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Abstract

We model the problem facing a policymaker who must allocate rapid rehousing support to

people experiencing homelessness and wishes to minimize the steady-state size of the homeless

population. Typically, support is given to the most vulnerable applicants, or to applicants most

likely to remain housed. We show that these approaches may result in a homeless population

that is arbitrarily larger than what could be achieved by an optimal policy, and propose an

alternative priority queue that is approximately optimal.

We then study a family of policies where the policymaker does not differentiate between

agents based on their characteristics. Within this family, FIFO queues best target the most

vulnerable. If the most vulnerable households benefit most from housing assistance, then a

FIFO queue minimizes the expected unhoused population. Conversely, a LIFO queue is optimal

if the least vulnerable households benefit most from housing assistance.
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1 Introduction

1.1 Background on Rapid Rehousing

Rapid Rehousing. Rapid rehousing (RRH) programs offer housing assistance to households

experiencing homelessness. These households are assigned to a case manager, who helps them find

and pay for rental housing. Unlike other rental assistance programs such as Section 8 Housing

Choice Vouchers, RRH rental support is temporary: households must exit the program within a

maximum of 2 years (sooner in many cases), at which point they are expected to pay the full rent.

Coordinated Entry. Because there are many more eligible households than can be supported

with existing resources, RRH support must be rationed. Within each region (referred to as a

“continuum of care” or CoC), a government-run “coordinated entry” system is responsible for

matching households experiencing homelessness to non-profit providers offering RRH. This system

maintains a list of households experiencing homelessness. Whenever a housing provider has the

capacity to assist an additional household, it requests a “referral” from the coordinated entry

system. The system then refers one of the households on its list to the provider, who reaches out

to the client to verify eligibility and begin the housing search process.

Prioritization. Coordinated entry systems make referrals based on a priority queue. Each

household is given a score, and whenever an opening becomes available, the highest-priority house-

hold on the list is referred to that program. The Department of Housing and Urban Development

(HUD) requires that CoCs document their prioritization policies, but does not specify what these

policies should be. CoCs often consider several conflicting principles when setting their policies.

• Prioritize the most vulnerable households. HUD does encourage CoCs to “ensure

that people with the most severe service needs and levels of vulnerability are prioritized”

(United States Department of Housing and Urban Development, 2015). One definition of

vulnerability is given by the “Vulnerability Index – Service Prioritization Decision Assistance

Tool”, or VI-SPDAT. This is a questionnaire that many CoCs ask households to complete

before receiving assistance (OrgCode and CommunitySolutions, 2015). Households are then

prioritized based on a “vulnerability score” calculated from their responses. Scores are higher

for individuals who report chemical dependency, a history of abuse or self-harm, or recent

visits to an emergency room.
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• Prioritize households most likely to remain successfully housed. HUD asks CoCs

to track and report whether households that have been supported by the Coordinated Entry

system return to homelessness after receiving assistance . A CoC interested in improving this

metric might seek to assist households deemed most likely to be able to support themselves

after rental support expires. In practice, this might mean prioritizing households where at

least one member has regular employment.

• Prioritize households who have waited longest. A common rationing method is to use

a first in, first out (FIFO) queue or waiting list, which prioritizes individuals who have been

on the list the longest.

• Prioritize recently unhoused households. The original intent of RRH – suggested by

its name – was to assist households that only recently became homeless. A natural policy

aligned with this intent is to operate a last in, first out (LIFO) queue.

Individual CoCs periodically change their prioritization policies. For example, Hennepin County

used the VI-SPDAT until March 2020, when a report concluded that “use of the VI-SPDAT unfairly

favors white people over people of color, thereby perpetuating racial inequities within the homeless

system” (Wilkey et al., 2019). The subsequent policy prioritized the disabled, as well as chronically

homeless households with the greatest time spent homelessness1. In August 2023, disability status

was replaced by the related but distinct concept of “medical fragility.” These changes indicate that

the appropriate policy is far from obvious.

In fact, it is not clear that there is a “right” answer. Given n homeless households, and the

ability to help r < n of them, the situation feels zero sum: assistance offered to one household

is necessarily denied another. The question of who to prioritize seems to depend on a subjective

judgment of whose welfare to prioritize: some policymakers may favor families, others may favor

veterans, and others may favor those with the most challenging life circumstances. Who’s to say

which judgement is correct?

1Source: https://content.govdelivery.com/accounts/MNHENNE/bulletins/280a166
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1.2 Our Contributions

We address this challenge by formulating a dynamic model in which current prioritization decisions

affect the future evolution of the system. Households transition between housed and unhoused states

according to household-dependent rates: λi gives a rate at which household i loses housing when

housed, and µi gives the rate at which household i finds housing when homeless. The policymaker

observes the state of each household, and must choose who to assist. Households that receive

assistance immediately become housed, but remain at risk of returning to homelessness.

In this model, the number of homeless households depends on the policy: prioritizing households

that are likely to quickly return to homelessness – or households that could have found housing

on their own – will “waste” resources. We focus on the objective of minimizing the size of the

homeless population in steady state. Our dynamic model transforms the question of whether to

prioritize the vulnerable from a subjective judgment to something more concrete: will this policy

be the most effective way to reduce the number of households experiencing homelessness?

Limitations of prioritizing based on vulnerability or success. Within this model, we

offer definitions of vulnerability-based and success-based prioritization policies. We measure a

household’s vulnerability by the expected duration of an episode of homelessness if the household

does not receive assistance. We measure success by the expected time that a household remains

housed after receiving assistance. Prioritizing based on vulnerability assists individuals who are

least capable of assisting themselves, while prioritizing based on success aims to ensure that assisted

households are those able to make the most of their opportunity.

We show that prioritizing the vulnerable could be effective or ineffective, depending on the

joint distribution of λ and µ in the population (see Fig. 1). In specific circumstances, vulnerability-

based and success-based policies are approximately optimal, but in general, both approaches could

result in a homeless population that is much larger than necessary (Theorem 1). The intuition is

that prioritizing vulnerable households could waste resources if these households return quickly to

homelessness, while prioritizing successful households is wasteful if these households were likely to

find housing without assistance.

A near-optimal policy. We propose an alternative prioritization policy that considers both

vulnerability and success. This policy prioritizes households for which the harmonic mean of “ex-
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Figure 1: Prioritizing the vulnerable could be near-optimal or very ineffective, depending on the
joint distribution of λ and µ. In the first scenario, households differ primarily in their µi (ability to
find housing), and prioritizing the vulnerable is near-optimal. However, this conclusion reverses if
the primary source of heterogeneity is the λi (which determines households’ ability to keep housing).
In the third scenario, the optimal policy does not target the most or least vulnerable, but rather those
with intermediate levels of vulnerability.

pected duration of homelessness” and “expected duration of remaining housed” is largest. We show

that this is near-optimal whenever there is enough RRH to assist many households (Theorem 2).

Policies based on waiting time. Implementing our proposed policy requires that the pol-

icymaker knows how long households are expected to remain unhoused (without assistance) and

housed (after receiving assistance). Estimating these quantities may be difficult, and prioritizing

accordingly may risk violating fair housing laws. Therefore, the second section of our paper fo-

cuses on policies that prioritize based on waiting time. These policies can be implemented with no

knowledge other than when each household became homeless. We consider a variant of our model

in which the policymaker chooses a distribution that specifies how long households must wait before

being offered assistance.

Among policies based on waiting time, a first-in, first-out (FIFO) queue gives the most assistance

to vulnerable agents (Lemma 5), and a last-in, first out (LIFO) queue gives the least (Lemma 6).

As a result, if prioritizing vulnerable agents is desirable, then FIFO is optimal and LIFO is pessimal

(Theorem 3). The reverse is true if prioritizing vulnerable agents is undesirable. If all households

are equally vulnerable, then any policy based on waiting time is equivalent (Theorem 5). Finally,

our findings continue to hold if the policymaker can offer agents a menu of waiting time distributions

to choose from (Theorem 4).
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1.3 Literature Review

The idea of defining vulnerability as the likelihood of experiencing long-term homelessness was

proposed by Rice (2013), which developed the TAY tool to prioritize youth in need of housing

support. This tool consisted of a set of questions that are used to score individuals’ vulnerability.

Building on this work, Rice et al. (2018) and Chan et al. (2019) both found that youth with

medium levels of vulnerability have positive outcomes when matched with RRH, but youth with

higher levels of vulnerability who are given RRH support are more likely to experience homelessness

within the subsequent 180 days. Hsu et al. (2021) use the same measure of vulnerability, and show

that it is correlated with the abandonment of RRH. These papers expose the challenge that those

with the greatest difficulty of finding housing often have the lowest probability of remaining housed

after receiving assistance. Brown et al. (2017) showed that 9.5% permanently housed participants

re-entered the homeless service system during the follow-up period.

Other work has considered different prioritization approaches. Azizi et al. (2018) propose a

mixed-integer program to prioritize housing resources for homeless youth. They take a data-driven

approach with three parallel objectives in mind: efficiency, fairness and interpretability. Kube

et al. (2019) propose an allocation mechanism based on predicted outcomes to reduce the number

of families experiencing repeated episodes of homelessness. We complement this research by showing

that prioritizing based only on success could lead to suboptimal outcomes.

Das (2022) focuses on the role of AI in allocating scarce resources. He describes three principles

used by policymakers: allocate to those with the greatest need, allocate to those who will be best off

after allocation and, allocate to those who would get the greatest “value added” from the resource.

There is a direct match between these principles and the vulnerability-based, success-based and

benefit-based policies studied in this paper. Vulnerability-based and success-based policies are

also studied in Kube et al. (2022), which finds that many people consistently follow one of these

approaches when asked to choose between households.

Su and Zenios (2004) study LIFO vs FIFO queues for the matching of patients to kidneys. They

show that a LIFO queue leads to fewer wasted resources because it solves the misaligned incentives

problem present in FIFO queues. We also establish conditions under which a LIFO queue is optimal,

but the forces driving our results are quite different. In our case agents do not make decisions, and
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the benefits of the LIFO queue come from improved targeting (statistical discrimination), rather

than strategic incentives.

Also motivated by kidney allocation is the work of Nikzad and Strack (2022), which uses a

model similar to the one presented in Section 3 to analyze the efficiency of different allocation

mechanisms. That paper studies the inequality in assignment probability derived from different

mechanisms. It shows that service in random order is the most equitable mechanism and, under

certain conditions, it is also the most efficient. The main differences between our work and theirs

are: (i) in our model agents do not depart the system and therefore agents might require multiple

resources. (ii) in their model agents who leave the market unmatched are assumed to become too

ill for transplant (which is a negative outcome), whereas in our case where agents could leave the

queue without the policymaker’s help by finding housing on their own (which is a positive outcome).

2 Discrete model with observable characteristics

There is a set N = {1, 2, ..., n} of agents. At any moment in time, the system state is defined by

a vector X ∈ {0, 1}N : Xi = 0 indicates that agent i is housed, and Xi = 1 if agent i is unhoused.

Each agent i ∈ N is characterized by a pair of values (λi, µi) ∈ [λ, λ̄] × [µ, µ̄] ⊂ R2
+. The time

agent i spends in state 0 before losing housing follows an exponential distribution with mean 1/λi.

Absent intervention, the time agent i spends in the unhoused state 1 before finding new housing

follows an exponential distribution with mean 1/µi. We use 1/µi as a measure of vulnerability:

smaller µi correspond to more vulnerable agents.

Resources arrive according to a Poisson process with rate r. These resources allow the poli-

cymaker to move an agent from state 1 to state 0. Resources that are not used immediately are

discarded. We focus on Markovian policies, where the decision of whom to help depends only on

the current state. These policies can be defined by a partition of the state space π = {πi}i∈N , with

πi ⊆ {0, 1}N the set of states in which the policymaker would choose to assist agent i. We require

that (I) for every i, j ∈ N with i 6= j we have that πj ∩ πi = ∅ and (II) for any X ∈ πi we have

Xi = 1. The first condition ensures that there is never ambiguity about which agent is receiving

the resource. The second condition ensures that the policymaker only helps unhoused agents.

Given a policy π, the process Xπ(t) is a continuous time Markov chain with a finite number
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of states and therefore has a unique stationary distribution. Let Xπ be a random variable drawn

from the steady-state distribution of Xπ(t). The goal of the policymaker is to choose a policy π to

minimize the expected number of unhoused agents in steady-state:

U(π) =
n∑
i=1

E [Xπ
i ] . (1)

Many of our results address priority queues, which are a simple type of policy that is commonly

used in practice. In these policies, the policymaker has a strict ranking of agents, and always assists

the highest-ranking agent. In general, the optimal policy might not be a priority queue, as shown

in Appendix A.1.1. However, Theorem 2 shows that an appropriate priority queue is approximately

optimal in large markets.

Definition 1. A policy π is called a priority queue if there is some priority order � over the agents

such that πi = {X : Xi = 1 and Xj = 0 for all j � i}.

From now on, when we consider priority queues we will assume that agents are indexed by their

priority order. That is, agent 1 has the highest priority, followed by agent 2 and so on.

2.1 Vulnerability and Success based priority queues

In some cases, policymakers use vulnerability as the deciding factor for prioritizing agents. In other

cases, the rate of success is the most important characteristic. We define these policies in our model

as follows.

Definition 2. A priority queue with order � prioritizes the vulnerable if µi < µj =⇒ i � j.

A priority queue with order � prioritizes based on success if λi < λj =⇒ i � j.

Our first result shows that there are scenarios where prioritizing based on vulnerability or

success can lead to arbitrarily bad outcomes.

Theorem 1. Let πµ be a priority queue that prioritizes the vulnerable and πλ a priority queue that

prioritizes based on success. For any ε > 0, there exists a set of agents N and a priority queue π∗

such that

U(π∗) ≤ |N |ε (2)

U(πµ) ≥ |N |(1− ε), (3)
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and there exists a set of agents N and a priority queue π∗ such that

U(π∗) ≤ |N |ε (4)

U(πλ) ≥ |N |(1/2− ε). (5)

In our example illustrating the shortcomings of prioritizing based on vulnerability, there are a

small number of vulnerable agents who have very small success rates (big λ). Prioritizing these

agents wastes resources that could instead help agents with small λ find housing for the long term.

In the example illustrating the shortcomings of prioritizing based on success, there are two sets

of agents of equal size. The two groups have similar success rates λ, but the group with a slightly

smaller λ has a very high value of µ. As a result, resources allocated to these agents are largely

wasted, as these agents were likely to find housing even without assistance. The complete proof

can be found in Appendix B.1.2.

Having shown that prioritizing agents based on vulnerability or success could be arbitrarily

sub-optimal, our next goal is to identify a better policy. We start by bounding the performance of

any policy in Section 2.2 before defining a priority queue that incorporates both vulnerability and

success in Section 2.3.

2.2 A simple lower bound on the unhoused population

Our first step is to get a clean representation of U(π), which also gives us a lower bound on the

steady-state unhoused population of any policy.

Proposition 1. For any Markovian policy π, define

rπi = rP (Xπ ∈ πi) (6)

Then
∑

i r
π
i ≤ r, and for all i, rπi ∈ (0, λi) and E[Xπ

i ] =
λi−rπi
λi+µi

.

Therefore, minπ U(π) ≥ U∗, where

U∗ = min
ri

n∑
i=1

λi − ri
λi + µi

(7)

s.t 0 ≤ ri ≤ λi ∀i ∈ N (8)

n∑
i=1

ri ≤ r. (9)
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Proposition 1 is useful for several reasons. First, it allows us to evaluate policies based on the

rates in which resources are given to each agent (ri), instead of the more complicated partitions

π. Second, it yields a useful lower bound U∗ by allowing the policymaker to choose the values ri

directly (in general, this lower bound is not attainable). Third, the solution to the linear program

above reveals insightful structure: it gives as many resources as possible (ri = λi) to agents with

the smallest values of λi +µi. This suggests a natural priority queue which prioritizes agents based

on the value λi + µi. We study this policy in the next section.

The proof of Proposition 1 separates the state-space in three disjoint sets for every agent i:

(1) Hi are all the states where agent i is housed, (2) πi is defined as the set of states where i is

unhoused and could receive a resource and, (3) Zi are all states where i is unhoused but will not

receive a resource. We then use the balance equations between these sets to compute the time that

each agent spends unhoused. The complete proof is in Appendix B.1.1.

2.3 A near-optimal policy

Inspired by the linear program in Proposition 1, we will consider the policy that prioritizes agents

with the lowest value of λi + µi. We will show that this policy is approximately optimal if the

number of agents and rate of resource arrival are large. Because of this result, we refer to this

policy as a priority queue that prioritizes benefits.

Definition 3. A priority queue πλ+µ with order � prioritizes benefits if and only if:

λi + µi < λj + µj =⇒ i � j (10)

Our next result shows that in large markets, this policy achieves an unhoused population close

to the lower bound from Proposition 1.

Theorem 2. Let π be a priority queue that prioritizes benefits. Then the difference between U(π)

and U∗ is bounded by

U(π)− U∗ ≤ 1 +

(
1 +

1

λ

)√
r. (11)

Furthermore, if
∑

i∈N λj > r then:

U(π)− U∗ ≤ 1 +

(
1 +

1

λ

)√
λn. (12)
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The main insight from this theorem is that the difference between a priority queue that priori-

tizes benefits and our lower bound grows sub-linearly in r and n. Therefore, in a market where r

and n are large, the relative difference in the size of the unhoused population will be small. The

proof can be found in Appendix B.1.3.

There are instances where a good performance guarantee can be made for vulnerability and

success-based policies. For example, when high vulnerability is correlated with a high success rate,

then prioritizing based on vulnerability will be equivalent to prioritizing based on benefit, which

we already showed is asymptotically optimal. We formalize this idea in the following remark.

Remark 1. If µi < µj implies µi + λi < µj + λj, then prioritizing based on vulnerability is

asymptotically optimal. If λi < λj implies µi + λi < µj + λj then prioritizing based on success is

asymptotically optimal.

2.4 Proof outline

To establish the result presented in Theorem 1 and Theorem 2 we use the fact that priority queues

have a simple fluid approximation. The solution of the fluid approximation from Proposition 1 has

a simple structure where some agents receive all the resources and are always housed, another set

of agents does not receive any resources and are housed only a fraction of the time and, there is one

agent that receives some resources but not enough to be constantly housed. We will have a similar

structure for the fluid approximation of general priority queues. We will use xπi to represent the

fluid approximation of a priority queue π:

xπi =


0 if

∑i
j=1 λj < r∑i

j=1 λj−r
λi+µi

if
∑i−1

j=1 λj ≤ r ≤
∑i

j=1 λj

λi
λi+µi

o.w

(13)

The goal of this section is to show that this fluid approximation is, forgive the redundancy, a

good approximation of the discrete model. To this end, we use Lemma 1 (proved in Weng et al.

(2020)) multiple times to upper bound the difference between the expected number of unhoused

agents and its fluid approximation. This result uses a Lyapunov function from the state space to

R+ and shows that under certain conditions the probability that the Lyapunov function is big falls
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geometrically.

Lemma 1 (Weng et. al Lemma 6). Consider a continuous time Markov Chain {X(t) : t ≥ 0} on

a finite state space X . Assume it has a unique stationary distribution. For a Lyapunov function

V : X → R+ define GV (x) =
∑

x′∈X rx,x′(V (x′) − V (x)) where rx,x′ is the transition rate from x

to x′. Suppose that

νmax = sup
x,x′∈X :rx,x′>0

|V (x′)− V (x)| <∞ (14)

fmax = max

0, sup
x∈X

∑
x′:V (x′)>V (x)

rx,x′(V (x′)− V (x))

 <∞ (15)

Given a set E. If for some B > 0, γ > 0, ξ ≥ 0 it holds: (1) GV (x) < −γ when V (x) ≥ B and

x ∈ E. (2) GV (x) < ξ when V (x) ≥ B and x 6∈ E. Then for all positive integers m, if X∗ is the

steady-state random variable, it holds that

P(V (X∗) ≥ B + 2νmaxj) ≤
(

fmax
fmax + γ

)j
+

(
ξ

γ
+ 1

)
P(x 6∈ E). (16)

The general bound is given in the following proposition:

Proposition 2. Let π be a priority queue and choose an α ∈ (1/2, 1). The distance between the

original problem and the fluid approximation is less than:∑
i∈N
|E [Xπ

i ]− xπi | ≤ 2r1−α +
2rα

µ+ λ
+

r

µ+ λ
exp

{
− r2α

8(λ̄+ µ̄)(r + rα)(1 + µ̄/λ)

}
(17)

To show this result we split agents into 3 disjoint sets of agents N1 ∪N2 ∪N3 = N . The first

one is a high-priority group that is likely to be housed. We use a α ∈ (1/2, 1) to determine this

group:
∑

i∈N1
λi = r − rα. We can use Lemma 2 to find the difference between this group’s utility

and the fluid approximation. The second group should be small enough that it should have little

impact compared to the overall population. The last group consists of agents that are unlikely

to get help from the policymaker:
∑

i∈N1∪N2
λi = r + rα. We use Lemma 3 to upper-bound the

distance between this group and its fluid approximation.

To bound the difference of the high-priority group that is likely to be housed N1 we use the

following Lyapunov function that for every state X counts the number of unhoused agents in the

set M :
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V (X) =
∑
i∈M

Xi. (18)

The result for this first group is summarized in Lemma 2.

Definition 4. A policy is non-wasteful if a resource will only be discarded if, at the time of its

arrival, everyone is housed: ∪ni=1πi = {0, 1}N \ {0}N .

Lemma 2. Let M ⊆ N be a subset of agents and let π be a non-wasteful policy such that any agent

j 6∈ M could receive a resource only if everyone in M is already housed: for all X ∈ πj we have

Xi = 0 for all i ∈M . If
∑

i∈M λi ≤ r then:

P

(∑
i∈M

Xπ
i ≥ 2k + 1

)
≤
(∑

i∈M λi

r

)k
. (19)

and

E

[∑
i∈M

Xπ
i

]
≤ 2r

r −
∑

i∈M λi
. (20)

For the case of agents that are unlikely to get help from the policymaker (N3), we bound the

difference from the fluid approximation in the following result.

Lemma 3. Take an α ∈ (0, 1) and let M ⊆ N be a subset of agents such that rα =
∑

i∈M λi− r ≥

4(λ̄ + µ̄). Let π be a non-wasteful policy such that any agent j 6∈ M could receive a resource only

if everyone in M is already housed: for all X ∈ Sj we have Xi = 0 for all i ∈M .∑
i∈N\M

|E [Xπ
i ]− xπi | ≤

r

µ+ λ
exp

{
− r2α

8(λ̄+ µ̄)(r + rα)(1 + µ̄/λ)

}
(21)

3 Prioritization based on waiting time

In this section, we study a variant of the model from the previous section. As before, we have

a set N = {1, 2, ..., n} of agents, which move between housed and unhoused states. We let Xi(t)

denote the state of agent i at time t: Xi(t) = 0 if i is housed, and Xi(t) = 1 if i is unhoused. In

the previous section, the policymaker selected a policy that specified which agent to help when a

resource arrives. Each policy induced a (random) waiting time that each agent needed to spend

unhoused before receiving help from the policymaker. In this section, we empower the policymaker

to directly choose the waiting time distribution for each agent. This decouples the evolution of the

agents from each other, allowing us to study them independently.
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Formally, we consider interventions parameterized by distributions {Fi}i∈N . Given an inter-

vention, the evolution of Xi is as follows. Every time agent i enters state 1 (becomes unhoused),

the policymaker draws a random variable Ti from cumulative distribution function Fi. If agent i

remains unhoused for Ti periods, the policymaker intervenes by providing housing to i.

As in Section 2, we evaluate interventions based on the steady-state size of the unhoused pop-

ulation. Formally, let Hi(t) =
∫ t

0 1−Xi(t)dt be a random variable that keeps track of the amount

of time agent i has spent housed up to time t, and define

xFi = 1− lim
t→∞

Hi(t)

t
(22)

U(F) =
∑
i∈N

xFi . (23)

We will use U(F) to compare different interventions. It is trivial to see that U(F) is minimized by

choosing the intervention consisting of a point mass at zero (that is, help every agent immediately).

To incorporate resource constraints, we will only compare policies that require similar rates of

resource consumption, defined as follows. Let Ni(t) be a renewal process that counts the number

of times agent i has received help from the designer up to time t. For any intervention F, define

rFi = lim
t→∞

Ni(t)

t
(24)

rF =
∑
i∈N

rFi . (25)

The quantity rF gives the rate at which resources must be used to implement intervention F.

The main result of this section states conditions in which FIFO and LIFO queues are optimal

and pessimal or vice versa. We build to this by first defining targeting and majorization. We then

define anonymous interventions and show that FIFO queues target the most vulnerable and LIFO

queues target the least vulnerable. With all the building blocks, we formally introduce the main

result in Theorem 3. We conclude this section by introducing a broader family of interventions

where the policymaker builds a menu of interventions and lets the agents choose between them.

We show that even in this larger set of interventions, under the conditions stated in Theorem 3,

the FIFO and LIFO queues are optimal and pessimal or vice versa.

14



3.1 Targeting through interventions

Similar to the model from the previous sections, we can write the unhoused population as a function

of the rate resources used in each agent under intervention F as follows (see Corollary 1):

U(F) =
∑
i∈N

λi − rF

λi + µi
(26)

Note that interventions are more flexible than the class of policies considered in Section 2, in

the sense that we can construct interventions that lead to any point inside the feasible region of the

LP presented in Proposition 1. For example, the policymaker achieves ri = 0 by never allocating

to agent i (Fi is a point mass at ∞), and achieves ri = λi by allocating to agent i immediately

(Fi is a point mass at 0). Any desired rate of resource use rFi ∈ [0, λi] can also be achieved by a

suitably chosen intervention Fi.

We use the concept of majorization to compare interventions.

Definition 5. Intervention F majorizes intervention G up to agent k (denoted F �k G) if and

only if for all j ≤ k,

j∑
i=1

rFi ≥
j∑
i=1

rGi (27)

If F majorizes G up to agent n we simply say that F majorizes G and write it as F � G.

Suppose agents are ordered from most preferred to least preferred to get help from the poli-

cymaker. An intervention majorizes another intervention if more resources are used in the more

preferred agents. With this definition, we show that if agents are ordered from smallest λi + µi

to biggest then if intervention F majorizes intervention G, the former leads to a smaller unhoused

population: U(F) ≤ U(G).

Lemma 4. Suppose µi + λi ≤ µj + λj for every i ≤ j. If intervention F majorizes intervention G

then U(F) ≤ U(G).

3.2 Anonymous interventions

Our analysis will focus on anonymous interventions that treat all agents equally.

Definition 6. An intervention is anonymous if Ai = A for all agents.
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This is partially motivated by the fact that agents’ characteristics could be difficult to estimate.

Furthermore, even if vulnerability and success could be accurately measured, the policymaker could

have fairness constraints that prevent her from using these to prioritize agents. In what follows, we

sometimes use the word “intervention” to refer to an anonymous intervention.

Two commonly used anonymous interventions are the FIFO and LIFO queues. We define these

interventions as follows.

Definition 7. An anonymous intervention Ft is called a FIFO Queue if there is some t such that:

Ft(x) =


0 if x ≤ t

1 if x > t

(28)

Definition 8. An anonymous intervention Lq is called a LIFO Queue if there is some q such that:

Lq(x) = q, ∀x ≥ 0. (29)

These definitions match those given by Nikzad and Strack (2022). They can be thought of

as large market limits of discrete FIFO and LIFO queues. Note that our definition of a FIFO

queue maintains the property that whenever an agent receives assistance from the policymaker, it

is the agent who has been unhoused for the longest time. Similarly, our definition of a LIFO queue

ensures that whenever an agent receives assistance, it is the agent who has most recently become

unhoused.

3.3 Targeting the vulnerable

We next show that a FIFO Queue is the anonymous intervention that best targets the most

vulnerable.

Lemma 5. Suppose µi ≤ µj for every i ≤ j. Let A be any anonymous intervention. There exists

a FIFO Queue Ft that majorizes A and uses the same number of resources rA = rFt

Note that µi ≤ µj is a labeling of the agents and not a condition of the primitives of the model.

This lemma says that we can always choose a FIFO queue that gives more resources to agents with

lower µi. The intuition behind this result is that the longer you wait to help an agent the more

vulnerable this agent is likely to be. The proof of this result can be found in Appendix B.2.3.
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On the other hand, a LIFO Queue is the worst anonymous intervention at targeting vulnerable

agents.

Lemma 6. Suppose µi ≤ µj for every i ≤ j. Let A be any anonymous intervention. There exists

an LIFO Queue Lq that is majorized by F and uses the same number of resources rA = rLq

Because time spent waiting correlates with µi, eliminating waiting time removes all relations

between µi and resource allocation. Any other intervention will lead to agents with smaller µi

receiving more resources. The proof of this lemma is in Appendix B.2.4.

Lemma 5 and Lemma 6 show that FIFO and LIFO queues target the most and least vulnerable,

respectively. If everyone is equally vulnerable (µi = µ for all i ∈ N) then any two anonymous

interventions that use the same rate of resources will lead to the same outcome for every agent.

Details of this result are shown in Appendix A.3.

3.4 Optimality of FIFO and LIFO queues

Theorem 3 formalizes the central result of this section, which is that if the most vulnerable agents

have the smallest λi + µi then a FIFO Queue is the best anonymous intervention. Conversely, if

the most vulnerable agents have the largest λi + µi then a LIFO Queue is the best anonymous

intervention.

Theorem 3. Let Ft be a FIFO Queue such that rFt = r. Let Lq be a LIFO Queue such that

rLq = r. Finally, let A be any anonymous intervention such that rA = r. If

µi < µj =⇒ µi + λi < λj + µj , (30)

then:

U(Ft) ≤ U(A) ≤ U(Lq). (31)

On the other hand, if

µi < µj =⇒ µi + λi > λj + µj , (32)

then the inequalities reverse:

U(Ft) ≥ U(A) ≥ U(Lq). (33)

Note that the condition in (30) corresponds exactly to the scenario in which targeting the most
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vulnerable agents is approximately optimal (see Remark 1). In this case, Theorem 3 states that

FIFO is the optimal anonymous policy. Meanwhile, condition (32) is readily shown to imply that

success-based policies prioritize agents with the lowest λi + µi. Therefore, in circumstances where

Theorem 3 guarantees that LIFO is the best anonymous policy, the policymaker would like to use

a success-based prioritization policy if this were possible.

3.5 Menu of interventions

Our focus on anonymous interventions is partly motivated by the idea that the parameters µi and

λi may not be observable to the policymaker. In many mechanism design settings with private

information, it is possible to partially elicit this information by offering choices to agents. This

motivates us to consider an extension in which unhoused agents can choose among several possible

interventions. For example, agents could be asked to choose between two programs: one that

allocates resources on a FIFO basis, and another that allocates each new resource by lottery.

To capture such possibilities, we consider an extension in which the policymaker offers a menu of

anonymous interventions M = {A(1),A(2), ..,A(m)} to each agent. Let p(µ,A) be the probability

that an agent with with housing rate µ receives assistance under intervention A:

p(µ,A) = PY∼A(Y ≤ Zµ), (34)

where Zµ ∼ Exp(µ). We assume that each agent i will choose the intervention that maximizes the

probability of getting help:

ci(M) ∈ arg max
A∈M

{p(µi, A)} (35)

In our model, this is equivalent to choosing the intervention that minimizes the agent’s steady-state

fraction of time spent unhoused.

Given that we are allocating a homogeneous resource, in a setting where all agents want to

maximize their probability of receiving the resource and payments are not allowed, one might

expect that agents will make identical choices from the menu.

This intuition turns out to be incorrect. In Appendix A.2.1 we present an example where the

policymaker can induce different agents to make different choices. Furthermore, offering a menu of

interventions achieves a strictly better objective value (fewer unhoused agents) than can be achieved

by any single anonymous intervention that uses the same number of resources as the menu.
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Although using menus can sometimes be beneficial for the policymaker, we show that under

the conditions identified in Theorem 3, a FIFO Queue is still the optimal (pessimal) policy and a

LIFO Queue is the pessimal (optimal) policy. The detailed result is presented in Appendix A.2.

4 Final Thoughts

Our work studies rapid rehousing prioritization in a dynamic environment where prioritization

decisions have long-run consequences. We find that the efficacy of prioritizing the most vulnerable

depends on the joint distribution of λ and µ in the population of homeless households (see Fig. 1).

Thus, by incorporating dynamics, the question of whether to prioritize the vulnerable becomes

empirical, rather than emotional.

Based on conversations with Coordinated Entry staff, we expect that most households in the

program have fairly low µ (ability to find housing), but that households vary more widely in

their λ (rate of returning to homelessness). If this suspicion is correct, it would suggest that

prioritizing the vulnerable will not minimize the number of homeless households, and that LIFO

queues are preferable to FIFO. However, a data-driven examination of this issue would be a valuable

complement to the current study.

We close by discussing several of our modeling assumptions, and how they affect our conclusions.

• Immediate Housing. Our model assumes that households that receive a resource are housed

immediately. In practice, households that receive rapid rehousing assistance must work with

a caseworker to find a willing landlord, and this process can take a long time. However, one

can re-interpret “resource arrival” to mean the moment that housing was found, rather than

the moment that a caseworker starts working with the household.

• Exogenous Resource Arrival. We assume that resource arrival is exogenous (not affected

by past decisions). This would be a strange assumption if we were modeling the allocation of a

fixed stock of housing units. In that case, units become available only when somebody moves

out, so the negative consequences of high turnover are partially offset by an increased “arrival

rate” of resources. However, in the case of rapid rehousing, the assumption of exogenous

resource arrival is more plausible: each resource represents a caseworker’s time, and money
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for a limited period of rental support. If, shortly after this period, the tenant loses their

housing, this does not free up any new resources for others.

One possible source of resource endogeneity is that some households may require more atten-

tion than others. Thus, assigning a caseworker to highly vulnerable households that requires

a longer search process could reduce the number of households that each caseworker can

assist. Incorporating this into the model would reduce the value of prioritizing vulnerable

households.

• Binary state space. Our model assumes that the rate at which a household finds housing

does not depend on how long it has been homeless, and that the time it spends housed is

independent of whether it received assistance. These choices are motivated by a desire to

make our point cleanly, while capturing the essential features of the setting. However, both

assumptions could be examined more closely.

Part of the motivation for the name “rapid rehousing” was that by helping households im-

mediately, it would be possible to spare them from many challenges associated with home-

lessness, including loss of employment, possessions, and community. After experiencing these

challenges, it may be more difficult for households to find and keep housing. This could be in-

corporated into our model by adding multiple unhoused states, with households transitioning

to more desperate states over time. We expect that such a model would provide additional

reasons to favor a LIFO queue over FIFO.

Meanwhile, one might expect that because rapid rehousing generally provides several months

of rental assistance, households matched through rapid rehousing programs might be less

likely to immediately return to homelessness. We ignore this effect, which is reasonable so

long as the duration of rental assistance is short. However, as the duration of support extends

to up to two years (as it did in many cases during the COVID pandemic), this support affects

who should be prioritized for assistance. In general, the longer the period of rental support,

the lower the cost of assisting households with high values of λ (who are unlikely to be able to

stay housed without assistance). Thus, our conclusions rely on the fact that rapid rehousing

is temporary: permanent assistance is more appropriate for vulnerable households.
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• Choice of Objective. Our work assumes that the goal of the policymaker is to minimize

the total number of households experiencing homelessness. While we believe that this is a

natural goal, the policies that achieve this may entirely abandon the most vulnerable members

of the population. Other social welfare functions – such as Nash social welfare (maximizing

the product of household utilities) or Rawlsian social welfare (maximizing the utility of the

worst-off household) – would generally ensure that some resources are given to the most

vulnerable households, even if these households are unlikely to remain housed for long.

• Heterogeneous Resources. In our model, household choice plays no role, as we consider the

allocation of a homogeneous resource. In practice, most coordinated entry systems allocate

both rapid rehousing and permanent supportive housing. Permanent supportive housing

provides indefinite rental support and services such as mental health counseling, substance

abuse treatment, childcare, employment training, and more. It is provided on site, meaning

that there is a limited number of available units. As discussed above, this suggests that (i)

a model of exogenous resource arrival may not be appropriate, and (ii) the set of individuals

to prioritize for this intervention may be different than those who should be prioritized for

temporary programs such as rapid rehousing.

A worthy direction for future work would be to jointly consider the allocation of these two

resources. Interesting questions include exploring the benefit of using two separate priority

lists rather than one, and examining mechanisms for providing households with a choice of

which resource to receive.
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Appendix A Examples and extensions

A.1 Results on Optimal Policies

A.1.1 The optimal policy may not be a priority queue

Example 1. Three agents with λ1 = 1.08, λ2 = 1.8, λ3 = 1.68 and µ1 = 1.8, µ2 = 1.01, µ3 = 1.93.

Rate of resources r = 0.94.

The optimal policy in example Example 1 is

π1 = {(1, 0, 0), (1, 1, 0), (1, 0, 1)} (36)

π2 = {(0, 1, 0), (0, 1, 1), (1, 1, 1)} (37)

π3 = {(0, 0, 1)} (38)

Note that this policy is not a priority queue because the decision to help agent 1 or agent 2 depends

on whether agent 3 is unhoused. Specifically, if only agents 1 and 2 are unhoused, then 1 will get

the resource, but if all three agents are unhoused then agent 2 receives help.

A.1.2 The optimal policy depends on the rate of resource arrival

In Example 1 if the rate of resources is r = 1.5 then the optimal policy is a priority queue with

2 � 1 � 3. This prioritizes based on λi + µi. Note that this is different from the policy describe in

the previous section, despite involving the same set of agents.

A.2 Menus of interventions

We now present results for the case where the policymaker allows agents to choose from a menu

of anonymous interventions M = {F1, . . . , Fm}. We let ci(M) denote the choice made by agent

i, let rM denote the number of resources required to implement menu M, and U(M) denote the

associated expected size of the unhoused population:

rM =

n∑
i=1

r
ci(M)
i (39)

U(M) =
n∑
i=1

x
ci(M)
i . (40)
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Theorem 4. Let Ft be a FIFO Queue such that rFt = r. Let Lq be a LIFO Queue such that

rLq = r. Finally, let M = {A(1),A(2), ...,A(m)} be a menu of anonymous interventions such that

rM = r. If

µi < µj =⇒ µi + λi < λj + µj , (41)

then:

U(Ft) ≤ U(M) ≤ U(Lq). (42)

On the other hand, if

µi < µj =⇒ µi + λi > λj + µj , (43)

then:

U(Ft) ≥ U(M) ≥ U(Lq). (44)

The proof of this result follows the same steps as Theorem 3, and uses the following results.

Note that Lemma 7 generalizes Lemma 5 (FIFO queues target the most vulnerable) and Lemma 8

generalizes Lemma 6 (LIFO queues target the least vulnerable).

Lemma 7. Suppose µi ≤ µj for every i ≤ j. Let M = {A(1),A(2), ..,A(m)} be a menu of

anonymous interventions, then there exists a FIFO Queue Ft that majorizes M and uses the same

number of resources rM = rFt

Lemma 8. Suppose µi ≤ µj for every i ≤ j. Let M = {A(1),A(2), ..,A(m)} be a menu of

anonymous interventions, then there exists a LIFO Queue Lq that is majorized by M and uses the

same number of resources rM = rLt

The proofs of these results can be found in Appendix B.2.7.

A.2.1 Example where a menu of interventions improves outcome

Although Theorem 4 identifies conditions under which the optimal menu involves a single inter-

vention (either a FIFO or LIFO queue), this is not generally the case. The following example

demonstrates that a menu could lead to a lower unhoused population than any single intervention

that uses the same number of resources.
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Example 2. There are three agents with paramaters µ1 = 1, µ2 = 2, µ3 = 3 and λ1 = 3, λ3 = 1

and λ2 >> λ1. The menu M = {Lq,Ft} with q = 0.2 and t = − log(q)
µ2
≈ 0.8.

A graphical representation of this example can be found in Fig. 2.

Proposition 3. For Example 2, any anonymous intervention that leads to the same unhoused

population as M must use resources at a greater rate.

Proof. In Example 2, a designer would want to help agents 1 and 3 as much as possible and avoid

agent 2, since λ1 +µ1 = λ3 +µ3 << λ2 +µ2. Note that agent 2 is indifferent between either option

in the menu. Agent 1 strictly prefers Ft and agent 3 prefers Lq. The first important thing to note

is that there is no single item menu that can achieve the same allocation: There is no anonymous

A such that xAi = xMi for all i. This comes from noting that

p(µ1, c1(M)) > p(µ2, c2(M)) = p(µ3, c3(M)). (45)

More importantly, a single-item menu that achieves the same utilitarian welfare will necessarily

use more resources. To see why this is the case let A be an anonymous intervention such that

xA1 + xA2 + xA3 = xM1 + xM2 + xM3 . Because A is an anonymous intervention one of the following

must be true xA1 < xM1 , xA2 < xM2 or xF3 < xM3 . We will show that xF2 < xM2 .

• If xA1 < xM1 then p(µ1,A) > p(µ1, c2(M)) and therefore from Lemma 12 and the fact that

c1(M) = Ft is a FIFO Queue we get:

p(µ2,A) ≥ p(µ1,A)2 > p(µ1, c1(M))2 = p(µ2, c2(M)). (46)

This implies that xF2 < xM2 .

• If xF3 < xM3 we get that p(µ3,A) > p(µ3, c3(M)) and therefore from Lemma 12 we get

p(µ2,A) > p(µ2, c2(M)) which implies that xA2 < xM2 .
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Figure 2: The probability of getting help p(µ, •) vs µ for the menu M from Example 2 and a
FIFO Queue that uses the same number of resources. The ? shows the probability for agents in
Example 2.

We conclude that xA2 < xM2 . Note that we can write the difference in resources used as follows:

rM1 + rM2 + rM3 − rA1 − rA2 − rA3 = (xA1 − xM1 )(λ1 + µ1) + (xA2 − xM2 )(λ2 + µ2) (47)

+ (xA3 − xM3 )(λ3 + µ3) (48)

= (xA1 − xM1 + xA2 − xM2 + xA3 − xM3 )(λ1 + µ1) (49)

+ (−xA2 + xM2 )(λ1 + µ1) + (xA2 − xM2 )(λ2 + µ2) (50)

= (xA2 − xM2 )(λ2 + µ2 − λ1 − µ1) (51)

< 0 (52)

where Eq. (49) comes from λ1 + µ1 = λ3 + µ3. Therefore any single-item menu will have to use

more resources to get the same utilitarian welfare.

A.3 Equivalence of interventions when agents are equally vulnerable

The final result of this section shows that if all agents are equally vulnerable (µi = µ for all i) then

all anonymous interventions that use the same number of resources will lead to the same outcome

for every agent.

Theorem 5. Let F and G be two anonymous inteventions such that rF = rG. Suppose that µi = µ
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for all agents. Then xFi = xGi for all agents i.

Because an anonymous intervention only differentiates between agents based on the time they

wait for help having the same µ means that all agents have the same probability of getting help.

This is true for all anonymous interventions. It is also the case that the number of resources

used by an agent has a one-to-one correspondence to the probability of getting help. Therefore, if

two anonymous interventions use the same number of resources they must also lead to the same

probability of getting help for every agent, which is equivalent to leading to the same outcome.

This result closely relates to Theorem 1 in Arnosti and Shi (2020), which shows the equivalence of

different allocation mechanisms under the assumption of heterogeneous departure rates. Departures

in their work correspond to unhoused individuals finding housing without help in ours.

Appendix B Proofs

B.1 Discrete model with observable characteristics: proofs and lemmas

B.1.1 Proof of Proposition 1

Proof. Let Hi ⊂ {0, 1}N be the set of states where agent i is housed. Also, let Zi = {0, 1}N \(Hi∪πi)

be the set of states where agent i is housed but would not get a resource from the policy-maker.

Note that Hi∩Zi = ∅, πi∩Zi = ∅ and Hi∩πi = ∅ For every agent i ∈ N we can write the following

balance equation:

λiP (Xπ ∈ Hi) = µiP (Xπ ∈ Zi) + (µi + r)P (Xπ ∈ πi) (53)

Because Hi ∪ πi ∪ Zi = {0, 1}n is the entire state space we can write the balance equation, cancel

like terms, and solve for the probability of being in Hi:

λiP (Xπ ∈ Hi) = µi(1− P (Xπ ∈ Hi)− P (Xπ ∈ πi)) + (µi + r)P (Xπ ∈ πi) (54)

(λi + µi)P (Xπ ∈ Hi) = µi + rP (Xπ ∈ πi) (55)

P (Xπ ∈ Hi) =
µi + rπi
λi + µi

(56)

Where the last equality comes from the definition of ri. Note that E [Xπ
i ] = 1 − P (Xπ ∈ Hi) and

therefore:

E[Xπ
i ] =

λi − rπi
λi + µi

(57)
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We can write the policymakers problem as follows:

min
π

U(π) = min
π

n∑
i=1

λi − rπi
λi + µi

(58)

s.t rπi = rP (Xπ ∈ πi) , ∀i ∈ N (59)

We can relax this problem using ri’s as decision variables. First, using the fact that the sets πi are

disjoint we get an upper bound on the sum of ri’s
n∑
i=1

rπi = r
n∑
i=1

P (Xπ ∈ πi) ≤ r (60)

Also, because of 56 and the fact that a probability is always less than or equal to 1 we have that

rπi ≤ λi. Finally, by the definition of rπi we must have that rπi ≥ 0. Therefore, we can relax

constraint 59 with the following set of constraints:

0 ≤ rπi ≤ λi (61)

n∑
i=1

rπi ≤ r (62)

and optimize based on the rate of resources rπi .

B.1.2 Proof of Theorem 1

Lemma 9. Let N be a set of agents and π be a priority queue with order � and r a rate of resources.

Define a sequence of instances {(Nk, rk)}k∈N parameterized by k such that the kth instance contains

k copies of each agent i ∈ N :

Nk = {11, 12, ..., 1k, ..., n1, n2, ..., nk} (63)

rk = rk. (64)

(65)

Define a priority ordering �k by following the original � and breaking ties in favor of agents with

the smallest subindex:

ij �k i′j′ if i � j and i < j (66)

Let πk be a sequence of priority queues based on �k. Then we have that:

lim
k→∞

∑
ij∈Nk |X

πk
ij
− xπkij |

k
= 0 (67)
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Proof. This follows directly from Proposition 2.

Proof. Consider the following example:

For (3) consider the following example: Choose a small δ > 0 and set λ1 = 1/δ and µ1 = δ. Let

N1 contain agents such that λi = 1 and µi = 1/δ for all i ∈ N1. Let N2 contain agents such that

λj = 1− δ and µi = 1/δ. Finally, let N3 contain agents such that λi = 1 and µi = δ for all i ∈ N3.

We should N2 and N3 such that: |N2| = |N3| = 1/δ. Let r = 1/δ.

First, consider the case when N = {1} ∪N3. Let πµ be a priority queue that prioritizes based

on vulnerability. Then all of the resources will go to the first agents. The agents in N2 will be

mostly unhoused: ∑
i∈N

xπ
µ

i ≈ 1/δ (68)

In a benefit-based priority queue πλ+µ most resources would go to agents in N3:∑
i∈N

xπ
λ+µ

i ≈ 1 (69)

We end with: ∑
i∈N

xπ
µ

i − xπ
λ+µ

i ≈ 1/δ − 1 = |N |(1− 2/|N |) (70)

Now consider the case when N = N2 ∪N3. Let πλ be a priority queue that prioritizes based on

success. Then all of the resources will go to agents in the group N2 and none to the other agents.∑
i∈N

xπ
λ

i ≈ 1/δ (71)

In a benefit-based priority queue πλ+µ most resources would go to agents in N3:∑
i∈N

xπ
λ+µ

i ≈ δ (72)

We end with: ∑
i∈N

xπ
µ

i − xπ
λ+µ

i ≈ 1/δ − 1 = |N | − |N |/2− 1 = |N |(1/2− δ/|N |) (73)

To conclude the proof we use Lemma 9 to show that we can create a new instance where the

distance between Xπ and its fluid approximation is as close as we want.
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B.1.3 Proof of Theorem 2

Proof. First note that U∗ =
∑

i∈N x
π
i . Let’s call the agent that receives some resources but not

enough to make him constantly house the pivot agent, we will use i∗ to refer to this agent. We can

therefore write the difference in utility as follows:

U(π)− U∗ =

i∗−1∑
j=1

E[Xπ
j ] + (E[Xπ

i∗ ]− xπi∗) +

n∑
j=i∗+1

(
E[Xπ

j ]− λj
λj + µj

)
(74)

In policy π there is some nonnegative probability that agents j > i∗ receive resources and therefore

we have that:

U(π)− U∗ ≤
i∗−1∑
j=1

E[Xπ
j ] + (E[Xπ

i∗ ]− xπi∗) (75)

Furthermore, we have that:

E[Xπ
i∗ ] =

λi − rP (X ∈ πi∗)
λi + µi

≤ λi
λi + µi

(76)

and thus:

U(π)− U∗ ≤
i∗−1∑
j=1

E[Xπ
j ] +

r −
∑i∗

j=1 λj

λj + µj
(77)

Now we can focus our attention on the first i∗ − 1 agents. Using Lemma 2 we get:

i∑
j=1

E [Xπ
i ] ≤ 2r

r − θi
(78)

where θi =
∑i

j=1 λi. Let’s choose i such that θi = r −
√
r and we get that:

i∑
j=1

E[Xπ
j ] ≤ 2

√
r (79)

Now let’s consider the agents between i+ 1 and i∗ − 1. By assumption, we have:

i∗−1∑
j=1

λj ≤ r (80)

i∑
j=1

λj +

i∗−1∑
j=i+1

λj ≤ r (81)

and therefore,

i∗−1∑
j=i+1

λj ≤
√
r (82)

Because there is a lower bound for λj we have there are at most
√
r
λ agents between i and i∗. With

this, we can conclude that the difference between U(π) and U∗ is at most given by (11). To get
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(12) is enough to note that r <
∑

i∈N λi ≤ nλ̄.

B.1.4 Proof Proposition 2

Proof. We are going to split the set of agents into 3 groups. To make this split we will use 3 sets.

In the first group M1 we will have agents that are likely to get resources. All agents with a priority

worse than M3 are unlikely to receive resources. Finally in M2 are the agents where is hard to tell

how many resources they will get.

M1 = {i ∈ N :
i∑

j=1

= r − rα} (83)

M3 = {i ∈ N :
i∑

j=1

= r + rα} (84)

M2 = M3 \M1 (85)

We can then write the distance as:∑
i∈N
|E [Xπ

i ]− xπi | ≤
∑
i∈M1

|E [Xπ
i ]− xπi |+

∑
i∈M2

|E [Xπ
i ]− xπi |+

∑
i∈M3

|E [Xπ
i ]− xπi | (86)

For the first sum since r − rα < r we can use Lemma 2 and we get:∑
i∈M1

|E [Xπ
i ]− xπi | ≤ 2r1−α (87)

For the third sum, we can directly use Lemma 3 and we get:∑
i∈M3

|E [Xπ
i ]− xπi | ≤

r

µ+ λ
exp

{
− r2α

8(λ̄+ µ̄)(r + rα)(1 + µ̄/λ)

}
(88)

For any i ∈ M2 we know by Proposition 1 and by the definition of xπi that both E [Xπ
i ] , xπi ∈

[0, λi
λi+µi

] and thus, ∑
i∈M2

|E [Xπ
i ]− xπi | ≤

∑
i∈M2

λi
λi + µi

(89)

≤
∑
i∈M2

λi
λ+ µ

(90)

=
2rα

λ+ µ
(91)

Where the last inequality comes from the definition of M2 and the fact that π is a priority queue.

Combining the three expressions we get the statement of the theorem.
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B.1.5 Proof of other lemmas

Proof of Lemma 2

Proof. We will be using the result from Lemma 1. Define the following Lyapunov function:

V (X) =
∑
i∈M

Xi (92)

This function counts the number of unhoused agents in M and has a maximum change of at most

νmax = 1. Let the exception B = 1 and the drift be γ = kr −
∑

i∈M λi. Then for any X such that

V (X) ≥ B we have:

GV (X) =
∑
i∈M

λiXi − r −
∑
i∈M

µi(1−Xi) (93)

≤ −r +
∑
i∈M

λi = −γ. (94)

The inequality comes from setting all Xi’s to 1. It is easy to see that when V (X) = 0 everyone is

housed and therefore the maximum rate of increase is fmax =
∑

i∈M λi. By Lemma 1 we get:

P

(∑
i∈M

Xπ
i ≥ 1 + 2k

)
≤
( ∑

i∈M λi∑
i∈M λi + r −

∑
i∈M λi

)k
=

(∑
i∈M λi

r

)k
(95)

Using the fact that for any non-negative integer-valued random variable X, E[X] =
∑∞

i=0 P(X > i)

and that P (X > 2k) + P (X > 2k + 1) ≤ 2P (X > 2k) we get:∑
i∈M

E[Xπ
i ] ≤ 2

|M |∑
k=0

(∑
i∈M λi

r

)k
(96)

≤ 2r

r −
∑

i∈M λi
(97)

where the second inequality comes from calculating an infinite sum rather than the first |M | terms.

Proof of Lemma 3

Proof. We will first calculate the probability that an agent not in M will receive a resource. This
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is equivalent to:

P
(
Xπ ∈ ∪i∈N\Mπi

)
= P (Xπ ∈ {X : Xi = 0,∀i ∈M}) (98)

= P

(∑
i∈M

Xπ
i = 0

)
(99)

We will once again invoke Lemma 1. Define the following Lyapunov function:

V (X) = |M | −
∑
i∈M

Xi (100)

This function counts the number of housed agents in M and has a maximum change of at most

νmax = 1. By definition rα =
∑

i∈M λi − r and let B = |M | − rα

2(λ̄+µ̄)
and the drift be γ = rα/2.

For any X the rate of change of the Lyapunov function is:

GV (X) = r +
∑
i∈M

Xiµi −
∑
i∈M

(1− xj)λi ≤ −rα + y(λ̄+ µ̄) (101)

where y =
∑

i∈M xi. For the cases where V (X) ≥ B we have that y ≤ rα

2(λ̄+µ̄)
and thus:

GV (X) ≤ −rα + y(λ̄+ µ̄) ≤ −r
α

2
= −γ (102)

The maximum rate of increase of this function is fmax ≤ |i|µ̄ + r when everyone is unhoused.

Invoking Lemma 1 we get:

P

(
|M | −

∑
i∈M

Xπ
j ≥ |M | −

rα

2(λ̄+ µ̄)
+ 2k

)
≤
(

|M |µ̄+ r

|M |µ̄+ r + rα/2

)k
(103)

We are going to set k = rα

4(λ̄+µ̄)
which is possible since by assumption rα ≥ 4(λ̄+ µ̄):

P

(∑
i∈M

Xπ
i ≤ 0

)
≤
(

|M |µ̄+ r

|M |µ̄+ r + rα/2

) rα

4(λ̄+µ̄)

(104)

Note that ∑
i∈N\M

|E [Xπ
i ]− xπi | =

∑
i∈N\M

rπi
λi + µi

(105)

≤ 1

µ+ λ

∑
i∈N\M

rπi (106)

32



Given the definition of rπi and (104) we get:∑
i∈N\M

|E [Xπ
i ]− xπi | ≤

r

µ+ λ

(
|M |µ̄+ r

|M |µ̄+ r + rα/2

) rα

4(λ̄+µ̄)

(107)

≤ r

µ+ λ
exp

{
− r2α

8(λ̄+ µ̄)(|M |µ̄+ r + rα/2)

}
(108)

≤ r

µ+ λ
exp

{
− r2α

8(λ̄+ µ̄)((r + rα)µ̄/λ+ r + rα/2)

}
(109)

≤ r

µ+ λ
exp

{
− r2α

8(λ̄+ µ̄)(r + rα)(1 + µ̄/λ)

}
(110)

Where the second inequality comes from the known property (1− x)k ≤ e−kx, the third one comes

from noting that |M |λ ≤
∑

i∈M λi = r+rα and the last one comes from simplifying the expression.

B.2 Prioritization based on waiting time: proofs and lemmas

B.2.1 Preliminaries

Let Zµ ∼ Exp(µ) be the time an agent with vulnerability µ will take to find housing without help

and p(µ,F) denote the probability that the policymaker helps this agent under intervention F:

p(µ,F) = PY∼F(Y ≤ Zµ) (111)

Let w(µ,F) be the expected waiting time of an agent under intervention F.

w(µ,F) = EY∼F [min{Zµ, Y }] (112)

These two are related by the following equation.

Lemma 10. For any µ and F we have that w(µ,F) = 1−p(µ,F)
µ .

Proof. Let Zµ ∼ Exp(µ). First, note that w can be written as:

w(µ, F ) = EY∼F [min{Y, Zµ}] =

∫ ∞
0

PY∼F (Y > t)e−µtdt (113)

Also, 1− p(µ, F ) can be calculated using the marginal distribution:

1− p =

∫ ∞
0

PY∼F (Y > t)µe−µtdt = µw(µ, F ) (114)

From which we can conlcude that w(µ, F ) = 1−p(µ,F )
µ .
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Lemma 11. For any intervention F on agent i the expected unhoused time and rate at which the

policymakers use resources on this agent is given by:

xFi =
λi(1− p(µi,F))

µi + λi(1− p(µi,F))
(115)

rFi =
λiµip(µi,F)

µi + λi(1− p(µi,F))
= λip(µi,F)(1− xFi ) (116)

Proof. Let X ∼ F, Yµi ∼ Exp(µi). Also, Let uFi ∼ min{Yµi , X} be a random variable that denotes

the time agent i spends unhoused under intervention F and hi ∼ Exp(λi) denote the time agent

i spends housed (note that this time does not depend on the policy). Using the renewal reward

theorem we can calculate the expected time spent housed as follows:

1− xFi = lim
T→∞

Hi(T )

T
=

E[hi]

E[hi] + E[uFi ]
=

1/λi
1/λi + w(µi,F)

=
1

1 + λiw(µi,F)
(117)

Let ρi be a random variable that represents the probability of getting help from the designer once

agents i becomes unhoused. The expected renewal time of process Ni(t) is:

νi = E[ρi(hi + uFi )] = E[ρi](E[hi] + E[uFi ]) =
1

p(µi,F)

(
1

λi
+ w(µi,F)

)
(118)

The independence of the random variables was heavily used in the previous equation. We can use

the elementary renewal theorem and get:

rFi = lim
T→∞

Ni(T )

T
=

1

νi
=

p(µi, F )
1
λi

+ w(µi,F)
(119)

Using Lemma 10 we can simplify this to:

rFi =
λiµip(µi,F)

µi + λi(1− p(µi,F))
= (1− xi)Fλip(µi,F) (120)

Corollary 1. We can write the unhoused time of agent i based on resources used on this agent as

follows:

xFi =
λi − rFi
λi + µi

(121)

We can use Lemma 11 and get the rate of resources used by agent i under a FIFO Queue Ft:

rFti =
µiλie

−µit

µi + λi(1− e−µit)
(122)

We can use Lemma 11 and get the rate of resources used by agent i under a LIFO Queue Lq:

r
Lq
i =

µiλiq

µi + λi(1− q)
(123)

34



Lemma 12. For a fixed intervention F the function g(µ) = p(µ,F)1/µ is nondecreasing in µ.

Proof. Note that if X ∼ F then p(µ,F) = E
[
e−µX

]
. Now take µi < µj and define a =

µj
µi

and

b =
µj

µj−µi . Note that 1
a + 1

b = 1 and therefore we can use Holder’s inequality:(
E
[
(e−µiX)a

])1/a (E [1b])1/b
≥ E

[
e−µiX

]
(124)

Replacing a and b and taking root of µi we get:(
E
[
e−µjX

])1/µj ≥ (E [e−µiX])1/µi (125)

p(µj ,F)1/µj ≥ p(µi,F)1/µi (126)

Lemma 13. For all i, the rate of resources rFti of FIFO queue is continuous and decreasing in t

for t > 0.

Proof. This follows directly from (122) and Lemma 11.

Lemma 14. For a fixed F the probability of getting help p(µ,F) is nonincreasing in µ.

Proof. Let f be the PDF of F. Then we can write p(µ,F) as follows:

p(µ,F) =

∫ ∞
0

f(x)e−µxdx (127)

If we take the derivative with respect to µ we get:

∂p(µ,F)

∂µ
= −

∫ ∞
0

xf(x)e−µxdx ≤ 0 (128)

where the inequality comes from the fact that x, f(x), e−µx ≥ 0.

Lemma 15. For all i, the rate of resource r
Aq
i for LIFO Queues is continuous and increasing in q

on the interval [0, 1].

Proof. This follows from (123) and Lemma 11.
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B.2.2 Proof of Lemma 4

Proof. Define

δi = rFi − rGi , (129)

γi =
1

λi + µi
, (130)

si =
i∑

j=1

δj , (131)

di = γi − γi+1. (132)

Then by Corollary 1 we can write the difference in unhoused population as:

U(G)− U(F) =

n∑
i=1

xFi − xGi =

n∑
i=1

rFi − rGi
λi + µi

=

n∑
i=1

δiγi =

n∑
i=1

sidi. (133)

By definition of majorization we know that si ≥ 0. By assumption, λi + µi ≤ λj + µj for j ≥ i, so

di ≥ 0. Therefore, the difference in (133) is non-negative, as claimed.

B.2.3 Proof of Lemma 5

Proof. We will show that there is a FIFO Queue Ftk such that Ftk �k A and rFtk ≤ rA for all

k ∈ N . We will do this using induction. First, for the base case let t1 = − log(p(µ1,A))
µ1

and note

that:

p(µ1,Ft1) = p(µ1,A) (134)

p(µk,Ft1) = e−t1µk = p(µ1,A)µk/µ1 ≤ p(µk,A), k > 1 (135)

Where the last inequality comes from Lemma 12. From Lemma 11 we know that r
Ft1
1 = rA1 and

r
Ft1
k ≤ rAk for k > 1. Therefore rFt1 ≤ rF and Ft1 �1 A. We proceed with the following induction

hypothesis: there is a ti such that rFti ≤ rA and Fti �i A. And we want to show that there is a

ti+1 such that rFti+1 ≤ rA and Fti+1 �i+1 A. If
∑i+1

j=1 r
Fti
j ≥

∑i+1
j=1 r

A
j then we set ti+1 = ti and we

are done. If
∑i+1

j=1 r
Fti
j <

∑i+1
j=1 r

A
j then set ti+1 such that:

i+1∑
j=1

r
Fti+1

j =
i+1∑
j=1

rAj (136)
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Note that ti+1 < ti and by Lemma 13 we know that all rFtj are decreasing in t and therefore we

have that:
k∑
j=1

r
Fti+1

j >

k∑
j=1

r
Fti
j ≥

k∑
j=1

rAj , 1 ≤ k ≤ i (137)

and therefore Fti+1 �i+1 A. Combining (136) and (137) we get r
Fti+1

i+1 < rAi+1 and therefore

p(µi+1,Fti+1) ≤ p(µi+1,A). From this we conclude that ti+1 ≥ − log(p(µi+1,A))
µi+1

. Thus:

p(µi+1,Fti+1) = e−µi+1ti+1 ≤ p(µi+1,A) (138)

p(µk,Fti+1) = e−µkti+1 ≤ p(µi+1,A)µk/µi+1 ≤ p(µk,A), k > i+ 1 (139)

where the last inequality of (139) comes from Lemma 12. Combining (139) with (136) and

Lemma 11 we get that rFti+1 ≤ rA. Note that for tn we necessarily will have rFtn = rA.

B.2.4 Proof of Lemma 6

Proof. We will show that there is an LIFO Queue Lqk such that A �k Lqk and rLqk ≥ rA for all

k ∈ N . We will do this using induction. First, for the base case let q1 = p(µ1,A) and note that:

p(µ1,Lq1) = q1 = p(µ1,A) (140)

p(µk,Lq1) = q1 ≥ p(µk,A), k > 1 (141)

Where the last inequality comes from Lemma 14 and the assumption that the µi are in increasing

order. From Lemma 11 we know that r
Lq1
1 = rA1 and r

Lq1
k ≥ rAk for k > 1 and therefore rLq1 ≥ rA

and A �1 Lq1 . We proceed with the following induction hypothesis: there is a qi such that rLqi ≥ rA

and A �i Lqi . And we want to show that there is a qi+1 such that rLqi+1 ≥ rA and A �i+1 Lqi+1 .

If
∑i+1

j=1 r
Lqi
j ≤

∑i+1
j=1 r

A
j then we set qi+1 = qi and we are done. If

∑i+1
j=1 r

Lqi
j >

∑i+1
j=1 r

A
j then set

qi+1 such that:

i+1∑
j=1

r
Lqi+1

j =
i+1∑
j=1

rAj (142)

Note that qi+1 < qi and by Lemma 15 we have that.

k∑
j=1

r
Lqi+1

j <

k∑
j=1

r
Lqi
j ≤

k∑
j=1

rAj , 1 ≤ k ≤ i (143)
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where the last inequality comes from the inductive hypothesis. Therefore A �i+1 Lqi+1 . Combining

(142) and (143) we get r
Lqi+1

i+1 ≥ rAi+1 and therefore p(µi+1,Lqi+1) ≥ p(µi+1,A). From this we

conclude that qi+1 ≥ p(µi+1,A). Thus:

p(µi+1,Lqi+1) = qi+1 ≥ p(µi+1,A) (144)

p(µk,Lqi+1) = qi+1 ≥ p(µi+1,A), k > i+ 1 (145)

where the last inequality of (145) comes from Lemma 15. Combining (145) with (142) and

Lemma 11 we get that rLqi+1 ≥ rA. Note that for qn we necessarily will have rLqn = rA.

B.2.5 Proof of Theorem 3

Proof. This follows immediately from Lemma 4, Lemma 5, and Lemma 6.

B.2.6 Proof of Theorem 5

This theorem follows from Lemma 16.

Lemma 16. Let F and G be two anonymous interventions and suppose that µi = µ for all agents

i ∈ N . Then rF > rG if and only if xFi < xGi for all agents i.

Proof. First suppose rF > rG. Then there must exist some i such that rFi > rGi . From Lemma 11

we get:

rFi =
µλip(µ,F)

µ+ λi(1− p(µ,F))
(146)

From Lemma 11 we know that rFi is increasing in p(µ,F) and therefore, p(µ,F) > p(µ,G). Because

p(µ,F) is the same for all agents under policy F and p(µ,G) is the same for all agents under policy

G we can use Lemma 11 again and conclude that: xFi < xGi for all agents i.

Now suppose xFi < xGi for all agents i then we can again conclude from Lemma 11 that

p(µ,F) > p(µ,G). From this, it follows naturally that rFi > rGi and therefore rF > rG.

B.2.7 Menus lemmas and proofs

Lemma 17. Adding intervention F to menu M weakly increases the number of resources used:

rM∪{F} ≥ rM.

Proof. This is straightforward.
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Lemma 18. Let M = {F (1), F (2), ...} be a menu of interventions and F be an single intervention.

If for some F (i) we have that rF
(i)
> rF , then rM > rF .

Proof. Start with a menu M′ = {F (i)} and add interventions until you get M. By Lemma 17 we

get that rM > rF .

Proof of Lemma 7

Proof. Let A(i) = ci(M) be the intervention selected by agent i. We will use induction to show

that for every i ∈ N there is a FIFO Queue Fti such that:

Fti �iM (147)

i∑
j=1

r
Fti
j =

i∑
j=1

r
A(j)

j (148)

r
Fti
k ≤ rA(k)

k , ∀k > i (149)

For the base case set t1 = −log(p(µ1, A(1)))/µ1. First note that:

p(µ1,Ft1) = e−µ1t1 = p(µ1,A(1)) (150)

Therefore, Ft1 �1 A(1). For any agent i > 1 we have:

p(µi,Ft1) = e−µit1 = p(µ1,A(1))
µi
µ1 ≤ p(µi,A(1)) ≤ p(µi,A(i)) (151)

where the first inequality comes from Lemma 12 and the fact that µ1 ≤ µi. The final inequality

becomes an equality if agent i chooses the same option as agent 1, ie ci(M) = c1(M). From

Lemma 11 and (151) we can conclude that r
Ft1
i ≤ rA(i)

i for all i > 1, and therefore rFt1 ≤ rM.

We proceed with the following inductive hypothesis: for agent i there is a FIFO Queue Fti such

that equations (147), (148) and (149) hold and want to show that the same conditions hold for

i + 1. First, if r
Fti
i+1 = r

A(i+1)

i+1 then set ti+1 = ti and we are done. By the inductive hipothesis we

know that r
Fti
i+1 > r

A(i+1)

i+1 is not possible. For r
Fti
i+1 < r

A(i+1)

i+1 set ti+1 such that:

i+1∑
j=1

r
Fti+1

j =

i+1∑
j=1

r
A(j)

j (152)

From the monotonicity of FIFO Queues shown in Lemma 15 we have that ti+1 < ti and therefore:

k∑
j=1

r
Fti+1

j >

k∑
j=1

r
Fti
j ≥

k∑
j=1

r
A(j)

j , 1 ≤ k ≤ i (153)
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and combining this with (152) we get that Fti+1 �i+1 M. Combining (152) and (153) we get that

r
Fti+1

i+1 < r
A(i+1)

i+1 . Combining this with Lemma 11 we get:

p(µi+1,Fti+1) < p(µi+1,A(i+1)) (154)

Because p(µi+1,Fti+1) = e−µi+1ti+1 we have that ti+1 > −log(p(µi+1, A(i+1)))/µi+1. Therefore, for

any k > i+ 1 we have:

p(µk,Fti+1) = p(µi+1,A(i+1))
µk
µi+1 ≤ p(µk,A(i+1)) ≤ p(µk, A(k)) (155)

Where again the first inequality comes from Lemma 12 and the fact that µk ≥ µi+1. The final

inequality becomes an equality if ck(M) = ci+1(M). We conclude the proof by invoking Lemma 11

to conclude that r
Fti+1

k ≤ rA(k)

k for all k > i+ 1. We have shown that (149) holds for i+ 1.

Proof of Lemma 8

Proof. Let A(i) = ci(M) be the intervention selected by agent i. We will use induction to show

that for every i ∈ N there is a LIFO Queue Lqi such that

M�i Lqi (156)

i∑
j=1

r
Lqi
j =

i∑
j=1

r
A(j)

j (157)

r
Lqi
k ≥ rA(k)

k , ∀k > i (158)

For the base case set q1 = p(µ1, A(1)). First note that:

p(µ1,Lq1) = q1 = p(µ1,A(1)) (159)

Therefore, M�i Lq1 . For any agent i > 1 we have:

p(µi,Lq1) = q1 = p(µ1,A(1)) ≥ p(µ1,A(i)) ≥ p(µi,A(i)) (160)

where the inequality comes from the fact that agent i chooses optimally (equation (35)) and the

fact that µ1 ≤ µi. From Lemma 11 and (160) we can conclude that r
Lq1
i ≥ r

A(i)

i for all i > 1, and

therefore rLq1 ≥ rM. We proceed with the following inductive hypothesis: for agent i there is a

LIFO Queue Lqi such that equations (156), (157) and (158) hold and want to show that the same

conditions hold for i+ 1. First, if r
Lti
i+1 = r

A(i+1)

i+1 then set qi+1 = qi and we are done. By inductive
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hypothesis the case r
Lqi
i+1 < r

A(i+1)

i+1 is not possible. Now if r
Lqi
i+1 > r

A(i+1)

i+1 then set qi+1 such that:

i+1∑
j=1

r
Lqi+1

j =

i+1∑
j=1

r
A(j)

j (161)

From Lemma 15 we have that qi+1 < qi and therefore:

k∑
j=1

r
Lqi+1

j <
k∑
j=1

r
Lqi
j ≤

k∑
j=1

r
A(j)

j , 1 ≤ k ≤ i (162)

and combining this with (161) we get that M�i+1 Lqi+1 . Combining (161) and (162) we get that

r
Lqi+1

i+1 > r
A(i+1)

i+1 . Combining this with Lemma 11 we get:

p(µi+1,Lqi+1) > p(µi+1,A(i+1)) (163)

Because p(µi+1,Lqi+1) = qi+1 we have that qi+1 ≥ p(µi+1,A(i+1)) and therefore for any k > i+ 1:

p(µk,Lqi+1) = qi+1 ≥ p(µi+1,A(i+1)) ≥ p(µk,A(k)) (164)

Where again the final inequality comes from the fact that agent k ≥ i+1 chooses optimally and the

fact that µk ≥ µi+1. We conclude the proof by invoking Lemma 11 to conclude that r
Lqi+1

k ≥ rA(k)

k

for all k > i+ 1. We showed that (158) holds for i+ 1.

Proof of Theorem 4

Proof. This follows from noting that a MenuM induces an intervention F (which is not necessarily

anonymous ). We then combine Lemma 4, Lemma 7 and Lemma 8 to get the result.
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