches the bound of Immorlica et al.

(2017) for the ∞-ticket lottery as k → ∞. Table 1 provides lower bounds on the trade efficiency

of the k-ticket lottery. To generate these bounds, we consider the set of markets with two items

exchanged by two agent types. We narrow the parameter space by assuming that both agent types

trade until they have a chance to win only one of the two goods, that agents who trade for the less

congested good are guaranteed to receive it after trading, and that p1 → 0. With these assumptions,

searching over all possible strategies and values p2 ∈ [0, 1] yields the lower bounds in Table 1.

We conjecture that the lower bounds in Table 1 are tight. As evidence for this conjecture, we

prove that our lower bound for the k = 2 case is tight.

Theorem 4. Any equilibrium of the 2-ticket parallel lottery is 1+
√

2
2 -trade efficient. For any ε > 0,

there exists an equilibrium of the 2-ticket parallel lottery that is not (1+
√

2
2 − ε)-trade efficient.

The proof of Theorem 4 is located in Appendix C.3.1.

5.2 Approximate Nonwastefulness

We now show that no waste reallocation of a k-ticket equilibrium can increase any agent’s welfare

by more than 1/k.
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Theorem 5. Any equilibrium allocation of the k-ticket parallel lottery is 1/k-wasteful.

Proof. Let x be an allocation corresponding to a k-ticket equilibrium and Ax be the set of fully

allocated items under x. For a given v, the best possible waste reallocation ensures that v receives

i∗ ∈ arg maxi∈[n]\Ax
vi if she fails to win anything else, and thus

y(v) · v = x(v) · v + (1−
∑
i

xi(v))vi∗ . (10)

Consider the process of optimal strategy selection outlined in Lemma 1. At each stage, the

agent chooses to place her jth ticket in the lottery corresponding to the item which maximizes her

marginal increase in welfare. At each stage, the agent declines to place a ticket in the lottery for

item i∗, so her marginal increase in welfare must be at least (1 −∑i xi(v))vi∗ at each step. It

follows that her total welfare

x(v) · v ≥ k · (1−
∑
i

xi(v))vi∗ . (11)

The theorem follows from substituting (11) into (10).

Theorem 5 is in fact tight.7 It implies that the mechanism designer can reduce waste to an

arbitrarily small fraction of welfare by choosing a large value of k. The next section explains why

this may not lead to desirable outcomes.

6 How To Choose k

When demand far outpaces supply, Section 4 shows that any k-ticket parallel lottery produces

similar outcomes to CEEI. In such cases, the parallel lottery is approximately trade efficient and

nonwasteful. When supply and demand are more balanced, Section 5 provides worst-case bounds

on each of these sources of inefficiency. However, these worst-case results do not directly address

the effect of changing k while the setting (specified by the supply µ and type measure η) remains

fixed. This section addresses that question.

7To see this, consider a setting with two types of items, and let x be the allocation corresponding to a k-ticket
equilibrium with p = (ε, 1). Consider agent type v = (1/ε, 1 − ε), for some small ε > 0. By Lemma 1, the optimal
strategy is to place all k tickets in the lottery for item 1. As ε→ 0, x(v) · v → k. If y gives the agent item 2 whenever
she fails to receive item 1, then y(v) · v → k + 1 as ε→ 0.
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To obtain clean insights, we consider a simple scenario with two types of item. Without loss of

generality, we normalize the agent mass M to 1, and assume that all agents have a positive value

for both items. This implies that each agent’s allocation depends only on the ratio v := v2
v1

, and

the measure of types η can be summarized by the CDF of v, which we denote by F . In order to

make the setting nontrivial we assume that the number of agents who prefer item 1 exceeds its

supply (F (1) > µ1). We refer to this as the two-item setting. We focus on this setting because

agent types can be captured by a single number, making it possible to clearly identify agents with

the “strongest” preference for item 1 (smallest values of v), and to plot welfare by type. However,

we believe that many of our qualitative conclusions apply to markets with more item types.

6.1 The Case for Waste

Suppose that most agents prefer item 1, with some strongly preferring it to item 2 (v � 1), while

others are nearly indifferent (v ≈ 1). It seems natural to try to distribute item 1 among the former

group, and item 2 among the latter. The following result says that when there is an abundance of

item 2, this conflicts with the natural objective of eliminating waste.

Proposition 3. In the two-item setting, if there are more items than agents (µ1 +µ2 > 1), then in

every nonwasteful envy-free allocation, all agents receive an item, and item 1 is allocated randomly

among agents who prefer it to item 2.

Proof. Because µ1 + µ2 > 1, there will be excess of either item 1 or item 2. Because F (1) > µ1,

excess of item 1 implies a wasteful allocation. Therefore, there must be excess of item 2, and every

agent who prefers item 2 must receive it with certainty. Furthermore, because all agents have

positive values for both items, we must have x1(v) +x2(v) = 1 for all v. Envy-freeness thus implies

x1(v) = x1(v′) for every pair of agent types v, v′ < 1.

Proposition 3 implies that when there is an abundance of item 2, CEEI, RSD, and the∞-ticket

Lottery are all equivalent. Under any of these mechanisms, all agents who prefer item 1 to item 2

have identical ex ante allocations. In contrast, p1 < 1 at equilibrium in the 1-ticket parallel lottery.

Here agents who prefer item 1 face a choice: bid on their preferred item, and risk receiving nothing,

or bid on item 2, and receive it with certainty. Agents with a strong preference for item 1 will

choose the former option, while those with a weak preference will choose the latter. A similar effect

occurs for larger values of k, though to a lesser extent.
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6.2 The Case for the k-Ticket Parallel Lottery

Proposition 3 implies that waste may be necessary in order to ensure that item 1 is allocated to

those who strongly prefer it, and the k-ticket lottery may accomplish this goal. However, might

there be a better choice of wasteful mechanism than the k-ticket lottery? In particular, is it possible

to design a mechanism with comparable levels of waste that all agents prefer? Proposition 4 states

that in the two-item setting with an abundance of item 2, the answer is no: the k-ticket parallel

lottery is equivalent to running CEEI after discarding some items, and is therefore trade efficient.

Proposition 4. In the two-item setting, if µ1 +µ2 ≥ 1, then each k-ticket equilibrium allocation x

corresponds to a CEEI with quantity vector µ̃ :=
∫
x(v) dF (v).

The proof of Proposition 4 is in Appendix D.1. Proposition 4 implies that a version of CEEI

with preemptive disposal could replicate outcomes from the k-ticket parallel lottery. However, the

difficulty of computing µ̃ in advance makes this an impractical alternative.

6.3 Effect of Changing k

The preceding subsections argued that waste may be necessary to achieve good sorting, and that

k-ticket lotteries are natural wasteful mechanisms to consider. We next compare k-ticket parallel

lottery outcomes, and ask which agents prefer smaller k.

One might think that the agents who risk getting nothing in the parallel lottery would prefer

a nonwasteful mechanism. However, in many cases the opposite is true. Agents who choose not to

bid on underdemanded items have relatively little value for them. Moreover, low win probabilities

for popular items deter agents with weak preferences for these items from bidding on them, to the

benefit of those with stronger preferences. This deterrent effect can happen in any k-ticket parallel

lottery, but is especially dramatic if k is small. The following result formalizes that in the two-item

setting, agents with strong preferences for popular items are most likely to benefit from smaller k.

Proposition 5 (Agents with Strong Preferences Prefer Smaller k). In the two-item setting with

µ1 + µ2 ≥ 1, let xk1 and xk2 denote allocations corresponding to k1-ticket and k2-ticket equilibria,

with k1 < k2. If an agent with v = v prefers xk1 to xk2, then so do all agents with v ≤ v.

The proof of Proposition 5 is in Appendix D.2. This result suggests that when choosing k,

there is often a tradeoff: smaller values of k favor agents with a strong preference for item 1, at the
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expense of those with weaker preferences. Figure 2a illustrates this tradeoff in a market where v is

uniformly distributed on the unit interval.

Crucially, although Proposition 5 implies that the agents who prefer smaller k are those with

the strongest preferences for item 1, it does not guarantee that any such agents exist. If most agents

strongly prefer item 1, then a 1-ticket parallel lottery does not significantly reduce competition for

item 1, and merely results in item 2 being wasted. In such cases, increasing k offers unambiguous

improvements: it allows some agents to spend a ticket securing item 2, improving outcomes both

for them and for agents who spend all of their tickets competing for item 1. Once enough agents

choose to spend a ticket on item 2, the tradeoff discussed in the preceding paragraph emerges:

further increases in k hurt those with the strongest preferences for item 1, while helping others.

This scenario is illustrated in Figure 2b.

The preceding examples illustrate two qualitative regimes:

• Tradeoff Regime. Many agents are willing to bid on an underdemanded item at equilibrium.

Increasing k benefits these agents by allowing them them to compete for overdemanded items.

This increased competition hurts agents who strongly prefer the most competitive items.

• Waste Trap Regime. Few agents are willing to bid on underdemanded items, most of

which go to waste. Increasing k will benefit most or all agents.

These observations offer guidance to a designer choosing k. Section 8 describes several appli-

cations in which a designer may wish to favor agents with unusually strong preferences. In these

cases, the designer should select the smallest value of k that avoids the waste trap, often k = 1.

Meanwhile, the designer can favor agents with weak preferences by choosing a large k. We suspect

that the Alaskan hunting permit lottery, which uses k = 6, results in similar outcomes to larger

values of k and the ∞-ticket lottery.

6.4 Markets with Moderate Supply

Section 4 considers the case in which the supply of every item is a vanishing fraction of demand,

while subsections 6.1-6.3 consider the case in which at least one item is abundant. However, many

real-world markets fall into an intermediate regime where supply is sufficient for many but not all

agents to receive an item.
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Figure 2: Agent type v versus welfare (normalized by 100-ticket lottery outcome). On the left, in
the 1-ticket lottery, many agents choose to take item 2 for certain rather than risk getting nothing.
As a result, increasing k benefits agents who weakly prefer item 1, at the expense of agents with
stronger preferences. On the right, when k ≤ 2, few agents spend a ticket securing item 2. This
results in a waste trap: all agents benefit from increasing k.

Figure 3 presents a numerical study of such markets. We vary the supply of items µ, as well

as the distribution of preferences F . This figure demonstrates that the two regimes identified in

Section 6.3 persist in markets with moderate supply. A tradeoff between values of k occurs when a

many agents are willing to spend tickets on less popular items: agents with the strongest preference

for item 1 prefer k = 1, while those with more typical preferences prefer large k. Meanwhile, if

supply is not too scarce and most agents have a strong preference for item 1, then small values of

k result in a waste trap, hurting all agents.

7 Practical Considerations

Although the k-ticket parallel lottery has many advantages in theory, it is natural to wonder whether

they can be realized in practice. In this section, we discuss (i) when a parallel lottery is appropriate

(ii) how it should be administered, and (iii) how the value of k should be selected.
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(a) v ∼ U [0, 1] µ = (.5, .5) (b) v ∼ U [0, .4] µ = (.5, .5)

(c) v ∼ U [0, 1] µ = (.4, .4) (d) v ∼ U [0, .4] µ = (.4, .4)

(e) v ∼ U [0, 1] µ = (.3, .3) (f) v ∼ U [0, .4] µ = (.3, .3)

(g) v ∼ U [0, 1] µ = (.2, .2) (h) v ∼ U [0, .4] µ = (.2, .2)

Figure 3: Agent type v versus welfare (normalized by 100-ticket lottery outcome). In the left
column, many agents have a weak preference for item 1, and do best when k is large; agents with
a strong preference for item 1 do best when k = 1. In the right column, all agents strongly prefer
item 1. When item 2 is abundant, small values of k result in a waste trap that hurts most or all
agents. In both columns, as items become more scarce, the differences between mechanisms become
insignificant.
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7.1 Advantages of Random Serial Dictatorship

Random Serial Dictatorship (RSD) is frequently deployed in practice. This mechanism offers ap-

plicants a dominant strategy, eliminating the need for them to understand the level of competition

for each item. Interestingly, RSD, CEEI, and the k-ticket parallel lottery have identical equilibrium

outcomes if the supply of each item is proportional to the fraction of agents for whom that item

is their first choice. Therefore, if items are similarly competitive, the practical advantages of RSD

may outweigh any potential efficiency gains from more complex mechanisms.

7.2 Ensuring Agents Make Informed Decisions

If applicants have similar ordinal preferences but different preference intensities, the theoretical

advantages of the k-ticket parallel lottery over RSD are greater. However, our analysis assumes

equilibrium play. For the theoretical advantages of a parallel lottery to be realized in practice,

applicants must understand their chances of winning each item.

Many agencies publish lottery statistics. For example, The Alaska Department of Fish and

Wildlife publishes an annual Hunt Supplement, the National Park Service posts Half Dome Lottery

statistics online,8 and the New York City Department of Education provides an annual High School

Directory. However, this information is typically released after the allocation process has concluded.

Because items, quantities, and other features of the setting may change from year to year, this

information is insufficient to allow agents to make good decisions.

Instead, we recommend the approach taken by the Singapore Housing and Development Board,

which provides live updates on win probabilities using an online interface and allows agents to

adjust their strategy until the final deadline.9 A similar approach was used by Wake County Public

Schools prior to 2015. The district used a non-strategy-proof mechanism, but displayed information

about the number of students selecting each school as their first choice, and allowed students to

react to this information in real time (Dur et al. (2018)).

In addition to deciding when to provide data, system administrators must decide what data to

publish. Agencies often report the number of applications for each item. For k = 1, this information

is adequate to determine success probabilities. For k > 1, however, this does not account for the fact

8https://www.nps.gov/yose/planyourvisit/hdpermitsapps.htm
9In theory, this approach could cause applicants to wait until just before the deadline to submit their preferences,

and even to submit false preferences initially in order to affect others’ choices. In practice, we expect that this will
not be a major concern.
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that some applicants will match to an item which they prefer. Similarly, the common approach

of publishing the number of applicants that list each item as their first choice doesn’t account

for competition from applicants who rank the item second or third. A better solution is to use

applicants’ submitted preferences to report estimated success probabilities pi.

When k = 1, an applicant who is informed of success probabilities for each item faces a fairly

straightforward decision. For k > 1, the possibility of winning multiple items makes the decision

problem more complex, as discussed in Section 3.1. For this reason, the best approach might be to

offer an interface that allows users to enter a strategy (i.e., “4 tickets on item A, 1 on item B, and

1 on item C”) and then displays an estimate of the associated allocation probabilities.

7.3 Favoring Certain Applicants

In some settings, it may be possible and desirable to distinguish between applicants, giving some

an advantage over others. This can be accomplished by using parallel lotteries in which applicants

are given different numbers of tickets. While the resulting allocation will obviously no longer be

envy-free, it will remain approximately efficient. More specifically, any equilibrium of a parallel

lottery (with heterogeneous ticket allocations) is e/(e − 1)-trade efficient. Furthermore, no waste

reallocation of such an equilibrium can improve welfare of an agent given k tickets to more than

1 + 1/k times their welfare in the original equilibrium.

7.4 Allocating Leftover Items

In many settings, items that are not awarded during the initial allocation are made available on a

first-come, first-served basis. However, Proposition 3 implies that a wasteful allocation is sometimes

necessary to achieve effective sorting. As a result, reallocating underdemanded items comes with a

consequence: applicants who consider underdemanded items acceptable will use all of their tickets

competing for more popular options. By committing not to reallocate leftover items, the designer

can incentivize applicants to apply for less popular options and improve outcomes for agents with

strong preferences for popular items.

7.5 When Should Agents With Strong Preferences Be Favored?

When demand significantly exceeds supply, our results establish that all k-ticket outcomes are

similar. In this case, we recommend using a 1-ticket parallel lottery, due to the factors discussed in
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Section 7.2: simplicity of the strategy space and the clear connection between action and outcome.

When supply and demand are more balanced, the findings in Sections 6.3 and 6.4 suggest that

smaller choices of k are preferred by agents with atypically strong preferences for popular items. It

is important to note the “strength” of an agent’s preference is determined by her relative value for

each item (i.e. v2/v1), rather than her absolute values v1 and v2. To illustrate, consider a simple

scenario where agent A has vA1 = 10, vA2 = 6. Suppose agent B has a stronger relative preference

for item 1, with vB1 /v
B
2 = 5. There are a continuum of possible values for the pair (vB1 , v

B
2 ), but we

highlight two possibilities that are relevant to practice:

1. Strong preferences indicate disability. Agent B has v1 = 10, but constraints outside

of her control result in a low value for item 2 (v2 = 2).

2. Strong preferences indicate good outside options. Agent B agrees with agent A

about the quality of each item, but has access to an outside option of value 5. Therefore, the

value of being matched is vB1 = 10− 5 = 5 for item 1, and vB2 = 6− 5 = 1 for item 2.

In the former scenario, the designer may wish to give agent B a greater chance of receiving item

1. This could be justified on utilitarian grounds (it is more “efficient” for B to get item 1 and A

to get item 2), or based on a notion of equity (B should not receive lower utility on the basis of a

disability). In the latter scenario, it is harder to make the case for giving item 1 to B. Although

we cannot distinguish between these scenarios by observing the behavior of agent B, the designer

might possess contextual information about which of these scenarios is more likely. As we illustrate

in Section 8, this information could help to guide the choice of k.

In summary, we recommend choosing a mechanism according to the following procedure:

1. If items are similarly competitive or if communicating success probabilities with applicants is

too difficult, use Random Serial Dictatorship.

2. Otherwise, the k-ticket parallel lottery may be suitable. Choose k appropriately:

(a) If demand far exceeds supply, use the 1-ticket parallel lottery.

(b) Use a large k to favor agents with modest preferences for popular items.

(c) Use the smallest k that avoids the waste trap to favor agents with strong preferences for

popular items.
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8 Applications

In our final section, we apply the advice from Section 7 to several domains. Our intent is to

illustrate how our work could be applied to practice. We do not claim to possess the domain

expertise required to make definitive recommendations.

8.1 Outdoor Recreation

The allocation of hunting permits is one of several settings in which access to natural resources is

regulated in the name of conservation. Park administrators frequently impose quotas on popular

hiking trails, campsites, and portage routes. In many cases, these quotas are filled on a first-come,

first-served basis. However, when demand far exceeds supply, this can result in a chaotic and

inefficient allocation, so a k-ticket parallel lottery may be more appropriate.

The next question is, how should k be chosen? Let us start with the lottery for Alaska bison

hunts. In 2018, each hunt received at least 100 applications for every available permit (ADFG,

2019). In this case, Theorem 1 suggests that any k-ticket equilibrium will be approximately envy-

free and Pareto efficient. Section 7.2 discusses reasons that equilibrium play may be more plausible

for the 1-ticket parallel lottery than its k-ticket counterparts, so a 1-ticket parallel lottery could be

a good solution for this market.

When demand is more modest, the results in Section 6.3 suggest that there may be a tradeoff

when choosing k, with smaller values of k favoring applicants who strongly prefer popular items.

In outdoor recreation settings, popular items are often the most accessible. Ease of access is likely

to be especially important to families with young children, the elderly, disabled, and workers with

limited vacation. Many of these groups likely consider only a small number of destinations to be

feasible. By choosing a small value of k, the park service could encourage avid adventurers to apply

to less-popular options, thereby expanding access to groups with less flexibility.

8.2 Public Housing

Singaporean housing lotteries invite the question of whether the parallel lottery could also be used

to allocate housing in the United States. Because some units are likely to be significantly more

desirable than others, a simple serial dictatorship might lead to inefficient outcomes. Furthermore,

because demand significantly exceeds supply, waste is unlikely to be a concern. Both of these facts
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suggest that a k-ticket parallel lottery might be appropriate.

In the public housing domain, there are good arguments for and against favoring agents with

strong preferences for particular units. On the one hand, an applicant who does not possess a car

may only be able to accept a unit that is close to their workplace or along a public transit route. On

the other, some applicants with good outside options may consider all but the best public housing

units to be unacceptable. One might wish to accommodate the first group without accommodating

the second. Although an anonymous mechanism cannot achieve this, it might be possible to use

observable characteristics such as income to exclude or de-prioritize applicants with strong outside

options. In addition, these characteristics could be used to allocate different numbers of tickets to

different applicants, as discussed in Section 7.3.

8.3 School Choice

By law, every student must receive a school assignment. As a result, waste is not an option in the

school choice setting: even if the k-ticket parallel lottery produces a wasteful assignment, remaining

students must eventually be assigned a seat at a school with available seats. This reduces some

of the downside risk from listing popular schools, implying that even students with only moderate

preferences for these schools might apply for them.

This may be for the best: we suspect that the students with the strongest preferences for elite

public schools are typically those with good outside options (i.e., the ability to attend private

schools). Favoring these students would only exacerbate inequity. All in all, the parallel lottery

does not seem like an ideal choice for this setting.

8.4 College Scholarships

Students often have the opportunity to apply for a scholarship when they apply for admission to

college. We assume that almost all students prefer to receive a scholarship. However, while the

scholarship is a minor consideration for some students, for others, it determines their ability to

attend. If the application cost is low, many students will apply, and scholarships may not go to the

students who need them most.

An alternative approach would be to treat admission with a scholarship separately from ad-

mission without a scholarship, and allow students to apply to at most one of these options. At

first, the idea of forcing students who apply for scholarships to forgo the possibility of receiving
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a non-scholarship offer may seem repugnant. However, this policy should typically increase the

number of low-income students attending college.

The intuition for this claim is as follows. We can think of current practice as a sort of serial

dictatorship, where students are ranked according to some criterion (perhaps a test score, evaluation

of an essay, or a lottery) with the highest scoring students receiving a scholarship and the next tier

being offered admission without a scholarship. Meanwhile, our proposed alternative resembles a

1-ticket parallel lottery with two goods. Because applying for a scholarship lowers the chance of

admission, students whose parents can pay full tuition will not ask for a scholarship, leaving the

financial support for those who need it.
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A Proofs from Section 3

A.1 Transformation of k-Ticket Strategy Choice into Downward Recursive

Portfolio Choice

Proof of Lemma 1. Fix a vector p of win probabilities, and define a multiset S of items that consists

of k copies of each item i. For each item i, we define the cardinal utility of i to be ui := vi, and the

success chance to be αi := pi. Let �v be a total ordering on S according to the true preferences of

an agent type v, with ties between identical items broken in a consistent manner.

The Marginal Improvement Algorithm (MIA) of Chade and Smith (2006) determines a portfolio

Ŷ ⊆ S that maximizes the gross payoff

f(Y ) =
∑
i∈Y

(
αiui

∏
j∈Y | j�vi

(1− αj)
)

=
∑
i∈Y

(
pivi

∏
j∈Y | j�vi

(1− pj)
)

(12)

for an agent type v. Let� be a preference ordering of [n] consistent with�v, and let t = (t1, t2, ..., tn)

be the ticket choice vector constructed by setting each ti equal to the number of copies of item i in

Ŷ . Expanding (12), we have

f(Ŷ ) =
∑
i∈[n]

(
vi(1− (1− pi)ti)

∏
j�i

(1− pj)tj
)

= v · χ((t,�), p) = w(v, (t,�), p). (13)

Thus, given v, the MIA determines a strategy (t,�) that maximizes w(v, (t,�), p).

Let sY denote the strategy consisting of the ticket choice vector corresponding to Y ⊆ S and

a preference order � reflecting the true preferences of a fixed agent type v. On our portfolio, the

MIA proceeds as follows:

1. Begin with an empty portfolio Y0 = ∅.

2. Choose any item

i ∈ arg max
i∈S\Yj−1

w(v, sYj−1+{i}, p). (14)

3. If

w(v, sYj−1+{i}, p)− w(v, sYj−1 , p) > c(n), (15)

set Yj := Yj−1 + {i} and go to Step 2.
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Our algorithm is equivalent to the MIA with the additional requirement that the process of

strategy augmentation stop after k steps. This is ensured by defining a cost function c such that

c(|Y |) = 0 if Y ≤ k and c(|Y |) = ∞ if |Y | > k (referred to in Chade and Smith (2006) as the

fixed sample size k case). The optimality of the greedy algorithm follows from the optimality of

the resulting instance of downward recursive portfolio choice.

A.2 Existence of Equilibria

In this section, we complete the proofs that every strategy profile Φ implies a unique consistent win

probability vector p (Lemma 2) and that every k-ticket lottery has an equilibrium (Proposition 1).

Proof of Lemma 2. Given a strategy profile Φ, our setting maps directly to the two-sided matching

market defined by Azevedo and Leshno (2016). In their framework, agent types are identified by

a preference ranking of items �̃ and a score ei that determines priority for each acceptable item.

Each strategy s = (t,�) in our model corresponds to a measure over types (�̃, e) as follows:

1. �̃ ranks items with ti > 0 according to �.

2. items with ti = 0 are unacceptable according to �̃.

3. ei is distributed as the first order statistic of ti uniform random draws from [0, 1]. Scores are

independent across items.

Allocation in Azevedo and Leshno (2016) is summarized by a vector of cutoffs that lists the minimum

score required to receive each item i. Under this mapping, the vector c of market clearing cutoffs

is precisely ~1 − p, and the consistency condition is equivalent to the market clearing condition

(Definition 2 of Azevedo and Leshno (2016).)

Corollary A1 in the appendix of Azevedo and Leshno (2016) implies that we can find a set of

market clearing cutoffs c (equivalently, a vector of win probabilities p). Theorem A1 implies that

the set of market clearing cutoffs c forms a lattice with the supremum and infimum operators in

[0, 1]n. By Theorem A2, the measure of agents matched to each item i is the same under any

market clearing c (consistent p).

For each item i, the distribution of scores ei has full support for each strategy s that places at

least one ticket in the lottery for item i. As a result, any isolated decrease in a win probability for

an item that a positive measure of agents receive results in strictly fewer agents matching. Thus
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the minimal and maximal elements of the lattice of consistent c coincide, implying that it contains

a unique element.

Proof of Proposition 1. Fix k, a set of items, an agent mass, and an agent type measure. We define

a function f : [0, 1]n → [0, 1]n as follows. For any win probability vector p, denote by Φp the

strategy profile determined by Lemma 1 that is unique up to a set of agents with measure zero.

We define f(p) to be the vector of win probabilities determined by Φp, which is unique by Lemma

2.

By inspection, a fixed point of f corresponds to a k-ticket equilibrium. We show that f is

continuous, from which the existence of a fixed point follows from Brouwer’s theorem.

For s ∈ Sk, we have

(Φp)−1(s) = {v : ∀s′ ∈ Sk \ {s}, v · χ(s, p) > v · χ(s′, p)}. (16)

Because χ(s, p) is constant in v, (Φp)−1(s) is an open convex polytope in Rn (or the empty set).

Let (j) denote the item on which a given agent v uses her jth ticket according to the algorithm

specified in Lemma 1. Lemma 1 implies that the win probability of the items on which v bids is

weakly decreasing. Using this fact to unwind the algorithm, we have that Φp(v) is determined by

the unique sequence of items (1), (2), ..., (k) such that ∀i ∈ [n], j ∈ [k],

j∑
l=1

(
v(l)p(l)

j∏
m=l+1

(1− p(m))
)
≥ vipi + (1− pi)

( j−1∑
l=1

(
v(l)p(l)

j−1∏
m=l+1

(1− p(m))
))
. (17)

Because each constraint is polynomial in p, and because η is continuous, η((Φp)−1(s)) is continuous

in p for all s.

Let X(f(p)) be the matrix in which each column is the probabilistic allocation for a strategy

under f(p), that is,

X(i,s)(f(p)) := χi(s, f(p)), (18)

for all i ∈ [n], s ∈ Sk. Let H(p) be the vector containing the measure of agents who adopt each

strategy under Φp, that is,

Hs(p) := η((Φp)−1(s)), (19)
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for all s ∈ Sk. If in fact f(p)i < 1 for all i ∈ [n], f(p) is the unique vector which satisfies

X(f(p)) ·H(p) = µ, (20)

as this equation is equivalent to the consistency constraints. However, the consistency constraints

allow the possibility that some items go unallocated if f(p)i = 1. We generalize (20) by defining

the map A as follows.

Ai(f(p), p) :=
(
σ
(
Xi(f(p))H(p)− µi

)
+ (1− fi(p))

)(
Xi(f(p))H(p)− µi

)
, (21)

where σ(y) = max(0, y). By inspection, A(f(p), p) = 0 if and only if f(p) is consistent with Φp.

A(f(p), p) is continuous in f(p) and p, and by Lemma 2, p determines a unique f(p) ∈ [0, 1]n

such that A(f(p), p) = 0. Thus f(p) is continuous in p, and an equilibrium point exists by Brouwer’s

theorem.

A.3 1-Ticket Lotteries Have Unique Equilibria

The following lemma demonstrates that 1-ticket lotteries have a unique win probability vector p.

Because p is unique, every agent receives the same expected value in every equilibrium. Note that

the result is very similar to a result of Gale (1976), who considered the case where agents may

receive more than one item.

Lemma 3 (Uniqueness of 1-ticket Equilibria). if (Φ, p) and (Φ′, p′) are 1-ticket equilibria, then

p = p′.

Proof. Let (Φ, p) and (Φ′, p′) be 1-ticket equilibria. For contradiction, assume p 6= p′. Without loss

of generality, for some item i, we have pi > p′i. Because every agent has a single ticket, we can write

a closed-form expression for pi. Let t(v) denote the ticket choice vector of agent type v according

to Φ and t′(v) denote the ticket choice vector of agent type v according to Φ′. For each item i, we

have

pi = min{1, µi
η({v : ti(v) = 1})}, (22)

and the analogous statement holds for t′(v).

Thus pi > p′i implies the existence of a set of agents V with η(V ) > 0 such that for every v ∈ V ,

ti(v) = 0 and t′i(v) = 1. Let j be the item that maximizes η({v ∈ V : tj(v) = 1}). Because agents
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in the set {v ∈ V : tj(v) = 1} switched from j to i, it must be the case that for all v ∈ V ,

pjvj > pivi > p′ivi > p′jvj . (23)

Rearranging, we have
pj
p′j
>
pi
p′i
. (24)

This corresponds to the intuition that if item i is relatively fully allocated in (Φ′, p′) compared to

(Φ, p), some other item j must be more relatively fully allocated in (Φ′, p′) to create additional

demand for item i. Repeating this argument implies the existence of a sequence of items, each

more relatively fully allocated than the last. Because the number of items is finite, this presents a

contradiction, and thus p = p′.

A.4 k-Ticket Lotteries Are Not Unique for k > 1

Although every 1-ticket parallel lottery has a unique equilibrium, k-ticket lotteries do not necessarily

have unique equilibria when k is greater than 1. The following example demonstrates a 2-ticket

parallel lottery with multiple equilibria.

Consider a lottery with two items and µ1 = µ2 = 1. For simplicity, we consider a setting with

two discrete groups of agents.10 The first group of agents has type (1, 0). Regardless of other

agents’ behaviors, these agents will always place both of their tickets in the lottery for item 1.

The mass of this group is 1/(2ε − ε2), which ensures that if only these agents apply for item 1,

p1 = ε. We set ε > 0 to be small enough that the win probability p1 is (multiplicatively) close to ε

regardless of the behavior of other agents. The second group of agents has type ( 7
32ε , 1) and mass

4/3. This scenario is summarized in Table 1.

Agent Group Mass Type

Group 1 1/(2ε− ε2) (1, 0)
Group 2 4/3 ( 7

32ε , 1)

Table 2: A 2-ticket parallel lottery that yields 2 equilibria.

In the first equilibrium, group 1 agents enter both tickets in the lottery for item 1 and group

2 agents put both tickets in the lottery for item 2. The resulting vector of win probabilities is

p = (ε, 1/2). In this equilibrium, a group 2 agent receives expected values of 14/32 − 7ε/32 from

10This assumption can be relaxed by replacing the agent point masses with Gaussians distributed tightly around
the original points.
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putting both tickets in the lottery for item 1, 24/32 from putting both tickets in the lottery for

item 2, and 23/32− ε/2 from splitting her tickets, so the strategy profile is optimal given p.

In the second equilibrium, group 1 agents enter both tickets in the lottery for item 1 and group

2 agents split their tickets between the two lotteries. The resulting vector of win probabilities

is p = (ε′, 3
4−4ε′ ), for some ε′ < ε with ε′ ≈ ε. In this equilibrium, a group 2 agent receives

expected values of ε′

ε (14/32 − 7ε′/32) ≈ 14/32 from putting both tickets in the lottery for item 1,

24(1−ε′)−9
16(1−ε′)2 ≈ 30/32 from putting both tickets in the lottery for item 2, and ε′

ε (7/32) + 3/4 ≈ 31/32

from splitting her tickets, so the strategy profile is optimal given p.

B Proof of Theorem 1

In this section, we prove that for almost every agent, the ratio of their expected value at any k-

ticket equilibrium to their expected value under CEEI goes to 1 as the mass of agents increases.

The proof treats µ, η, and k as fixed. When x is an allocation corresponding to a specified k-ticket

equilibrium, we write px to denote the vector of win probabilities at this equilibrium.

We begin by proving two properties of equilibria which hold for large agent masses. First, for

sufficiently large M , we prove that the maximum and minimum win probabilities for each item are

Θ(1/M) at equilibrium. Second, we show that as demand for each item increases, the η-measure of

the set of agents who bid on more than one item goes to 0. As a result, as M increases, the ratio

of expected value at any k-ticket equilibrium to expected value at the unique 1-ticket equilibrium

goes to 1 for almost every agent. Finally, we observe that the 1-ticket parallel lottery produces the

same allocation as CEEI when all items are fully allocated.

Claim 1 (Equilibrium win probabilities are Θ(1/M)). Let µ, η, and k be fixed as above. There

exist positive constants c1, c2 such that for every M ≥ maxjµj, every x ∈ XM , and every i ∈ [n],

c1

M
≤ pxi ≤

c2

M
. (25)

Proof. Fix x ∈ XM . We have for each item i that

µi
kM

≤ pxi . (26)
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This follows immediately from the fact that at most kM tickets can possibly be entered into a

single lottery, and at least µi of these are drawn if pxi < 1.

We prove the upper bound by inductively constructing a set of items with win probabilities

bounded by constant multiples of 1/M . First, observe that in any equilibrium, there exists an item

i1 such that pxi1 ≤
∑

i µi
M . Otherwise, the quantity of items allocated by x would exceed

∑
i µi,

violating the equilibrium requirements. Furthermore, by assumption, some agents have nonzero

value for a second item j. Thus there exist constants 1 > ε1, γ1 > 0 such that

η({v : ∃j 6= i1, vj > ε1vi1}) > γ1. (27)

As a result, there exists an item i2 such that pxi2 ≤
∑

i µi
ε1γ1M

. Otherwise, by Lemma 1, a mass

γ1M of agents would place their first ticket on items other than i1. Observe that this ensures

each agent is allocated with probability at least
∑

i µi
ε1γ1M

in the 1-ticket case, and the total allocation

probability of each agent is strictly increasing in the number of tickets when px is held constant.

This presents a contradiction, as the quantity of items allocated to the set of agents with mass γiM

would exceed
∑

i µi. Repeating this argument for m = 2, 3, ..., n, we construct a series of constants

1 > εm, γm > 0 such that

η({v : ∃j 6= i1, ..., im−1, vj > εm max{vil}m−1
l=1 ) > γm, (28)

and a series of items im such that

pxim ≤
∑n

i=1 µi

M
∏m−1
j=1 εjγj

. (29)

Claim 2 (The set of ticket splitters goes to 0). For x ∈ XM , let Sx be the set of ticket splitters,

agents whose optimal strategy under Lemma 1 bids on more than one item. We have

lim
M→∞

sup
x∈XM

η(Sx) = 0. (30)

Proof. By definition, every agent in Sx adopts an equilibrium strategy in which she bids on at least
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two items. Let v be an agent in Sx who places her first t − 1 tickets in the lottery for item i and

her tth ticket in the lottery for item j. By Lemma 1, we have

pxi vi > pxj vj . (31)

pxj vj + (1− pxj )(1− (1− pxi )t−1)vi > pxi vi + (1− pxi )(1− (1− pxi )t−1)vi. (32)

Rearranging yields
pxi
pxj

>
vj
vi
>
pxi
pxj

+ (1− pxi
pxj

)(1− (1− pxi )t−1), (33)

and making use of the fact that (1− (1− pxi )t−1) ≤ kpxi for t− 1 < k, we have

Sx ⊆ {v :
vi
vj
∈ [

pxi
pxj

(1− k(pxi − pxj )),
pxi
pxj

]}. (34)

Claim 1 implies pxi /p
x
j is upper-bounded by a constant, so Claim 2 follows from the absolute

continuity of η as the interval shrinks to zero.

Lemma 4 (k-ticket utility converges to 1-ticket utility). Let x1
M denote the allocation corresponding

to the unique 1-ticket equilibrium with agent mass M . For almost every agent v, we have

lim
M→∞

sup
x∈XM

x(v) · v
x1
M (v) · v = lim

M→∞
inf

x∈XM

x(v) · v
x1
M (v) · v = 1. (35)

Proof. To prove Lemma 4, we must understand the structure of the 1-ticket parallel lottery. Con-

sider the outcome of a 1-ticket parallel lottery in a market with parameters µ, η, and M . By

Lemma 3, this 1-ticket parallel lottery has a unique equilibrium win probability vector p which in

turn determines a unique expected value for any agent that plays an optimal strategy. Suppressing

the dependence on η, we write w1(µ,M, v) to denote the expected value of an agent v at 1-ticket

equilibrium. We proceed to show that w1 is continuous in µ and M .

Let Vi(p) denote the measure of the set of agents who bid on good i under the optimal strategy

given by Lemma 1 when the win probability vector is p. In the 1-ticket parallel lottery, for all i,

we have

µi = MpiVi(p) (36)
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when M is sufficiently large. By Lemma 3, each agent v bids on a good i ∈ arg maxi∈[n] vipi

at equilibrium. Vi(q) is thus continuous in p, as it is the measure of a polytope whose sides are

defined by linear equations in p. As a result, µ is continuous in p in the 1-ticket lottery. We write

µ1(p) := µ1(p,M, η) to indicate this.

By Lemma 3, µ determines a unique value of p satisfying the system of equations defined by

(36). Combined with the fact that µ is continuous in p, this implies that p is a continuous function

of µ. For fixed µ and sufficiently large M , scaling M by a constant c means that (36) is satisfied

by the win probability vector p/c,11 and thus p is a continuous function of M as well. Finally, the

expected value of any agent v at 1-ticket equilibrium is maxs∈S1 w(v, s, p), which is a continuous

function of p. Thus w1 is continuous in µ and M .

Define i(p, v) := arg maxi∈[n] vipi.
12 By Lemma 1, the optimal strategy for an agent v is to place

her first ticket in the lottery for good i(p, v), after which the marginal benefit for each additional

ticket weakly decreases. Thus for all M , x ∈ XM , we have

(1− (1− pxi(p,v))
k)vi(p,v) ≤ x(v) · v ≤ kpxi(p,v)vi(p,v) = w1(M,µ1(kpx), v). (37)

In (37), the first inequality follows because x(v) · v is a weakly better strategy than placing all k

tickets in the lottery for good i(p, v), the second inequality follows because x(v) · v is weakly less

than k times the marginal benefit of the first ticket placed, and the final equality follows because

kpxi(p,v)vi(p,v) is exactly the expected value of v in a 1-ticket lottery with win probability vector kpx.

From this observation and Claim 1 it follows that

lim
M→∞

sup
x∈XM

x(v) · v
w1(M,µ1(kpx), v)

= lim
M→∞

inf
x∈XM

x(v) · v
w1(M,µ1(kpx), v)

= 1. (38)

As w1(M,µ, v) = x1
M (v) · v, it remains to prove that

lim
M→∞

sup
x∈XM

w1(M,µ1(kpx), v)

w1(M,µ, v)
= lim

M→∞
inf

x∈XM

w1(M,µ1(kpx), v)

w1(M,µ, v)
= 1. (39)

11Note that Vi(p) = Vi(cp) as long as cpi ≤ 1 for all i ∈ [n].
12Given p, we will ignore the set of agents who have multiple optimal strategies and for whom i(p, v) is undefined,

as this set has measure 0 and will not affect equilibrium parameters.
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As w1 is continuous in µ and M , it is sufficient to show that for all i ∈ [n],

lim
M→∞

sup
x∈Xm

µ1
i (kp

x)

µi
= lim

M→∞
inf

x∈Xm

µ1
i (kp

x)

µi
= 1. (40)

For sufficiently large M , we have

µ1
i (kp

x) = MkpxVi(p
x) (41)

by (36). Moreover, for any M , and any x ∈ XM , i ∈ [n], we have

M(1− (1− pxi )k)V k
i (px) ≤ µi ≤M(1− (1− pxi )k)V 1

i (px), (42)

where V k
i (px) denotes the measure of the set of agents whose optimal strategy under px is to place

all k tickets into the lottery for item i, and V 1
i (px) denotes the measure of the set of agents whose

optimal strategy is to place at least 1 ticket in the lottery for item i. Equation (42) holds because

the lefthand side is the mass of item i allocated to agents who place every ticket in the lottery for

item i and the righthand side is the amount of item i which would be distributed if every agent

who bid on item i placed every ticket in the lottery for item i.

Dividing (41) by (42) yields

lim
M→∞

sup
x∈Xm

kpxi
(1− (1− pxi )k)

≤ lim
M→∞

sup
x∈Xm

µ1
i (kp

x)

µi
≤ lim

M→∞
sup
x∈Xm

kpxi
(1− (1− pxi )k)

V 1
i (px)

V k
i (px)

(43)

for sufficiently large M . The expressions on left and right both evaluate to 1, as by Claim 1 we have

limM→∞ supx∈Xm
kpx/(1 − (1 − pxi )k) = 1, and limM→∞ supx∈Xm

V 1
i (px)/V k

i (px) = 1 by Claim 2.

The analogous claim for the infimum holds by identical reasoning, so (40) follows.

Lemma 5 (1-ticket lotteries converge to CEEI). Let x1
M be an allocation corresponding to a 1-ticket

equilibrium where pi < 1 for all i ∈ [n]. For almost every agent v, x1
M (v) = ceM (v).

Proof. A market defined by µ, η and M ≥∑i µi corresponds to the instance of CEEI in which the

set of items is [n] + {o}, where o indicates an outside option with value 0 and quantity M −∑i µi.

When each agent is given a budget of 1, the price vector which assigns the price 1/p
x1M
i to

each item and 0 to the outside option clears the market. To see this, observe that each agent has

sufficient budget to buy a probability share p
x1M
i in any item i ∈ [n]. For almost every agent v ∈ V ,
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there exists a unique item i ∈ K that maximizes p
x1M
i vi, and spending her entire budget on this

item maximizes her expected value. Thus almost every agent purchases a share p
x1M
i in the same

item on which she bids in the 1-ticket equilibrium, and picks up a share 1 − px
1
M
i of the outside

option for free. By Lemma 1, this allocation is equivalent to x1
M (v).

Theorem 1 follows directly from Lemmas 4 and 5, as every item is fully allocated for sufficiently

large values of M .

C Proofs from Section 5

C.1 k-Ticket Lotteries are Ex-Post Trade Efficient

We say that an allocation is ex post trade efficient if agents cannot mutually benefit from ex post

trades of their received items. Formally, we define the envy graph of an allocation x to be a directed

graph on [n] containing a directed edge i → j for every i, j such that xi(v) > 0 and vi < vj for

every v in a set Vi→j with η(Vi,j) > 0. The edge i → j in the envy graph indicates that a set of

agents with nonzero measure will receive item i and would benefit from an ex post trade for item

j.

Definition 10. An allocation x is ex post trade efficient if its envy graph is acyclic.

Lemma 6. Ex ante trade efficiency implies ex post trade efficiency.

Proof. We prove the contrapositive. Consider an allocation x whose envy graph contains a cycle

C. Define

capacity(C) := min
i→j ∈ C

∫
Vi→j

xi(v) dη, (44)

and note that capacity(C) > 0 by definition. For each edge i→ j in C, choose a subset V ′i→j ⊆ Vi→j
such that

∫
V ′i→j

xi(v) dη = capacity(C) and exchange i for j to create an allocation that Pareto

dominates x and keeps
∫
x(v) dη constant.

Theorem 6. Any k-ticket parallel lottery outcome is ex post trade efficient.

Proof. Consider the envy graph of an allocation x corresponding to a k-ticket equilibrium. If the

envy graph contains i → j, then there exists a set Vi→j with η(Vi→j) > 0 such that for every

v ∈ Vi→j , xi(v) > 0 and vi < vj . This implies pi > pj , as no agent in Vi→j places a ticket in the

37



lottery for item i otherwise. Thus a cycle in the envy graph would correspond to a cycle of strict

inequalities in win probabilities, which is impossible.

C.2 k-Ticket Lotteries are Not (Ex-Ante) Trade Efficient

Proposition 6. For k > 1, if η has full support on Rn, any equilibrium with goods i and j such

that pj < pi < 1 corresponds to an allocation that is not trade efficient.

Proof. Let Vi,j denote the set of agent types v such that

pivi ≥ pjvj (45)

pjvj + (1− pj)pivi ≥ pivi + (1− pi)pivi (46)

∀l 6∈ {i, j}, vl < 0. (47)

By Lemma 1, agents in Vi,j place their first ticket in the lottery for good i and their remaining

tickets in the lottery for good j. Solving the two equations, we find that

Vi,j = {v :
pjvj
pivi

∈ [1− (pi − pj), 1], vl < 0 for l 6∈ {i, j}}. (48)

Because η has full support, η(Vi,j) > 0, and Vi,j contains sets of agents with nonzero measure

who have different relative values for items i and j and a chance of receiving nothing. In this case,

there exists an exchange rate at which agents benefit from exchanging shares of i and j.

C.3 Upper Bounds on Trade Efficiency

Consider a k-ticket equilibrium defined by a win probability vector p and an allocation x. Let y be

a trade reallocation of x, and let ci := C(pi), for a decreasing cost function C : [0, 1]→ R+ defined

later. Without loss of generality, we assume

0 ≤ p1 ≤ p2 ≤ · · · ≤ pn ≤ 1. (49)

Because y is a trade reallocation of x, we have

∫
c · x(v) dη =

∫
c · y(v) dη.
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Thus there exists a set V with η(V ) > 0 such that for each v ∈ V , c · y(v) ≤ c · x(v). Fix v ∈ V ,

and define

wi := pivi, (50)

the utility of placing a single ticket on item i. For j ∈ {0, ..., k}, let uj be the welfare of agent v

corresponding to the optimal strategy with j tickets. Thus u0 = 0 and for j > 0, Lemma 1 implies

uj = uj−1 + max
i∈[n]

(wi − piuj−1). (51)

Let ij be the item on which the jth ticket is placed. (If there are two or more strategies consistent

with v, we break ties in favor of the item with the lowest index). As uj is increasing in j, it follows

from (51) that

pi1 ≥ pi2 ≥ · · · ≥ pik . (52)

Define

δj := uj − uj−1 (53)

to be the utility gain from the jth ticket, and note that

v · x = uk =
∑
j

δj . (54)

By (51), we have that for all i ∈ [n], j ∈ [k],

wi − piuj−1 ≤ wij − pijuj−1. (55)

Rearranging yields the following set of incentive compatibility constraints: for all i ∈ [n], j ∈ [k],

wi ≤ wij + piuj−1 − pijuj−1 = uj − uj−1 + piuj−1 = δj + piuj−1. (56)

Inspired by this, we define W : [0, 1]→ R+ by

W (p) = min
j∈[k]

(uj − uj−1 + puj−1) = min
j∈[k]

(δj + puj−1), (57)
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which ensures that for all i ∈ [n],

wi ≤W (pi), (58)

and allows us to prove a useful bound on welfare after trading.

Lemma 7. For any p ∈ [0, 1]n satisfying (49) and any v ∈ Rn+, define W as in (57). For any cost

function C : [0, 1]→ R+, define ci := C(pi). For any pair (∆, U) such that

pC(p)∆ + pU ≥W (p) ∀p ∈ [0, 1], (59)

and any allocation y such that y · 1 ≤ 1, the following holds:

v · y ≤ ∆(c · y) + U. (60)

Proof. For any B ≥ 0, if we take the dual of the linear program that maximizes v · y subject to the

constraints

c · y ≤ B,

y · 1 ≤ 1,

we get the following program with two variables and n constraints:

min
∆,U ≥0

B∆ + U

s.t. cipi∆ + piU ≥ pivi = wi ∀i. (61)

Equation (58) implies that (59) is stronger than (61). Weak duality thus implies (60) for any

(∆, U) satisfying (59).

C.3.1 Proof of Theorem 3

We begin by introducing new parameters for the proof. Define q0 = 1, qk = 0, and for j ∈ [k − 1]

define

qj := 1− δj+1

δj
. (62)
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Note that W is the minimum over k linear functions and that qj is the point at which functions j

and j + 1 intersect; i.e., qj solves

δj + quj−1 = δj+1 + quj .

The following Lemma establishes useful properties of {qj}j∈[k−1].

Lemma 8. For any p ∈ [0, 1]n satisfying (52) and w ∈ Rn+, define {uj}kj=0 as in (51), {δj}kj=1 as

in (53) and {qj}kj=0 as in (62). We have

0 = qk ≤ qk−1 ≤ · · · ≤ q1 ≤ q0 = 1. (63)

Moreover, for any α ∈ [0, 1] and m ∈ arg minj∈[k] δj + αuj−1,

qm ≤ α ≤ qm−1. (64)

Proof. From combining (51) and (56), we observe that

δj+1 = wij+1 − pij+1uj ≥ wij − pjuj ≥ δj(1− pij ),

δj = wij − pijuj−1 ≥ wij+1 − pij+1uj−1 = δj+1 + pij+1δj .

Rearranging gives

pij ≥ 1− δj+1

δj
= qj ≥ pij+1 ,

and (63) follows from (52).

For j ∈ [k], define Lj(α) = δj + αuj−1 to be the jth line in the set {δj + αuj−1}j∈[k]. Then qj

is the point where Lj and Lj+1 intersect, and

Lj(α) ≤ Lj+1(α)⇔ α ≥ qj . (65)

Suppose that (64) holds. Because α ≥ qm ≥ qm+1 ≥ · · · ≥ qk, (65) implies

Lm(α) ≤ Lm+1(α) ≤ · · · ≤ Lk(α).
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Similarly, α ≤ qm−1 ≤ qm−2 ≤ · ≤ q0 implies

Lm(α) ≤ Lm−1(α) ≤ · · · ≤ L1(α).

Jointly, these imply that Lm(α) = minj∈[k] Lj(α). Moreover, for all α ∈ [0, 1], qj ≤ α ≤ qj−1 for

some j ∈ [k]. Thus if Lm(a) = minj∈[k] Lj(α), (64) holds.

Proof of Theorem 3. Consider a k-ticket equilibrium defined by a win probability vector p and an

allocation x. Define the cost function

C(p) :=
1

p
. (66)

Define a trade reallocation y of x. As argued in the preliminary section of Appendix , there exists

a set V with η(V ) > 0 such that for all v ∈ V , c · y(v) ≤ c ·x(v). For the remainder of the proof, we

fix an arbitrary v ∈ V , define {uj}kj=0, {δj}kj=1, and W for v as in (51), (53), and (57), and write

x and y for x(v) and y(v).

Define B = c · x. By the definition of W in (57), for any j ∈ [k], (∆, U) = (δj , uj−1) satisfies

(59), and therefore Lemma 7 implies

v · y ≤ min
j∈[k]

Bδj + uj−1.

Let m be an index that minimizes this bound. Then applying Lemma 8 with α = 1/B we see

qm ≤
1

B
≤ qm−1. (67)

Furthermore, by (54) we have

v · y
v · x ≤

Bδm + um−1

uk
=

Bδm + um−1

(uk − um−1) + um−1
. (68)

Because the righthand expression is greater than 1, it is decreasing in both um−1 and uk − um, so

lower bounds on these expressions imply upper bounds on trade efficiency.
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To derive these bounds, we note that for i ≤ j, (62) implies

δj
δi

=

j−1∏
`=i

δ`+1

δ`
=

j−1∏
`=i

(1− q`),

and therefore Lemma 8 implies

(1− qj−1)j−i ≥ δj
δi
≥ (1− qi)j−i. (69)

Rearranging gives the inequalities

δj ≥ δi(1− qi)j−i (70)

δi ≥
δj

(1− qj−1)j−i
(71)

for i ≤ j, which will be more convenient for our purposes.

It follows that

uk − um−1 =

k∑
j=m

δj ≥ δm
k∑

j=m

(1− qm)j−m

≥ δm
k−m∑
j=0

(1− 1/B)j

= δmB(1− (1− 1/B)k−(m−1)), (72)

where the first inequality is (70), the second follows from (67) and the fact that (1−q)` is decreasing

in q for any natural number `, and the final equality follows from the geometric series equation∑`
j=0 r

j = 1−r`+1

1−r .

Analogously, (71) implies that

um−1 =
m−1∑
j=1

δj ≥ δm
m−1∑
j=1

1

(1− qm−1)m−j

≥ δm
m−1∑
j=1

1

(1− 1/B)j

= δmB((1− 1/B)−(m−1) − 1) (73)
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where the second inequality follows from (67) and the fact that 1
(1−q)` is increasing in q for any

natural number `, and the final equality follows from the geometric series equation. Substituting

the lower bounds (72) and (73) into (68) and simplifying, we see that

v · y
v · x ≤

Bδm + um−1

(uk − um) + um−1
≤ (1− 1/B)−(m−1)

(1− 1/B)−(m−1) − (1− 1/B)k−(m−1)
=

1

1− (1− 1/B)k
.

The result follows from noting that B = c · x ≤∑l∈[k] ci` · pi` = k.

C.3.2 Proof of Theorem 4

In this section, we scale v so that wi1 = 1 without loss of generality. When k = 2, (54) and (57)

simplify to

v · x = 2− q1, (74)

W (p) = min(1, 1− q1 + p). (75)

Furthermore, we have

xi2 = pi2 , xi1 = (1− pi2)pi1 . (76)

The following lemmas, proved subsequently, allow us to prove Theorem 4.

Lemma 9. For any q1 ∈ [0, 1], if we define W by (75) and define

C(p) = min

(
1

p
+

1√
2
,

√
2

p

)
=


1
p + 1√

2
: p ≤ 2−

√
2

√
2
p : p ≥ 2−

√
2,

(77)

(∆, U) =


( √

2√
2+q1

, 0
)

: q1 ≤ 2−
√

2(
1− q1,

√
2−

√
2−1
q1

)
: q1 > 2−

√
2,

(78)

then (59) holds.

Lemma 10. For any q1 ∈ [0, 1], if C and (∆, U) are defined as in (77) and (78), then

v · y
v · x ≤

(1 +
√

2)∆ + U

2− q1
≤ 1 +

√
2

2
. (79)
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Proof of Theorem 4. The fact that any equilibrium of the 2-ticket parallel lottery is 1+
√

2
2 -trade

efficient follows immediately from Lemma 10. We proceed to describe an example in which a trade

reallocation achieves this bound.

Consider a market with two goods, and a 2-ticket equilibrium with p1 ≤ p2. Define agent types

v1 = (
p2

p1
, 1),

v2 = (
p2

p1
(1 + p1 − p2), 1).

Lemma 1 implies that it is optimal for both types to place one ticket in the lottery for item 1, one

ticket in the lottery for item 2, and rank item 1 above item 2. This results in the allocation

x(v1) = x(v2) = (p1, (1− p1)p2).

Consider an agent type measure η such that

η({v1}) =
1

1 +
√

2
, (80)

η({v2}) =

√
2

1 +
√

2
, (81)

η(R2 \ {v1, v2}) = 0. (82)

This violates our assumption that the type measure is continuous, but η can be arbitrarily well-

approximated by a continuous measure.

Consider the allocation y defined by

y(v1) = ((1 +
√

2)p1, 0), (83)

y(v2) = (0,
1 +
√

2√
2

(1− p1)p2), (84)

which satisfies the trade reallocation constraint

x(v1) · η(v1) + x(v2) · η(v2) = y(v1) · η(v1) + y(v2) · η(v2).

Set p2 = 2 −
√

2 and consider the limit as p1 → 0, choices which ensure that y satisfies the
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unit demand constraint on trade reallocations. As p1 → 0, the minimum ratio by which any agent

benefits under y is

min

(
y1 · v1

x1 · v1
,
y2 · v2

x2 · v2

)
= lim

p1→0
min

(1 +
√

2)p2

(2− p1)p2
,

1+
√

2√
2

(1− p1)p2

(2− p2)p2

 =
1 +
√

2

2
.

Proof of Lemma 9. Define

f(p) := pC(p)∆ + pU −W (p).

We wish to show that this function is non-negative. Because (75) implies that W is constant on

[q1, 1] and (77) implies that pC(p)∆ + pU is weakly increasing in p for any non-negative ∆, U , it

suffices to check that f is non-negative for p ∈ [0, q1]. Furthermore, (75) implies that W (p) is linear

on [0, q1]. Because pC(p)∆ + pU is concave, this implies that f is concave on [0, q1]. Thus, to show

that it is non-negative on this interval, it suffices to check the endpoints. By (75) and (77),

f(0) = ∆− 1 + q1 ≥ 0,

where the inequality follows from (78) and the fact that 1/(1 + q1/
√

2) ≥ 1− q1.

Meanwhile, (75) implies that W (q1) = 1. If q1 ≤ 2−
√

2, then (77) implies that

f(q1) = (1 + q1/
√

2)∆ + q1U − 1 = 0,

where the second equality follows from (78). Similarly, if q1 > 2−
√

2, then (77) implies

f(q1) =
√

2∆ + q1U − 1 = 0.

Proof of Lemma 10. Lemmas 7 and 9 imply that

v · y
v · x ≤

B∆ + U

2− q1
. (85)

Furthermore, because

pC(p) = min

(
1 +

p√
2
,
√

2

)
, (86)
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we have

B = x · c (87)

= pi2C(pi2) + (1− pi2)pi1C(pi1)

≤ pi2C(pi2) + (1− pi2)
√

2

≤ 1 + pi2/
√

2 + (1− pi2)
√

2

≤ 1 +
√

2. (88)

The first equality above holds by definition and the second follows from (76). The first and second

inequalities follow because (86) implies that pi1C(pi1) ≤
√

2 and pi2C(pi2) ≤ 1 + pi2/
√

2. The final

inequality follows because the expression on the penultimate line is decreasing in pi2 , and thus

maximized at pi2 = 0. Combining (85) and (88) yields the first inequality in (79). We now turn to

the second inequality.

If q1 ≤ 2−
√

2, then (1 + q1/
√

2)(2− q1) ≥ 2 and therefore

(1 +
√

2)∆ + U

2− q1
=

1 +
√

2

(1 + q1/
√

2)(2− q1)
≤ 1 +

√
2

2
.

Meanwhile, for q1 > 2−
√

2, we have

(1 +
√

2)∆ + U

2− q1
=

(1 +
√

2)(1− q1) +
√

2−
√

2−1
q1

(2− q1)
<

1 +
√

2

2
,

where the last inequality follows because the middle term evaluates to 1+
√

2
2 at q1 = 2 −

√
2 and

the derivative of this function is

−q
2
1 + 2(

√
2− 1)q1 − 2

√
2 + 2

q2
1(2− q1)2

,

which is negative for p ∈ (2−
√

2, 1].
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C.4 Approximate Pareto Efficiency

Proof of Theorem 2. Consider a k-ticket equilibrium defined by a win probability vector p and an

allocation x. Define the cost function

C(p) :=
1− p
p

, (89)

and let ci = C(pi).

Note that any item with ci > 0 has pi < 1 and therefore is fully allocated in x. It follows that

for any feasible allocation y, ∫
c · y(v)dη ≤

∫
c · x(v)dη.

Therefore, there exists a set of agent types V with η(V ) > 0 such that for all v ∈ V , c·y(v) ≤ c·x(v).

Pick some v ∈ V , and define {wi}i∈[n], {uj}kj=0, {δj}kj=1, and W as in (50), (51), (53), and (57)

above.

Let ij be the item on which v places her jth ticket in her optimal strategy, and note that

c · x ≤
∑
l∈[k]

ci` · pi` =
∑
`∈[k]

1− pi` ≤ k. (90)

For any j, (∆, U) = (δj , uj) satisfies (59). Because c · y ≤ c · x, Lemma 7 implies

v · y
v · x ≤ min

j∈[k]

δjc · x+ uj
uk

. (91)

This immediately implies that the k-ticket parallel lottery is 2-Pareto efficient: taking j = k in

(91), we have

δkc · x ≤ kδk ≤ uk,

where the first inequality follows from (90) and the second from the fact that {δj}kj=1 is a decreasing

sequence as a consequence of (52) and the definition of {uj}kj=0 in (51). Thus v · y ≤ 2(v · x).

To get a tighter bound, note that for any m ∈ [k], we can rearrange (91) to get

v · y
v · x ≤

(c · x+ 1)δm + um−1

uk
. (92)

Define {qj}kj=0 in terms of {δj}kj=1 as in (62), and note that Lemma 8 applies. Choose m be such
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that 1/(c · x + 1) ∈ [qm, qm−1], and note the exact correspondence between (92) and (68) in the

proof of Theorem 3.

Using the same analysis as in the proof of Theorem 3, we conclude that

v · y
v · x ≤

1

1−
(

1− 1
c·x+1

)k ≤ 1

1− (1− 1/(k + 1)k)
,

where the final step uses (90).

D Proofs from Section 6

The following lemma is useful in the proofs of Propositions 4 and 5.

Lemma 11. At equilibrium in the two-item setting with µ1 + µ2 ≥ 1, almost every agent adopts

one of three strategies:

1. Agents with v2 < p1 place k tickets in the lottery for item 1 and receive x(v) = (1−(1−p1)k, 0).

2. Agents with p1 < v2 < 1 place k − 1 tickets in the lottery for item 1, place 1 ticket in the

lottery for item 2, and receive x(v) = (1− (1− p1)k−1, (1− p1)k−1).

3. Agents with v2 > 1 place k tickets in the lottery for item 2 and receive x(v) = (0, 1).

Proof. As F (1) ≥ µ1, item 1 is fully allocated. As a result,
∫

1 − x1(v) dη = 1 − µ1 = µ2, so

p2 = 1 in any win probability vector p corresponding to a k-ticket equilibrium in the two-item

setting. As a result, agents with v2 > 1 are guaranteed their preferred item when they adopt

Strategy 3. For agents with v2 < 1, every strategy that places less than k− 1 tickets in the lottery

for item 1 is dominated by Strategy 2. Finally, agents who adopt Strategy 1 have expected value

(1 − (1 − p1)k−1)v1 + (1 − p1)k−1p1v1, while agents who adopt Strategy 2 have expected value

(1− (1−p1)k−1)v1 + (1−p1)k−1p2v2. Plugging in v1, p2 = 1 implies that agents with v2 < p1 adopt

Strategy 1 and agents with p1 < v2 < 1 adopt Strategy 2.

D.1 Proof of Proposition 4

Proof of Proposition 4. Let x be an allocation corresponding to a k-ticket parallel lottery in the

two-item setting. Our proposed CEEI takes place in the same market, except that the two items
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have quantities defined by the vector

µ̃ :=

∫
x(v) dF (v) ≤ µ. (93)

We claim that c := ( 1
1−(1−p1)k

, p1
1−(1−p1)k

) is an equilibrium price vector in this market. To see this,

consider an agent v = (1, v2) who wishes to choose (x1, x2) to maximize x1 + x2v2 subject to the

unit demand constraint x1 + x2 ≤ 1 and the budget constraint x1c1 + x2c2 ≤ 1. A straightforward

calculation verifies that for agents with v2 < p1, p1 < v2 < 1, and v2 > 1, the allocations described

in Lemma 11 solve this optimization problem and clear the market.

D.2 Proof of Proposition 5

Proof of Proposition 5. Lemma 11 implies that in any k-ticket equilibrium in the 2-item setting,

plotting expected value in terms of v2 yields a piecewise linear function (as depicted in Figure 2.)

Specifically, all agents with v2 < p1 adopt Strategy 1 and have expected value 1− (1−p1)k. Agents

with p1 < v2 < 1 adopt Strategy 2, and expected value increases linearly to 1 on the interval [p1, v2].

Finally, agents with v2 > 1 adopt Strategy 3 and have expected value v2. Thus the geometry of

the expected value curve implies that two such curves cross at most once.

Fix a k-ticket equilibrium in the two-item setting with win probability vector p. By Lemma 11,

µ1 = (1− (1− p1)k)F (p1) + (1− (1− p1)k−1)(F (1)− F (p1)). (94)

Rearranging this equation, we get

F (1)− µ1 = (1− p1)k−1(F (1)− p1F (p1)). (95)

By definition, the left side of this equation is a nonnegative value constant in p and k. As a result,

we have F (1)− p1F (p1) ≥ 0. Thus the right side of the equation is decreasing in p1 and k, which

implies that in the two-item setting, a smaller k corresponds to a larger p1 at equilibrium.

Fix k1 < k2, and let xk1 and xk2 be allocations corresponding to k1 and k2-ticket equilibria

in the two-item setting. The win probability for item 1 is higher in the k1-ticket equilibrium, so

agents with small v2, who adopt Strategy 1 in both equilibria, prefer xk1 to xk2 . If the expected

value curves corresponding to xk1 and xk2 do not cross, then every agent with v2 < 1 prefers xk1 to

xk2 . If the expected value curves cross, then every agent with v2 less than the point of indifference

prefers xk1 to xk2 . Thus if v prefers xk1 to xk2 , the same is true of any agent w with w2 < v2.
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