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Abstract

We argue that the concentrated production and ownership of Bitcoin mining hard-

ware arises naturally from the economic incentives of Bitcoin mining. We model Bitcoin

mining as a two-stage competition: miners compete in prices to sell hardware, while

competing in quantities for mining rewards. We characterize equilibria in our model,

and show that small asymmetries in operational costs result in highly concentrated

ownership of mining equipment. We further show that production of mining equipment

will be dominated by the miner with the most efficient hardware, who will sell hardware

to competitors while possibly also using it to mine.

1 Introduction

In the years since Bitcoin was introduced by Nakamoto (2008), cryptocurrencies have

attracted a great deal of funding and media coverage. Bitcoin’s market capitalization now

exceeds $900 billion.1 The protocol underlying Bitcoin is unquestionably clever, and has

largely succeeded in creating a public yet anonymized record of transactions. In principle,

these transactions can be authorized by anyone who wishes to become a Bitcoin “miner.”

In practice, it is widely acknowledged that Bitcoin mining is controlled by a small

number of large entities. This concentration is frequently cited as a major concern, and

has motivated several new cryptocurrencies. For example, the Nxt whitepaper2 states,

Bitcoin’s creator, Satoshi Nakamoto, intended for the bitcoin network to be fully

decentralized, but nobody could have predicted that the incentives provided by

Proof of Work systems would result in the centralization of the mining process.

Meanwhile, the abstract of the whitepaper introducing Bitcoin Gold3 states,

The purpose [of Bitcoin Gold] is to make Bitcoin mining decentralized again.

Satoshi Nakamoto’s idealistic vision of “one CPU one vote” has been superseded

∗Columbia Business School
†Princeton University, Department of Computer Science.
1Source: www.coinmarketcap.com. Accessed March 3, 2021.
2Source: https://whitepaperdatabase.com/nxt-nxt-whitepaper/
3Source: https://bitcoingold.org/wp-content/uploads/2017/10/BitcoinGold-Roadmap.pdf
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by a reality where the manufacture and distribution of mining equipment has

become dominated by a very small number of entities.

These quotes highlight different ways in which Bitcoin mining is centralized. The first

quote addresses centralized ownership: most of the hardware used to mine Bitcoin is con-

trolled by a few large organizations (Hileman and Rauchs, 2017; Gencer et al., 2018). The

second quote addresses centralized production: a 2018 Bitmain prospectus estimates that

mining equipment manufactured by Bitmain accounts for 75% of the market.4 Interest-

ingly, Bitmain also owns and operates its own mining equipment: the prospectus claims

that Bitmain earned mining revenue of $53 million in 2016 and $199 million in 2017, ac-

counting for 9.6% and 6.2% of the global total, respectively.5

Two key questions motivate this work. First, why is the ownership of mining equipment

so concentrated? Second, why is the production of mining equipment so concentrated?

We address these questions by modeling Bitcoin mining as a two-stage contest, where

miners compete over a fixed reward. Each miner has access to different hardware, and

pays different operational costs for electricity, land, wages, and other expenses. In the first

stage, miners set prices at which they are willing to sell their their hardware to competitors.

In the second stage, miners choose what hardware to acquire and power. Miners split the

available mining rewards proportionally to their computational power.

Regarding our first question, our model predicts that even small differences in oper-

ational costs lead to highly concentrated ownership of mining equipment. Regarding the

second, our model predicts that the miner with the best hardware will sell it at a price low

enough to capture the whole market, regardless of whether it also chooses to mine. This

implies highly concentrated production of mining equipment.

Below, we provide more detail about Bitcoin mining, our model, and our results.

1.1 What is Bitcoin Mining?

Bitcoin is a digital currency, with the innovative feature that the record of transactions is

not maintained by a single entity, but rather by a collection of self-appointed “miners.”

Whenever a miner verifies a block of transactions, it receives a “block reward” (currently

6.25 bitcoin), in addition to fees offered by those whose transactions are included. Each

block must be accompanied by the solution to a cryptopuzzle.6 The fastest way to solve

4Source: http://enterprise.press/wp-content/uploads/2018/09/BitmainProspectus.pdf
5Source: https://www.statista.com/statistics/731383/bitcoin-mining-revenue/.
6Narayanan et al. (2016) has a deeper explanation of these puzzles, and why they are used.
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these puzzles is to guess solutions at random, so the rate at which miners are rewarded

is proportional to their rate of guessing (“hash rate”). Importantly, the difficulty of these

puzzles adjusts so that on average, a new block is created every ten minutes, regardless of

the total hash rate in the network.

Although all miners guess solutions randomly, there are several ways to reduce the cost

of each guess:

• Hardware. Specialized hardware (“ASICs”) designed to solve bitcoin cryptopuzzles

uses 1000 times less energy per guess, compared to general-purpose GPUs.7

• Electricity. Cheap electricity lowers the cost of powering mining hardware.

• Cooling. Cold locations lower the cost of cooling mining hardware.

• Land & Labor. Cheap land and labor lower the cost of operation.

These factors play a significant role in determining who enters the market: only miners

with low costs can mine profitably. This contributes to mining concentration, which can

be measured in several ways.

Ownership of Mining Equipment. Although the anonymity of bitcoin mining

makes it difficult to determine ownership, studies estimate that a majority of global mining

power is controlled by eight to eleven large miners (Hileman and Rauchs, 2017; Gencer

et al., 2018). Together, these miners could freeze any user’s funds, erase past transactions,

or launch other attacks. Narayanan et al. (2016) describes these risks in more detail.

Production of Mining Equipment. A 2018 prospectus estimates that 75% of Bit-

coin mining uses equipment manufactured by Bitmain. The risks associated with this

concentration were highlighted in 2017, when a backdoor was discovered that gave Bit-

main the ability to shut down any Antminers that it had produced.8

Mining Pools. “Mining pools” are groups of miners that share rewards with each

other in order to decrease the variance of short-term returns. Most blocks come from a

small number of large pools.9 Many of the remainder are of unknown origin, and might also

come from large pools.10 This concentration is concerning because a single pool operator

7Sources: https://en.bitcoin.it/wiki/Mining_hardware_comparison, https://en.bitcoin.it/

wiki/Non-specialized_hardware_comparison.
8See https://www.rudebaguette.com/en/2017/05/antbleed-bitmain-shut-half-bitcoin/.
9Current pool shares are available at https://blockchain.info/pools?timespan=4days.

10This possibility is discussed here https://diar.co/volume-3-issue-1/, and seems likely given
that “unknown” blocks increased dramatically shortly after Bitmain’s stake in multiple large pools
attracted attention. Bitmain owns Antpool and BTC.com, and is the sole investor in viaBTC:
bitcoinmagazine.com/articles/bitmain-nears-51-network-hash-rate-why-matters-and-why-it-doesnt.
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typically determines the content of blocks mined by the pool. However, Cong et al. (2018)

argue that if miners can easily switch between pools then the pool size distribution is

irrelevant. One could even claim that mining pools encourage decentralization by allowing

small miners to collect rewards regularly.

We do not model mining pools in this paper. Instead, we focus on concentration of

ownership and production of mining equipment. As noted above, both forms of concentra-

tion are prevalent, and both pose threats to the Bitcoin network. We seek to understand

the reasons for this concentration, and whether it can be expected to persist.

1.2 Model Overview

We highlight several key features of the Bitcoin protocol, which form the basis of our model:

• The total value of rewards available to miners is fixed.11

• Miners make costly investments in computational power. In particular:

– Miners produce proprietary hardware, which they can sell to competitors.

– Miners pay different operational costs (for electricity, land, cooling, labor, etc.).

• Miners earn rewards in proportion to their computational power.

In essence, there are two competitions occurring simultaneously: hardware producers

are competing in price, while miners are competing in quantities. However, the line between

hardware producer and miner is a blurry one.

We capture this using a stylized two-stage model in which miners have varying hardware

production costs and operational costs. In the first stage, miners post a price at which

they are willing to sell their hardware. In the second stage, miners decide how much

computational power to acquire, and split a fixed prize in proportion to their computational

power. We model the second stage game as an asymmetric Tullock rent-seeking contest,

with asymmetries arising from differences in operating costs and access to high-quality

hardware. Meanwhile, the first stage game is a Bertrand competition: miners will always

purchase the hardware that allows them to mine for the lowest cost.

11As explained above, on average one new block is created every 10 minutes, and the size of the block
reward is fixed. Furthermore, Huberman et al. (2017) conclude that transaction fees should not depend on
the hash rate, nor on how it is distributed among miners.
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1.3 Overview of Results: Concentration of Ownership

For any hardware prices set in the first stage, there is an essentially unique second-stage

equilibrium, which we describe in Theorem 1. If all costs ci are identical, then in equilib-

rium, each miner possesses an equal amount of mining power (Corollary 1).

One might expect ownership to remain decentralized so long as costs are not “too dif-

ferent.” Our (qualitative) finding is that even small cost advantages may cause significant

concentration. More precisely, each miner’s market share in equilibrium is equal to the

percentage by which their costs are lower than the market-wide “break even cost” (Corol-

lary 2). For example, a miner with costs that are 10% lower than this break-even cost will

possess 10% of all mining power.

This mining concentration has economic implications. As we discuss in Section 2,

many analyses of Bitcoin mining assume the market is competitive, and that miners make

little profit. This assumption is also incorporated into one frequently-cited method for

estimating Bitcoin’s energy footprint. Our model makes a different prediction. Corollary 3

establishes that total mining profit is proportional to the Herfindahl-Hirschman Index of

market concentration: concentrated mining implies significant miner profits. This suggests

that the aforementioned estimate of Bitcoin’s energy consumption is likely too high.

In summary, the thesis of Section 4 is that the Bitcoin reward scheme naturally induces

a concentrated market in which low-cost miners can earn significant profits. This finding

has implications for various analyses of Bitcoin, including estimates of its carbon footprint.

1.4 Overview of Results: Concentration of Production

It is natural to wonder why a hardware producer would sell their hardware, rather than

simply using it to mine. For example, the CEO of blockchain company Sia wrote12

At the end of the day, cryptocurrency miner manufacturers are selling money

printing machines... The buyer needs to understand why the manufacturer is

selling the units instead of keeping them for themselves.

One white paper proposes the following intuitive answer:13

12Source: https://blog.sia.tech/the-state-of-cryptocurrency-mining-538004a37f9b
13Source: https://research.ark-invest.com/hubfs/1_Download_Files_ARK-Invest/White_Papers/

ARKInvest_031220_Whitepaper_BitcoinMining.pdf.
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The expertise to operate mining facilities is very different from that to man-

ufacture hardware... Moreover, without a competitive advantage in sourcing

electricity, mining machine manufacturers could be uncompetitive despite their

hardware cost advantages.

In other words, the manufacturer may be unable to use their equipment to mine profitably.

Our model proposes a different answer: Theorem 2 establishes that there is always an

equilibrium in which the lowest-cost hardware is sold to the entire market. This equilibrium

arises even if the hardware manufacturer has access to cheap electricity and chooses to mine.

Moreover, Theorem 4 establishes that in many cases, this outcome is the only equilibrium.

The reason for this is that the competition among mining manufacturers resembles a

Bertrand competition: miners will purchase whichever equipment enables them to mine

most cheaply. Competition from other manufacturers drives prices to the point that all

active miners end up using the most efficient hardware. Although the miner who manufac-

tures this hardware might be tempted to raise its price, it does not truly control delivery: a

price increase opens the door for another manufacturer to step in and capture the market.

To summarize, our main conclusions regarding the sale of hardware are that (a) pro-

duction of Bitcoin mining hardware naturally concentrates, and (b) a miner with good

hardware will choose to sell it to the entire market, even while simultaneously using it to

mine. Section 5 presents these findings in more detail.

2 Related Work

We focus on three areas of related literature. First, we discuss papers on Bitcoin which

justify some of our modeling assumptions, but are for the most part mathematically un-

related to our work. Second, we discuss rent-seeking contests, which are closely related to

our second-stage game. Finally, we discuss the literature on price discrimination in input

markets, which uses a closely related model in which one agent can sell hardware (but

cannot mine), and the remaining agents mine (but cannot sell hardware to each other).

2.1 Cryptocurrencies

Though cryptocurrencies are relatively new, the literature on them is growing quickly.

Halaburda and Haeringer (2019) provide a helpful survey of papers studying economic and

game-theoretic questions related to cryptocurrencies.
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Several sources document concentration in Bitcoin mining. The most readily available

statistics relate to mining pools: currently, four mining pools are responsible for over 50%

of mined blocks.14 Other measures of centralization are not publicly available, but Romiti

et al. (2019) present evidence that rewards in several mining pools are concentrated among

a few miners, Hileman and Rauchs (2017) estimate that eleven “large mining entities” col-

lectively control a majority of Bitcoin’s global hashrate, and Gencer et al. (2018) conclude

that 75% of all blocks are initially announced by one of 100 Bitcoin nodes.15

Other papers provide justification for our modeling assumptions. Our assumption that

miners compete for a fixed prize is consistent with work by Huberman et al. (2017), who

conclude that the fees paid by Bitcoin users (and total mining rewards) are not affected

by miner behavior. Our focus on concentration of ownership and production of mining

equipment, rather than pool size, is consistent with the conclusion of Cong et al. (2018)

that the distribution of pool size is irrelevant if miners can freely switch between pools.

Another key assumption in our model is that miners are rewarded proportionally to

their mining power. Recent work by Chen et al. (2019) and Leshno and Strack (2019)

proves that this is the only approach that is anonymous, sybil-proof, and collusion-proof,

implying that our results extend to any competition with these properties.

Many papers study strategic deviations from the Bitcoin protocol (Babaioff et al., 2012;

Eyal and Sirer, 2014; Eyal, 2015; Carlsten et al., 2016; Kiayias et al., 2016; Sapirshtein et al.,

2016). Whereas these papers treat miners’ computational power as fixed, we study miners’

incentives to acquire computational power. Prat and Walter (2018) permit miners to decide

how much hardware to acquire, but assume that they have access to the same hardware,

which is available at an exogenous price. By contrast, we assume that miners have different

hardware, and study how they price it.

2.2 Rent-Seeking Contests

There is a large literature on “rent-seeking” activities, which seek to influence the allocation

of a prize. Hillman and Riley (1989) summarize one important idea from this literature:

Often influence-seeking activities are not directly observable, but the value of

the prize secured by the successful contender is known. One may then seek to

infer the value of the resources allocated to influencing the allocation of a prize

from the value of the prize itself.

14Source: https:blockchain.info/pools?timespan=4days. Accessed March 3, 2021.
15A node listens for transactions and blocks, and forwards them to the rest of the network.
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Several papers apply this idea to Bitcoin mining. Kroll et al. (2013) assume that “the

total mining reward... is equal to the total global cost of mining,” and Budish (2018)

assumes that “the prize...is dissipated by expenditures aimed at winning the prize.” This

assumption is also made by Hayes (2015), Chiu and Koeppl (2018), Thum (2018), Ma et al.

(2018) and Easley et al. (2019). To justify this assumption, Chiu and Koeppl (2018) and

Thum (2018) appeal to a class of games introduced by Tullock (1980), in which contestants

share a prize in proportion to their expenditures. When contestants are symmetric, total

expenditures approach the value of the prize as the number of contestants grows.

The second stage of our model is a Tullock contest with asymmetric contestants, which

has also been studied by Hillman and Riley (1989), Gradstein (1995), Dimitri (2017) and

Alsabah and Capponi (2020). The first two papers note that the number of active par-

ticipants may be small, but (for obvious reasons) do not discuss implications for Bitcoin.

Dimitri (2017) does not explicitly address mining concentration, except to note that at least

two miners must be active in equilibrium. Alsabah and Capponi (2020) do study mining

concentration, and are closest to our work. They focus on miners’ R&D investments, and

consider a model with ex-ante symmetric miners.16 By contrast, our miners are inherently

asymmetric, and one of our key questions is whether a miner with good hardware will want

to sell it. The sale of hardware is not permitted in any of the aforementioned papers.

2.3 Selling Inputs to Competing Firms

There is a literature on price discrimination in input markets, in which a supplier sells an

input to a set of downstream firms that compete in quantities. The foundational papers of

Katz (1987) and DeGraba (1990) assume that if the supplier offers price pi to downstream

firm i, then the marginal cost of production for i is pi + βi. This resembles a version of

our model in which the first miner has prohibitively high operational costs (and thus will

never mine), and the remaining miners have prohibitively high hardware costs.

Yehezkel (2004) considers a model where where a manufacturer sells a necessary input

to a retailer, and also competes against that retailer in a final goods market. He notes

that by charging a high price to the retailer, the manufacturer softens competition in the

final goods market. This effect is also present in our model, although the nature of the

second-stage competition is quite different.

16The analysis of asymmetric contests is to asses off-equilibrium behavior.
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3 Model

There are n ≥ 2 miners competing for a prize of value R. Each miner i has an operational

cost oci > 0, and a hardware cost hci > 0. Without loss of generality, we sort the miners

in increasing order of hardware cost. The game proceeds in two stages:

1. Each miner i chooses a price pi ≥ hci at which they will sell their hardware.17

2. Each miner i chooses the quantity qij of computational power sourced from miner j.

Given quantities qij , miner i’s market share is

xi(q) =

∑
j qij∑

k,j qkj
. (1)

We define xi(q) = 0 if both the numerator and denominator are zero (although this will

never occur in equilibrium).

At prices p, the per-unit cost to miner i of sourcing from miner j is

cij(p) := oci + hcjI(j = i) + pjI(j 6= i). (2)

Miner i earns mining profit of

ΠM
i (p, q) = R · xi(q)−

∑
j

qijcij(p), (3)

and additional sales profit of

ΠS
i (p, q) = (pi − hci)

∑
j 6=i

qji, (4)

for a total utility of

Ui(p, q) = ΠM
i (p, q) + ΠS

i (p, q). (5)

17Our model considers anonymous rather than personalized pricing. However, most of our conclusions
hold for personalized pricing as well.
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Definition 1.

A function Q mapping prices to purchase quantities is a second-stage equilibrium if for

all price vectors p, miners j, and any q′ such that q′i` = Qi`(p) for i 6= j,

Uj(p,Q(p)) ≥ Uj(p, q
′).

Prices p are a first-stage equilibrium for Q if for any miner j, and any p′ such that

p′i = pi for i 6= j,

Uj(p,Q(p)) ≥ Uj(p
′, Q(p′)).

The pair (p,Q) is an equilibrium if Q is a second-stage equilibrium and p is a first-stage

equilibrium for Q.

4 The Second-Stage Game: Concentration of Ownership

Recall our motivating question: Why is the ownership of Bitcoin mining hardware so

concentrated? This section provides an answer by analyzing the second-stage game in

our model. We start by characterizing second-stage equilibria. Our characterization relies

heavily on a “break-even cost” c∗: in Section 4.1, we show how this cost can be estimated

from publicly available data. In Section 4.2, we answer our main question: ownership

concentrates because small asymmetries in cost lead to large asymmetries in equilibrium

market share. In Section 4.3, we discuss economic implications of this concentration.

We now analyze the second-stage game. For a fixed price vector p, the effective cost

for miner i is

ci(p) = min
j
cij(p). (6)

Lemma 1. If Q is a second-stage equilibrium, then cij(p) > ci(p) implies Qij(p) = 0.

In other words, miners only acquire hardware from sources offering the lowest cost.

Thus, for the purposes of calculating mining profit, we can ignore who each miner purchases

from, and focus on how much computational power each miner acquires.

The resulting game is a rent-seeking contest, as described by Tullock (1980). Although

several previous papers have characterized the equilibrium of this game, we give a new

10



characterization in Theorem 1 below. We begin by defining the X : R+ × Rn
+ → R+ by

X(y,~c) =
n∑

i=1

max{1− ci/y, 0}. (7)

Lemma 2. For any ~c, there is a unique value c∗ satisfying X(c∗,~c) = 1. Furthermore, in-

creasing any ci < c∗ strictly increases c∗, while increasing any ci ≥ c∗ leaves c∗ unchanged.

For the remainder of this paper, we let c∗ = c∗(p) denote the unique solution to

X(c∗(p),~c(p)) = 1. The following result establishes that c∗(p) and ci(p) are sufficient

for determining equilibrium outcomes for miner i.

Theorem 1. For any prices p, and any second-stage equilibrium Q, the total hash rate is

∑
i,j

Qij(p) =
R

c∗(p)
, (8)

the market share of miner i is

xi(Q(p)) = max

{
1− ci(p)

c∗(p)
, 0

}
, (9)

and the mining profit of miner i is

ΠM
i (p,Q(p)) = xi(Q(p))2R. (10)

The proof of Theorem 1 is in Appendix B.

4.1 Using Theorem 1 to Calculate a Break-Even Cost

Before proceeding, we show how Theorem 1 can be applied to Bitcoin mining. There

are several other characterizations of equilibria in Tullock’s rent-seeking model (see e.g.

Hillman and Riley (1989), Gradstein (1995), Dimitri (2017), Alsabah and Capponi (2020)),

which express outcomes in terms of the number of active miners and each of their costs.

Unfortunately, these factors are not observable in practice. By contrast, the expressions in

Theorem 1 rely heavily on the quantity c∗, which can be easily estimated from available

data. By (8), c∗ is equal to the ratio R/
∑
Qij . The quantity R corresponds to the rate of

mining revenue, which is easily tracked. Meanwhile
∑
Qij corresponds to the total hash

rate, which can be accurately estimated from the difficulty and rate of block discovery.
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Let’s apply this idea. On October 13, 2020, total daily mining revenue was approxi-

mately 11.6 million USD, and total hash rate was approximately 144.3 ExaHash/second.18

This implies that

c∗ ≈ $11.6 million/day

144.3 ExaHash/second
× 1 day

60 · 60 · 24 seconds
=

$0.93

ExaHash
.

This value serves as a break-even point: given the current reward and difficulty of block

discovery, any miners with average cost above c∗ cannot mine profitably, while those with

average cost below c∗ will earn profits from mining.19

4.2 A Natural Oligopoly: Linking Cost, Market Share, and Profit

The claim that only miners with costs below c∗ can make a profit is almost model-free,

and should not be controversial. What is less clear is, for a miner with cost ci < c∗, how

much hardware will they control, and what profit will they make? We now use Theorem 1

to answer this question, and study concentration of ownership.

If we assume that there are many miners with identical costs, the following corollary

establishes that all of these costs must be close to c∗, and that each miner will control a

small share of the mining market.

Corollary 1. If all miners have identical effective costs c1(p) = c2(p) = · · · = cn(p), then

for all i, ci
c∗ = n−1

n and xi(Q(p)) = 1/n.

In reality, miners have different costs, and one should expect that miners with lower

costs will choose to operate more mining hardware, and will make more profit. A priori it

is not clear how strong these effects should be. One might hope that small cost asymme-

tries (i.e. on the order of 5-10%) would lead to only small asymmetries in market share.

Unfortunately, the following Corollary of Theorem 1 shows otherwise: minor asymmetries

in cost can imply drastic asymmetries in market share.

18An ExaHash is 1018 hashes, or 1 million TeraHashes. Data reflects a 7-day average, taken from https:

//www.blockchain.com/charts/miners-revenue and https://www.blockchain.com/charts/hash-rate.
19Some Bitcoin blogs refer to a “break even” price of Bitcoin. This supposed to be the price at which

mining would become unprofitable, assuming mining difficulty remains constant. This is an incoherent
counterfactual: as Dimitri (2017) points out, if the price of Bitcoin falls, then so will the network hash
rate. Our use of the phrase “break even” is quite different: for a fixed difficulty and price of Bitcoin, c∗ is
a “break even cost” because miners are able to make a profit if and only if their cost is below c∗.

12

https://www.blockchain.com/charts/miners-revenue
https://www.blockchain.com/charts/miners-revenue
https://www.blockchain.com/charts/hash-rate


0.75 0.80 0.85 0.90 0.95
0.00

0.05

0.10

0.15

0.20
Market Share

Mining Cost (USD/Exahash)
0.75 0.80 0.85 0.90 0.95

0

100

200

300

400

Daily Mining Profit (Thousand USD)

Mining Cost (USD/Exahash)

Figure 1: From the estimated break-even cost of $0.93/ExaHash, our model predicts a
miner’s market share (left) and profit (right) as a function of its marginal cost. It suggests
that a miner with costs 10% below the break-even cost could control 10% of the market
and be making over $100,000 in daily profit.

Corollary 2. In equilibrium, ci(p) = (1 − xi(Q(p)))c∗(p) for each i. That is, miner i’s

market share is precisely the percentage by which its effective cost ci(p) is below c∗(p).

To get intuition for Corollary 2, consider a miner with marginal cost of hash power

equal to ci < c∗. This miner’s marginal revenue from additional hash power is equal to c∗

times the fraction of mining hardware controlled by competitors. In order for marginal cost

to equal marginal revenue, the fraction of hardware controlled by others must be ci/c
∗.

We now apply Corollary 2 through a simple example. If we use our previously calculated

break-even cost of $0.93/ExaHash, then a miner who pays $0.88/ExaHash (5.4% below the

break-even cost) should control 5.4% of all mining hardware in equilibrium, while a miner

who pays $0.83/ExaHash is predicted to control 10.8% of all mining hardware. The latter

miner owns twice as much hardware, despite a seemingly minor 5.7% cost advantage. The

imbalance in mining profit, as predicted by (10), is even more extreme: the latter miner

earns four times as much profit as the former. Figure 1 plots estimated mining profit as a

function of mining cost — note the sharp growth in profits as the cost drops.

We conclude that Bitcoin (and other cryptocurrencies based on proof-of-work) are nat-

ural oligopolies. Inevitable differences in electricity costs, cooling costs, and local wages

will result in much larger differences in market share. A miner with costs moderately below
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the break-even cost c∗ should in fact control a significant share of all mining hardware.

For anyone who considers decentralized mining as an explicit goal of the Bitcoin proto-

col, this is disappointing news. It also invites the question of whether a network in which

most transactions are processed by a handful of large miners is truly secure. However, the

conclusion that Bitcoin mining is an oligopoly rather than a competitive market also has

implications for the seemingly unrelated question of the energy consumption of the Bitcoin

network, as we now discuss.

4.3 Implications For Calculating Bitcoin’s Energy Footprint

Many papers that model Bitcoin mining as a rent-seeking contest assume that the mining

market is competitive (see Section 1). Section 4.2 establishes that Bitcoin is instead an

oligopoly (and should be expected to remain an oligopoly). Beyond its standalone interest,

this has implications for other economic analyses. This section considers one such example.

One aspect of Bitcoin that has attracted significant attention is its large carbon foot-

print. Many studies attempt to estimate the total energy consumption of the Bitcoin

network. The challenge is that although the network hash rate can be readily estimated,

it is much harder to know the average efficiency of currently-used hardware.

One way to get around this problem is to assume that miners’ electricity costs are

proportional to total mining revenue (which is observable). The website Digiconomist uses

the following equations to derive an estimate:

Total Mining Cost = Total Mining Revenue. (11)

Total Cost of Electricity = (Total Mining Cost)× (% of Cost From Electricity). (12)

Total Electricity Used = (Total Cost of Electricity)/(Average Price per KWh). (13)

DeVries (2018) explains the first equation with the comment “in equilibrium, not even

Bitmain... should be able to generate a profit.” In fact, this relies on faulty logic: Theorem

1 implies that all active miners should make a (possibly small) profit.

In fact, there is a close relationship between the level of concentration in the mining in-

dustry, and total mining profit. We measure concentration using the Herfindahl-Hirschman
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Index (HHI), defined as the sum of squares of market shares:20

HHI(q) =
∑
i

xi(q)
2. (14)

By (10), we have the following result.

Corollary 3. If Q is a second-stage equilibrium, then for every p, the proportion of total

mining revenue that constitutes mining profit is equal to the Herfindahl-Hirschman Index

of market concentration: ∑
i

ΠM
i (p,Q(p)) = R ·HHI(Q(p)).

By assuming that miners make zero profit, Digiconomist likely overestimates the money

that miners spend on electricity. A simple first-order correction would be to modify (11)

by multiplying mining revenue by one minus the market concentration.21 However, this

correction ignores the fact that the miners with the greatest market share are also those with

the lowest costs, implying that using the average electricity cost in (13) will overestimate

electricity consumption. This point is related to the critique of Koomey (2019) that “these

estimates... don’t deal with the large geographic variations in electricity prices.” Indeed,

Corollary 2 suggests that miners with lower electricity costs will constitute a noticeably

higher market share.

While we do not claim to offer a reliable estimate of the electricity use of the Bitcoin

network, our model provides several reasons to believe that the simple calculations offered

by Digiconomist are an over-estimate. A more careful economics-based analysis would take

into account both mining profit and the correlation between electricity cost and market

share.

20See https://en.wikipedia.org/wiki/Herfindahl%E2%80%93Hirschman_Index for more information.
Rhoades (1993) describes how HHI has been used by the Department of Justice and the Federal Reserve
in the analysis of the competitive effects of mergers. In the industrial organization literature, it is common
to treat each company’s market share as an integer percentage (i.e. 20 instead of 0.2). This results in an
HHI that ranges from 0 to 10, 000. In this paper, we define HHI by (14), so that it ranges from 0 to 1.

21One limitation is that estimating the concentration of hardware ownership is challenging. Blogs occa-
sionally compute HHI for mining pools, as this data is more readily available. However, as discussed in
Section 1, this is potentially quite different from the HHI of hardware ownership.
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5 The First-Stage Game: Concentration of Production

We now fully characterize equilibria in our model, and use this characterization to answer

the question, Why is the production of Bitcoin mining hardware so concentrated?

The answer, in some ways, is simple. In the first-stage game, miners essentially engage

in Bertrand competition: the lowest price claims the entire market. Theorem 2 establishes

that there is always an equilibrium in which the miner with the lowest-cost hardware sells

to the rest of the market. Below, we say that sales occur if any miner sells hardware to

another miner (i.e. there exists an i 6= j such that Qij(p) > 0).

Theorem 2. There exists an equilibrium (p,Q) where sales occur. If hc1 < hc2, then in

all equilibria (p,Q) where sales occur, Miner 1 sets price p1 ∈ [hc1,hc2], and all hardware

is produced by Miner 1 (Qij(p) = 0 for all i, and all j ≥ 2).

Although Theorem 2 relies on familiar intuition, our model is significantly richer than

standard Bertrand competition, because sellers have the opportunity to mine themselves.

Thus, a priori, there are three potential equilibrium outcomes.

I. Miner 1 both mines and sells hardware to competitors.

II. Miner 1 sells hardware to competitors, but does not mine.

III. Miner 1 mines, but does not sell hardware to competitors (and therefore, by Theorem

2, no sales occur).

Theorem 2 establishes that at least one of the first two outcomes can be sustained in

equilibrium, but which one? Will the first miner choose to mine, or make its profit entirely

from selling hardware? What price will it charge in equilibrium? Theorem 2 also doesn’t

rule out the existence of other equilibria: can there be an equilibrium where miners with

efficient hardware choose not to sell this hardware to others?

We answer these questions below. First, Section 5.1 characterizes the price set by Miner

1 in equilibria with sales. While it is possible that either I or II is an equilibrium, in both

cases Miner 1 sets the highest price consistent with its participation decision and the need

to undercut Miner 2. Section 5.2 establishes that it is possible for an equilibrium with no

sales to exist, but only if the market primitives satisfy stringent necessary conditions.
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5.1 Characterizing the Dominant Miner’s Behavior

We first characterize the price set by Miner 1 in equilibria where sales occur, and understand

whether they choose to mine. Theorem 3 establishes that there are only two possible prices

Miner 1 might set in equilibrium. In particular, if Miner 1 both mines and sells hardware,

then it will charge the highest possible price hc2. Meanwhile, if Miner 1 abstains from

mining, then it either charges hc2, or the highest price that maintains its incentive not to

mine.

Theorem 3. In all equilibria (p,Q) where sales occur, either: p1 = hc2, or: p1 < hc2,

c∗(p) = hc1 + oc1, and Miner 1 does not mine (Q1j(p) = 0 for all j).

That is, there are only (at most) two potential prices for Miner 1 to check: hc2, and

whatever price induces c∗(p) = hc1 + oc1. Generically, only one of these will be an

equilibrium (because Miner 1 chooses their preferred price in [hc1,hc2]).22

Theorem 3 implies that a necessary condition for any price p1 < hc2 to be an equilib-

rium is that Miner 1’s decision of whether to mine hinges on the price it sets. That is, if

we express c∗ as a function of p1, we must have

c∗(hc1) ≤ hc1 + oc1 < c∗(hc2).

If oc1 is too small, then no matter what price Miner 1 sets, they will choose to mine

(and Theorem 3 implies that they therefore set price hc2). If oc1 is too large, then no

matter what price Miner 1 sets (subject to guaranteeing themselves the entire market

of sales), they will choose not to mine (and Theorem 3 implies they will also set price

hc2). But if the above inequalities hold, then by Lemma 2 there is a unique p1 such that

c∗(p) = hc1 + oc1, and this will be an equilibrium if and only if this price is at least as

profitable as selling at hc2.

Interestingly, in the cases where p1 < hc2 is an equilibrium, Miner 1 would actually

earn higher profit by setting a price of hc2 and committing not to mine. Our model does

not permit this possibility: in practice mining activity is not directly observable, and any

commitment by a manufacturer not to use their own hardware would not be credible. In

our model, this commitment can be made credible by lowering the sales price, thereby

encouraging other miners to purchase more equipment and reducing Miner 1’s return from

22Non-generic costs may result in the existence of multiple equilibria where sales occur – see Example 2
in Appendix A.
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mining to the point where it is no longer profitable. This is precisely the mechanism that

can cause Miner 1 to set a low price.

5.2 When must sales occur?

Recall our second key question: Does it make sense for the dominant miner to both mine

and sell hardware to its competitors? Theorem 2 suggests that the answer is ‘yes’, because

there is an equilibrium where sales occur (and in all such equilibria, all mining hardware is

purchased from Miner 1). But this answer is incomplete, as there could a priori be another

equilibrium where no sales occur. We now turn to the question of whether Miner 1 will

ever choose to keep their hardware to themselves, in order to control more of the mining

market. The following example illustrates that this is possible.

Example 1 (Equilibrium Without Sales). Let hc = (1/8, 1/4, 1) and oc = (3/8, 3/4, 1).

Because Miner 1 has the lowest hardware and lowest operational costs, Theorem 1

implies that it will always choose to mine. Theorem 2 states that there is an equilibrium

where sales occur, and Theorem 3 implies that in this equilibrium, Miner 1 must set a price

of hc2 = 1/4.

When Miner 1 sets a price of hc2 = 1/4, effective costs are ~c = (1/2, 1, 5/4) and

c∗ = 11/8. By Theorem 1, Miner 1 has a market share of 7/11, mining profit of (7/11)2,

and profit from sales of 8/11·4/11·(1/4−1/8) = 4/121, for a total profit of 53/121 ≈ 0.438.

Miner 2 has market share 3/11 and profit 9/121, and miner 3 has market share 1/11 and

profit 1/121.

Without sales, effective costs are ~c = (1/2, 1, 2), and c∗ = 3/2. By Theorem 1, Miner 1

has a market share of 2/3 and profit of 4/9 ≈ 0.444, Miner 2 has market share of 1/3 and

profit of 1/9.

The calculations above establish that Miner 1 prefers the “no sales” outcome to the

equilibrium in which sales occur at price 1/4. However, this is not sufficient to ensure that

“no sales” is an equilibrium. We must instead verify that even at a high price, neither

Miner 1 nor Miner 2 wishes to sell to Miner 3. The calculations for this are presented in

Appendix A.2.23

23Although Example 1 has an equilibrium without sales, there are situations where the unique equilibrium
is for Miner 1 to sell, even though all active miners prefer the “no sales” outcome to the equilibrium outcome.
This suggests the possibility of collusion among miners with low mining costs, which we do not model.
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So, our model is rich enough to admit the possibility of a no-sales equilibrium. However,

Theorem 4 establishes fairly stringent necessary conditions on the market primitives in

order for the no-sales outcome to be an equilibrium. Below, we say that miner i is active

if qii > 0 in the no-sales outcome and inactive if qii = 0 (recall that Theorem 1 establishes

that miner i will be active if and only if its effective cost hci+oci is less than the break-even

cost c∗).

Theorem 4. Suppose that the no-sales outcome is an equilibrium. Then:

I. Every inactive miner has weakly higher hardware cost than every active miner.

II. If there are at least three active miners, then every inactive miner has strictly higher

operational cost than every active miner.

III. Unless all active miners have identical hardware costs, there is an inactive miner j

who could profitably mine using hardware from any active miner i: ocj < c∗ − hci.

If any of these conditions are violated, then sales occur in all equilibria. These conditions

come from considering the following potential deviations from the no-sales outcome:

I. An inactive miner could sell hardware to an active miner.

II. An active miner could sell hardware to an inactive miner.

III. An active miner could sell hardware to another active miner.

The first deviation will be profitable if any inactive miner has lower hardware costs than

any active miner. The second deviation will be profitable if any inactive miner has low

operational costs (since then, an active miner could sell them hardware at a high markup

— this is the most technical bullet in the proof of Theorem 4).24 The third deviation is

guaranteed to be profitable if every inactive miner has high operational costs (since then,

Miner 1 could sell to other active miners without attracting new entrants).

The conditions in Theorem 4 are restrictive for two reasons. First, observe that active

miners are exactly those with oci + hci < c∗, so every active miner has lower total cost

than every inactive miner. Bullets one and two of Theorem 4 imply that if no-sales is an

24Theorem 4 establishes that if there are at least three active miners, then ocj ≤ oci is sufficient for
some active miner to want to sell to inactive miner j. Appendix A.3 provides an example demonstrating
that this condition is not sufficient if there are only two active miners. However, it remains true that an
inactive miner with sufficiently low operational costs will tempt an active miner to deviate.
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equilibrium, then every active miner not only has lower total cost, but lower hardware cost

and lower operational cost. In particular, for there to be an equilibrium without sales, it

is necessary that every miner with low operational costs can also produce hardware cheaply

enough to mine profitably. This seems unlikely.

Second, observe a quantitative tension between bullets two and three. Bullet two

requires that every inactive miner have high operational cost (strictly higher than every

active miner). Yet, bullet three requires the existence of an inactive miner with low enough

operational cost to purchase hardware from every active miner. So in particular, the lowest

operational cost of any inactive miner must lie in (maxactive i{oci}, c∗−maxactive i{hci}).25

In summary, Theorem 4 establishes stringent necessary conditions for no-sales to be

an equilibrium, suggesting that for practical market primitives sales occur in all equilibria.

This conclusion is only strengthened if miners are permitted to sell at personalized prices.

In that case, it will always be profitable for Miner 1 to deviate from the “no sales” outcome

by selling to other active miners.

6 Conclusions and Discussion

The concentration of ownership of mining hardware among a few large entities, and the

concentration of production of mining hardware within a single large entity, threatens the

promise of a truly decentralized digital currency. We show that both aspects of concentra-

tion can be explained using a simple model with three key features. First, miners share

a fixed reward in proportion to their investment in computational power. Second, miners

have different costs, separated into hardware costs and operational costs. Third, hardware

can be readily bought and sold.

We show that seemingly minor differences in operational costs will result in concentrated

ownership of mining hardware: low-cost miners will have significant market share, and earn

significant profits. Our conclusion that mining profits are very sensitive to mining cost also

justifies our assumption that miners will purchase the hardware that lets them mine most

cheaply. As a result, the sale of mining hardware resembles a Bertrand competition, where

the lowest-cost manufacturer captures the entire hardware market.

In summary, mining centralization arises from core aspects of the Bitcoin mining pro-

25In particular, observe that this range is not even necessarily non-empty. In order for the range to be
non-empty, it must be that the worst hardware among active miners can be profitably used by the active
miner with the highest operational costs.
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tocol, and is not a temporary aberration. Without significant changes, the vision of a

competitive mining market is unlikely to be fulfilled. As Section 4.3 discusses, analyses

based on the assumption of a competitive mining market should be revisited, to understand

how the reality of a profitable mining oligopoly affects their conclusions.

There are several proposals for ways to reduce mining centralization. When evaluating

these proposals, the simplicity of our model is an advantage: unless the change addresses

one of the three features identified above, our model suggests that centralization will persist.

For example, innovations such as BetterHash and Stratum V2,26 which are designed to

allow miners (rather than mining pools) to dictate the contents of a block, do not address

the cost asymmetries that are the focus of this paper. While these technologies may offer

some advantages, they are unlikely to result in decentralized mining. Meanwhile, a change

to ASIC-resistant hash functions (such as Equihash, which is used by Bitcoin Gold) might

change the supplier of mining hardware, but so long as cooling and electricity remain

significant costs, mining activity is likely to remain concentrated among the few areas of

the world where these costs are cheapest.

What changes might have an impact? One thought is to change the reward struc-

ture, so that rewards scale sublinearly with mining power: diseconomies of scale directly

disincentivizes large miners. Unfortunately, sublinear rewards seem impossible so long as

mining is permissionless: recent works point out that a proportional division is the only

one that is anonymous, robust to sybil attacks, and robust to mergers (Chen et al., 2019;

Leshno and Strack, 2019). The key challenge is that any effort to make rewards sublinear in

computational power will result in miners dividing their power among multiple false iden-

tities. A more promising approach is to equalize costs across miners. Because storing and

transporting electricity is difficult, cost asymmetries seem inherent to any proof-of-work

protocol. However, proof-of-stake protocols reward miners in proportion to the amount of

currency that they own, rather than their computational power. It seems plausible that

variation in the cost of purchasing cryptocurrency should be much smaller than variation

in electricity prices. If this is the case, then proof-of-stake protocols might contribute to

mining decentralization.

Although the simplicity of our model is one of its key advantages, it also implies certain

limitations. For example, we model both operational and hardware costs as linear in com-

26For more information, see https://medium.com/hackernoon/betterhash-decentralizing-bitcoin-

mining-with-new-hashing-protocols-291de178e3e0 and https://www.coindesk.com/a-plan-to-

decentralize-bitcoin-mining-again-is-gaining-ground.
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putational power. In practice, there are reasons to believe that mining features economies

of scale.27 However, this fact should only serve to exacerbate concentration of ownership:

it is telling that this concentration arises even when economies of scale are absent.

More importantly, we consider a static model, and combine hardware costs and oper-

ational costs using a simple additive form. This captures the fact that miners purchasing

identical hardware (at identical prices) may nevertheless have different operational costs.

However, our model does not clearly distinguish between the one-time cost of purchasing

hardware, and the ongoing cost of powering it. In practice, fluctuations in Bitcoin and

electricity prices imply the source of the cost matters: if powering equipment is the major

cost, then less efficient miners should use their equipment only when Bitcoin prices are

high, or electricity prices low. If most of the cost is hardware acquisition, then miners

will power their hardware regardless of the Bitcoin price. While modeling and understand-

ing these dynamics is a viable direction for future work, the basic insight that small cost

asymmetries can result in highly centralized mining operations should persist.
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A Examples

A.1 Degenerate Example with Multiple Sales Equilibria

In Section 5.1, we claimed that generically, there is a unique equilibrium where sales occur.

For completeness, we give a non-generic example where the two possible equilibrium prices

are both optimal. To keep calculations simple, we set operational costs equal to zero for

some miners. A similar example in which Miner 1’s profit is maximized at exactly two

prices could be constructed by letting miners have small positive operational costs.

Example 2 (Multiple Sales Equilibria). There are 4 miners. Miners 2, 3, 4 are identical,

with hci = 1 and oci = 0. Miner 1 has hc1 = 0.

If oc1 < 0.6, then there is a unique equilibrium: Miner 1 sells at price 1, c∗ = 1+ 1
3oc1,

and Miner 1 gets a profit of
1− 1

3
oc1+ 4

9
oc21

1+ 2
3
oc1+ 1

9
oc21

.

If oc1 > 0.6, then for any price p ≤ 2
3oc1, Miner 1 stays out of the market, and earns

profit 2/3. This is better than setting a price of p = 1. There are a continuum of equilibria,

but all are payoff equivalent. However, there is no “lowest optimal price.”

If oc1 = 0.6, then there are multiple equilibria that are not payoff equivalent (p = 1, p ≤
0.4). Miner 1 gets a utility of 2/3 in each. When p = 1 we have c∗ = 6/5 and each other

miner gets market share 1/6 and utility 1/36. When p ≤ 0.4 we have c∗ = 3
2p, and each of

miners 2, 3, 4 get utility 1/9.

A.2 Omitted Calculations for Example 1

Recall that Example 1 provides an example where “no sales” is an equilibrium. We verify

these calculations below.

Lemma 3. In Example 1, “no sales” is an equilibrium.

Proof. Consider the price-setting problem facing Miner 1. For p ≥ 1/2, no sales occur. For

p ∈ (1/4, 1/2), the third miner buys hardware and we have c∗(p) = 5/4 + p/2. Miner 1’s

profits are (
c∗ − 1/2

c∗

)2

+
1

c∗
c∗ − (1 + p)

c∗

(
p− 1

8

)
=

34p− 4p2 + 17

2(5 + 2p)2
.

For p ∈ [1/8, 1/4], the second and third miners buy hardware and we have c∗(p) = 9/8 + p.
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Miner 1’s profits are(
c∗ − 1/2

c∗

)2

+
1

c∗
1/2

c∗

(
p− 1

8

)
=

64p2 + 112p+ 21

(9 + 8p)2
.

We can verify that both profit functions are maximized at the right end points, and that

no price is better for Miner 1 than a no sales price of p = 1/2.

We can also check that Miner 2 does not want to sell. As before, at a price p ∈ (1/4, 1/2),

the third miner buys hardware and we have c∗(p) = 5/4 +p/2. Miner 2’s profits (including

revenue) are (
c∗ − 1

c∗

)2

+
1

c∗
c∗ − (1 + p)

c∗

(
p− 1

4

)
=

10p− 4p2

(5 + 2p)2
.

These are maximized at the no sales outcome p = 1/2.

A.3 Necessity of Technical Conditions in Theorem 4

In Theorem 4, bullet two requires at least three active miners. We quickly confirm that this

condition is necessary, by showing that it does not hold with only two active miners. As

previously noted, even when only two miners are active, an inactive miner with sufficiently

low operational costs will still tempt an active miner to deviate. However, “sufficiently

low” will no longer have the clean definition given in Theorem 4.

Example 3 (No Sales with Non-Dominance). Let hardware costs be (0.25, 0.3, 1) and op-

erational costs be (0.75, 0.2, 0.6).

With no sales, effective costs are ~c = (1, 0.5, 1.6), and c∗ = 1.5. By Theorem 1, Miner

1 has market share 1/3 and profit 1/9. Miner 2 has market share 2/3 and profit 4/9.

With sales at a price of 0.25, effective costs are ~c = (1, 0.5, 0.9), and c∗ = 1.2. By

Theorem 1, Mining profits are (4/144, 49/144, 9/144), and sales profit for Miner 1 is 5/6 ·
5/6 · 1/20. Total profit is (9/144, 49/144, 9/144).

Miner 1 prefers the outcome with no sales. Furthermore, one can verify that this is an

equilibrium (even though Miner 3 has lower operational costs that Miner 1).

B Proofs: Section 4

We first prove Lemma 2, then a helper lemma, and then provide a proof of Theorem 1.
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Proof of Lemma 2. For y ≤ mini ci, we have X(y,~c) = 0. Note that X(y,~c) is continuous

and strictly increasing in y on [mini ci,∞), and tends to n as y → ∞. Therefore, there is

a unique solution to X(c∗,~c) = 1. Furthermore, increasing any ci < y strictly decreases

X(y, ci), while increasing any ci ≥ y leaves X(y, ci) unchanged.

Given any second-stage response Q, we let

Qi(p) =
∑
j

Qij(p) (15)

be the total computational power owned by miner i.

Lemma 4. Suppose that Q is a second-stage equilibrium. Then for each i and p,∑
j 6=i

Qj(p) > 0. (16)

xi(Q(p)) = max{1− ci(p)

R

∑
j

Qj(p), 0}. (17)

Proof. We fix p and the values Qj(p) for j 6= i, and consider the optimization problem

facing miner i. To simplify notation, we drop the dependence of Qi, Qj , and ci on p, and

we write miner i’s market share and profit as functions of qi:

xi(qi) =
qi

qi +
∑

j 6=iQj

Ui(qi) = R · xi(qi)− ciqi + ΠS
i (18)

(Note that Miner i’s profit from sales ΠS
i does not depend on qi.)

We first claim that
∑

j 6=iQj > 0. This is because if
∑

j 6=iQj = 0, then xi = I(qi > 0),

and miner i does not have a best response (so in particular, Qi can not be a best response).

Next, note that if
∑

j 6=iQj > 0, then xi is continuous and differentiable in qi, with

x′i(qi) =
1

qi +
∑

j 6=iQj
− qi

(qi +
∑

j 6=iQj)2
=

1− xi(qi)
qi +

∑
j 6=iQj

. (19)

Furthermore, xi is easily shown to be concave, from which it follows that U is concave.

Because i chooses qi ∈ [0,∞), it follows that the maximizer of U satisfies the following
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first-order optimality condition:

U ′i(Qi) ≤ 0, with equality if Qi > 0. (20)

We will show that (18), (19) and (20) jointly imply (17). They imply that for all i,

U ′i(Qi) = R · x′i(Qi)− ci = R · 1− xi(Qi)

Qi +
∑

j 6=iQj
− ci ≤ 0, with equality if Qi > 0.

Therefore if Qi > 0, we must have xi(Qi) = 1 − ci
R

∑
j Qj . Meanwhile, if Qi = 0, then

xi(Qi) = 0 and we must have R− ci
∑

j Qj ≤ 0. In other words, (17) holds.

Proof of Theorem 1. If Q is a second stage equilibrium, then for all p we have

1 =
∑
i

xi(Q(p)) =
∑
i

max(1− ci(p)

R

∑
j

Qj(p), 0) = X(R/
∑
j

Qj(p).

The first equality follows from the definition of xi in (17), the second from Lemma 4, and

the third from the definition of X in (7). Therefore, Lemma 2 implies that

c∗(p) =
R∑

j Qj(p)
.

In other words, (8) holds. From this and Lemma 4, (9) follows: xi(Q(p)) = max
(

1− ci(p)
c∗(p) , 0

)
.

Finally, the definition of ΠM
i in (10) implies that

ΠM
i (p,Q(p)) = R · xi(Q(p))−

∑
j

Qij(p)cij(p)

= R · xi(Q(p))−Qi(p)ci(p)

= R · xi(Q(p))−R · xi(Q(p))

∑
j Qj(p)

R
ci(p)

= R · xi(Q(p))

(
1− ci(p)

c∗(p)

)
= R · xi(Q(p))2.

The second line uses Lemma 1 (miners only source from the lowest cost provider), the third

uses the definition of xi in (17), the fourth uses (8), and the fifth uses Lemma 4.
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We now make two observations that will prove useful in subsequent analysis.

Lemma 5. If Q is a second-stage equilibrium, then Qi is a continuous function of p for

all i. As a result, so are xi(Q(p)) and ΠM
i (Q(p)).

Lemma 6. For any c1, . . . , cn, if we define c∗ as in Lemma 2 and let k =
∑

i 1(ci < c∗)

be the number of miners participating in equilibrium, then (k − 1)c∗ =
∑k

i=1 ci.

This follows from rewriting the equation
∑k

i=1 1− ci/c∗ = 1.

C Proofs: Concentration of Production

Throughout this section, we use Qj(p) as shorthand for
∑

iQji(p), and define

p = p(p) := min
j
{pj}.

Observe that this implies that cj(p) = ocj + min{p(p),hcj} for all j.

C.1 Proof of Theorem 2

Lemma 7. Let Q be a second-stage equilibrium. If there exists a miner i with hci < p(p),

and if any miner purchases from a miner other than i in Q(p) (that is, Qjk > 0 for

k 6∈ {i, j}), then (p,Q) is not an equilibrium.

Proof. We claim that miner i can choose a better price than pi. We note that by the

definition of Ui in (5) and Theorem 1, we have

Ui(p,Q(p)) = R ·max

(
1− ci(p)

c∗(p)
, 0

)2

+ (pi − hci)
∑
j 6=i

Qji(p). (21)

If pi > p, then by Lemma 1, Qji(p) = 0 for all j 6= i, so the second term in (21) is zero.

Because lowering pi to p does not change ci(p) or c∗(p), it does not change the first term

in (21), and may increase the second. Thus, utility Ui is weakly higher than before.

We now show that if the conditions of the Lemma are met, then for sufficiently small

ε, it is strictly better for i to set a price of pi = p − ε than to set a price of p. The point

is that as miner i lowers its price, the loss in miner i’s market share and profit-per-unit

pi − hci move continuously, whereas quantity sold jumps discretely.
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To see this, consider the expression for Ui in (21). Because ci(p) and c∗(p) are continuous

functions of p, the first term (which represents mining profit ΠM
i ) changes continuously

in ε. Any miner j who was previously making a purchase had hcj ≥ p. It follows from

Lemma 1 that if miner i were to set a price pi < p, then all of these miners would source

exclusively from i. We know that at least one of these miners was previously sourcing

elsewhere (Qjk(p) > 0). Because total purchase quantities Qj(p) are continuous in p for all

j by Lemma 5, for all sufficiently small ε Miner i gets a discrete increase in sales, with only

a continuous loss in per-unit profit. Therefore, this deviation is profitable for sufficiently

small ε.

Proof of Theorem 2. We first claim that if (p,Q) is an equilibrium in which sales occur

then the minimum price p must be at most hc2. This is because if sales occur and the

minimum price is above hc2, then by Lemma 7, either Miner 1 or Miner 2 is not best

responding (either one could set a price of p− ε, and capture the entire hardware market).

We next show that if hc1 < hc2, then in every equilibrium (p,Q) in which sales occur,

all hardware is sourced from Miner 1 (that is, Qij(p) = 0 for j ≥ 2). If p1 < hc2, then this

is immediate from Lemma 1 (which states that all miners purchase from the lowest-cost

source) and the fact that Q is a second-stage equilibrium. Meanwhile, if p1 ≥ hc2 and

some hardware is purchased from a miner other than 1, then Lemma 7 establishes that

setting a price p1 just below hc2 would result in higher utility for Miner 1.

Finally, we establish existence of an equilibrium where sales occur. Let pj = hcj for

j ≥ 2, and let Q be a second-stage equilibrium in which all miners tie-break in favor of

Miner 1 when purchasing hardware. Let p1 be Miner 1’s best response to this.

We first note that if Miner 1 sets any price p1 ≤ hc2, then sales will occur. In particular,

this implies that hcj ≥ p1 and cj1(p) ≥ cj(p) for all j 6= 1. Because Q is a second-stage

equilibrium in which miners tiebreak in favor of Miner 1, all hardware will be sourced from

Miner 1. Furthermore, Miner 1 will have positive sales, because Lemma 4 implies that

Qj(p) > 0 for some j 6= 1.

Next, we argue that any price above hc2 is weakly worse than a price of hc2. This is

because ci(p) (and therefore c∗(p)) are the same for any price p1 ≥ hc2, but when p1 = hc2,

Miner 1 gets profit from selling hardware. Therefore, we can restrict attention to prices in

the interval [hc1,hc2].

On this interval, U1(p,Q(p)) is continuous in p1: as argued above, all hardware is

purchased from Miner 1, and by Lemma 5, the quantities c∗(p) and Qj1(p) are continuous
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in p1. Therefore, Mining profit ΠM
i and sales profit ΠS

i are both continuous in p1 on

[hc1,hc2], so U1(p,Q) achieves its supremum over this compact interval. In other words,

there is a best response p1. Furthermore, because p1 ≤ hc2, no miner j ≥ 2 can benefit

from changing its price. This establishes the existence of an equilibrium in which sales

occur.

C.2 Proof of Theorem 3

Proof of Theorem 3. Theorem 2 already establishes that when sales occur, p1 ∈ [hc1,hc2].

Therefore, the claim of Theorem 3 which needs proving is that whenever p1 < hc2, c∗(p) =

hc1 + oc1. Observe that in order to possibly have p1 < hc2, it must be that hc1 < hc2.

Therefore, Theorem 2 already establishes that all hardware is purchased from Miner 1.

Because all hardware is purchased from Miner 1, this means that Miner 1 is active if and

only if c∗(p) > hc1+oc1. So we consider the cases c∗(p) > hc1+oc1 and c∗(p) ≤ hc1+oc1

separately.

We will use throughout both cases that all hardware is purchased from Miner 1 in any

potential equilibrium with p1 < hc2.

We consider potential equilibria with c∗(p) ≤ hc1 +oc1 first. We know from Theorem 1

that the total computational power purchased is 1/c∗(p). Because all hardware is purchased

from Miner 1 (and Miner 1 is inactive), Miner 1’s profit is (p1 − hc1)/c∗(p).

We now expand Miner 1’s profit, and establish that it is increasing in c∗(p). Let A(p)

denote the set of miners i for which oci + p1 < c∗(p) (i.e., the miners who are active at p),

and N(p) := |A(p)|. Then:

∑
i∈A(p)

1− oci + p1

c∗(p)
= 1

⇒
∑

i∈A(p)

(oci + p1) = (N(p)− 1) · c∗(p)

⇒N(p) · p1

c∗(p)
= N(p)− 1−

∑
i∈A(p) oci

c∗(p)

⇒ p1

c∗(p)
= 1− 1

N(p)
−
∑

i∈A(p) oci

N(p) · c∗(p)

⇒p1 − hc1

c∗(p)
= 1− 1

N(p)
−
∑

i∈A(p) oci

N(p) · c∗(p)
− hc1

c∗(p)
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The first line follows as 1 − oci+p1
c∗(p) is Miner i’s fraction of the total purchased power.

The rest follow from algebraic manipulation. Fixing N(p), it is easy to see that the final

expression on the right-hand side is strictly increasing in c∗(p). This means that Miner

1’s profit is maximized with c∗(p) as large as possible, except for possibly discontinuities

in Miner 1’s profit when N(p) changes (e.g. if, for example, Miner 1’s profit dropped

radically when c∗(p) increased and N(p) decreased discretely). However, Miner 1’s profit

is continuous in c∗(p). To see this, simply observe that p1 is continuous in c∗(p), and Miner

1’s profit is p1−hc1
c∗(p) (a continuous function of continuous functions in c∗(p)).28 Therefore,

there are not in fact any discontinuities, and Miner 1’s profit must be maximized when

c∗(p) is as large as possible.

It remains to consider the case where c∗(p) > hc1 + oc1. Observe in this case that

Miner 1 is active, but still that all hardware is purchased from Miner 1 (as p1 < hc2). In

this case, Miner 1 participates, and by Equation (5) their payoff is:

(
1− hc1 + oc1

c∗(p)

)2

+ (p1 − hc1) · hc1 + oc1

(c∗(p))2

We again wish to see how this term behaves for a fixed A(p). To this end, it will be

significantly cleaner to write γ := hc1+oc1
c∗(p) , and optimize with respect to γ. We write p1(γ)

to denote the price Miner 1 must set to induce a particular γ (noting that p1 determines

c∗ which determines γ), and Π(γ) to denote Miner 1’s profit for a particular γ. Observe

first that we can write Miner 1’s profit as:

Π(γ) = (1− γ)2 +
(p1(γ)− hc1) · (hc1 + oc1)

(c∗(p))2

= (1− γ)2 +
γ2(p1(γ)− hc1)

hc1 + oc1

Differentiating with respect to γ, we get:

Π′(γ) = −2(1− γ) + 2γ
p(γ)− hc1

hc1 + oc1
+ γ2 p′(γ)

hc1 + oc1

28If desired, one can also confirm that when c∗(p) is fixed, but N(p) changes, that the final expression
on the right-hand side does not change. To set up the calculations, recall that any miners added/removed
from A(p) must have oci + p1 = c∗(p).
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We now wish to substitute for p′(γ). Observe that (again, fixing A(p)):

1− hc1 + oc1

c∗(p)
+
∑

i∈A(p)

1− oci + p1

c∗(p)
= 1

⇒1− γ +
∑

i∈A(p)

1− γ oci + p1

oc1 + hc1
= 1

⇒− γ +N(p)− γ
∑

i∈A(p)

oci

oc1 + hc1
= γN(p) · p1(γ)

hc1 + oc1

⇒− 1

N(p)
+

1

γ
−
∑

i∈A(p)

oci

N(p) · (oc1 + hc1)
=

p1(γ)

hc1 + oc1

⇒ p′1(γ)

hc1 + oc1
= −1/γ2.

The first line follows as the sum of total mining power must be 1. The remaining lines

substitute the definition of γ and follow from algebraic manipulation. After making this

substitution, we get:

Π′(γ) = −2(1− γ) + 2γ
p(γ)− hc1

hc1 + oc1
− 1

= −3 + 2γ

(
p(γ)− hc1

hc1 + oc1
+ 1

)

= −3 + 2γ

1

γ
− 1

N(p)
−
∑

i∈A(p)

oci

N(p) · (oc1 + hc1)
− hc1

hc1 + oc1
+ 1


= −1 + 2γ

− 1

N(p)
−
∑

i∈A(p)

oci

N(p) · (oc1 + hc1)
− hc1

hc1 + oc1
+ 1


Observe first that, because p(γ) is a continuous function of γ, that Π′(γ) is also a

continuous function of γ (this follows immediately from the first line). From the final line,

it is now easy to see for fixed A(p) that Π′(γ) is either negative for all γ, positive for all γ,

or initially negative and then positive.

Because Π′(γ) is continuous, at the (finitely many) points where N(p) changes, the

derivative cannot change signs, and therefore the derivative over the entire range is (weakly)
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negative and then (weakly) positive, meaning that the optimum must be achieved at the

endpoints. In particular, this means that if the optimal price lies in the interval where

c∗(p) = hc1 + oc1 up to hc2, it must be either at c∗(p) = hc1 + oc1, or at hc2. In

particular this means that if c∗(p) > hc1 + oc1 that it must be that p1 = hc2.

This completes the proof of both cases: if c∗(p) ≤ hc1 + oc1 in the optimal solution,

the first half establishes that we must have c∗(p) = hc1 + oc1. If c∗(p) > hc1 + oc1, the

second half establishes that we must have p1 = hc2. Therefore, if p1 < hc2 in equilibrium,

we must have c∗(p) = hc1 + oc1.

C.3 Proof of Theorem 4

When it is clear from context, we will write ci := ci(p) for the effective cost of miner i in

the second-stage game, and write c̃i := oci + hci to denote the effective cost for player i

when all prices are high (at least hci). We let c∗ = c∗(p) denote the unique solution to

X(c∗, c(p)) = 1, and c̃∗ denote the unique solution to X(c̃∗, c̃) = 1.

We prove Theorem 4 through several lemmas. The outline is as follows:

• One simple possible deviation from the “no sales” strategy profile for a inactive

miner to sell hardware to a active miner. Under no sales, the inactive miner gets zero

utility. But by selling hardware, they get strictly positive utility. Therefore, every

active miner must have (weakly) better hardware cost than every inactive miner in

order for “no sales” to possibly be an equilibrium (Lemma 8).

• A second simple deviation from “no sales” would be for a active miner to sell hardware

to another active miner, without changing c∗. If they can do so without causing a

inactive miner to become active, this is a strictly better response. Therefore, it must

be that any price set by a active miner which is low enough to entice another active

miner to buy their hardware must also entice a inactive miner to become active

(Lemma 9).

• A final deviation from “no sales” would be for a active miner to sell hardware to

a previously inactive miner (changing c∗ in the process). It turns out that, under

the necessary conditions imposed by Lemma 8 and 9, that it is strictly profitable

for active Miner i to cause inactive Miner j to become active whenever oci > ocj

(assuming the necessary conditions implied by the first two bullets), whenever at
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least three miners are active in the “no sales” outcome (Lemma 10). This concludes

the proof of Theorem 4.

• Example 3 demonstrates that Theorem 4 does not extend to the case where the “no

sales” outcome has two active miners. Any necessary and sufficient conditions for

this case are much more technical than the simple dominance condition.

We begin now with Lemma 8, establishing that all active miners must have weakly

better hardware cost in order for “no sales” to possibly be an equilibrium. Throughout

the remainder of this section, we will let A := {i|c̃i < c̃∗} denote the set of active miners

under “no sales,” and I := [n] \A denote the remaining miners.

Lemma 8. If “no sales” is an equilibrium, then either I is empty, or maxi∈A{hci} ≤
mini∈I{hci}.

Proof. Assume for contradiction that I is non-empty, and that there exists j ∈ I, i ∈ A
such that hcj < hci. Consider the deviation where Miner j sets price (hci + hcj)/2.

Under “no sales,” Miner j has zero utility. Under this deviation, Miner i’s effective cost

is strictly lowered, implying by Lemma 2 that c∗(p) is strictly lower than c̃∗. This implies

that some miner must purchase hardware from Miner j, at strictly positive profit to Miner

j. Therefore, Miner j has a strictly profitable deviation, contradicting that “no sales” is

an equilibrium.

We continue with Lemma 9, which considers the possibility of a active miner selling

hardware to another active miner. Observe that Lemma 9 implies that there is some

inactive miner who could profitably mine using any active miner’s hardware.

Lemma 9. If “no sales” is an equilibrium, then at least one of the following occurs:

• hci is the same for all i ∈ A.

• I is non-empty, and maxi∈A{hci}+ mini∈I{oci} < c̃∗.

Proof. Assume for contradiction that neither occurs. Then hci 6= hcj for some i, j ∈ A,

and also either I is empty, or maxi∈A{hci}+ mini∈I{oci} ≥ c̃∗.
Let’s first consider the case that hci < hcj for some i, j ∈ A and I is empty. Then

observe that Miner i can set price maxj∈A{hcj} − ε as a price for arbitrarily small ε.

Because c∗ is a continuous function of pi, for all δ, there exists a sufficiently small ε such
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that Miner i’s mining profit changes by at most δ by setting this price. On the other hand,

the miner j ∈ arg maxj∈A{hcj} must now purchase hardware exclusively from Miner i.

Again, cj is a continuous function of pi so for all δ there is again a sufficiently small ε such

that Miner j purchases at least 1 − c̃j/c̃∗ − δ units of hardware from Miner i at price at

least hcj − δ > hci. Taking all of these together, Miner i can pick a sufficiently small

δ > 0, set ε as a function of δ, and strictly increase their utility. Again, the main idea is

that they get a discrete jump in sales that earn positive, while suffering only a continuous

loss in mining revenue.

Let us next consider the case that hci 6= hcj for some i, j ∈ A, and maxi∈A{hci} +

mini∈I{oci} ≥ c̃∗. Let again j := arg maxj∈A{hcj}, and let i be some miner with hci <

hcj . Miner i will again try to set a price hcj − ε, which is a strictly profitable deviation

unless it causes some inactive miner to enter the market. But if hcj + mini∈I{oci} ≥ c̃∗,

then in fact no inactive miner will enter the market at price hcj . Moreover, even at price

hcj − ε, it is still the case that c∗ changes continuously in pi, and so again for all δ there

exists a sufficiently small ε such that c∗ ≥ c̃∗− δ at price hcj − ε (even taking into account

that this price causes additional miners to join the market, albeit purchasing tiny amounts

of computational power). The analysis from the previous paragraph again holds for the

new revenue achieved by Miner i, so this is again strictly profitable. Again, the main idea

is that the mining revenues change continuously in pi even considering the new miners who

may enter at price < hcj , but there is a discrete jump in revenue from hardware sales.

Finally, we prove Lemma 10, establishing conditions under which a active miner can

strictly benefit by selling hardware to a inactive miner (under the hypotheses imposed by

Lemmas 8 and 9).

Lemma 10. If “no sales” is an equilibrium with |A| ≥ 3, then either I is empty, or

maxi∈A{oci} < mini∈I{oci}.

Proof. By Lemma 9, there are two possible cases for a no-sales equilibrium. First, perhaps

maxi∈A{hci} + mini∈I{oci} < c̃∗. This means that if miner ` ∈ A sets price p` :=

c̃∗ −mini∈I{oci} > hc`, they do not yet set a price low enough to replace the hardware

cost of any miners in A (who are producing some hardware by definition). On the other

hand, this price is just low enough that now at least one miner (say it is a total of k miners)

have cost exactly c̃∗.

Similarly, if hci is the same for all i ∈ A (and I is non-empty), assume for contradiction

that ocj ≤ oci for some i ∈ A, j ∈ I. Then clearly, ocj + hci < c̃∗, as ocj + hci ≤
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oci + hci < c̃∗. Then we draw the same conclusion: any miner ` ∈ A can set price

p` := c̃∗ −mini∈I{oci} > hc`, and this results in a price just low enough that now k ≥ 1

miners have cost exactly c̃∗.

This means that if miner ` were to further slightly lower p` (which is feasible, as

p` > hc`), these miners would choose to purchase non-zero hardware. For simplicity of

notation, denote by oc := mini∈I{oci}, and observe that there exists a sufficiently small

ε > 0 such that for any p` ∈ (c̃∗ − oc− ε, c̃∗ − oc), Miner `’s payoff as a function of p` in

this range is (where c∗ is a function of p`):

U`(p,Q) = (1− c̃`/c∗)2 + k(p` − hc`) · (1−
oc + p`
c∗

)/c∗

= (1− c̃`/c∗)2 + (p` − hc`) · (1−
∑
j∈A

1− c̃j
c∗

)/c∗

= (1− c̃`/c∗)2 + (p` − hc`) · (−(|A| − 1) +
∑
j∈A

c̃j
c∗

)/c∗.

In the second equality, we have used the fact a total quantity of 1/c∗ units of computa-

tional power are purchased, and therefore all units not owned by miners in A are purchased

from Miner ` (and that
∑

j∈A 1− c̃j/c∗ units are owned by miners in A).

We are interested in first taking the derivative with respect to c∗, and then evaluating

the derivative at c∗ = c̃∗, to argue that Miner ` would strictly profit by lowering p` to

induce a c∗ < c̃∗.

∂U`(p,Q)

∂c∗
=

2(1− c̃`/c∗)c̃`
(c∗)2

+
∂p`
∂c∗
· (−(|A| − 1) +

∑
j∈A

c̃j
c∗

)/c∗

+
(|A| − 1)(p` − hc`)

(c∗)2
−

2(p` − hc`)
∑

j∈A c̃j

(c∗)3
.

To evaluate the derivative at c∗ = c̃∗, observe first that (−(|A| − 1) +
∑

j∈A
c̃j
c̃∗ ) = 0.

The reason for this is because exactly miners in A are active in equilibrium at costs c̃, and

therefore they must be responsible for the entire market share (intuitively, it also makes

sense that we should not care about the change in p`, because there are no sales at (p,Q)).

Similarly, observe that the price which induces c∗ = c̃∗ is exactly p` = c̃∗−oc. We will let

∆ := oc`−oc, and observe that now p` = c̃∗−oc`+∆ (and therefore p`−hc` = c̃∗−c̃`+∆.
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So after these substitutions, we get that:

∂U`(p,Q)

∂c∗
(c̃∗) =

2(1− c̃`/c̃∗)c̃`
(c̃∗)2

+
(|A| − 1)(c̃∗ − c̃` + ∆)

(c̃∗)2
−

2(c̃∗ − c̃` + ∆)
∑

j∈A c̃j

(c̃∗)3

=
2(1− c̃`/c̃∗)c̃`

(c̃∗)2
+

(|A| − 1)(c̃∗ − c̃` + ∆)

(c̃∗)2
− 2(c̃∗ − c̃` + ∆)(|A| − 1)c̃∗

(c̃∗)3

=
2(c̃∗ − c̃`)c̃` + (|A| − 1)(c̃∗ − c̃` + ∆)c̃∗ − 2(c̃∗ − c̃` + ∆)(|A| − 1)c̃∗

(c̃∗)3

=
2(c̃∗ − c̃`)c̃` − (c̃∗ − c̃` + ∆)(|A| − 1)c̃∗

(c̃∗)3

=
(c̃∗ − c̃`)

(c̃∗)3
·
(

2c̃` − (|A| − 1)

(
c̃∗ +

c̃∗∆

c̃∗ − c̃`

))
=

(c̃∗ − c̃`)
(c̃∗)3

· (2c̃` − c̃∗(|A| − 1))− ∆(|A| − 1)

(c̃∗)2
.

The first equality uses the definition of c̃∗, which implies that
∑

i∈A(1 − c̃/c̃∗) = 1,

and therefore we can replace
∑

j∈A c̃j with (|A| − 1)c̃∗. The remaining equalities follow

from algebraic manipulation. We now want to conclude with sufficient conditions for this

derivative to be negative (implying that lowering p` by a bit will strictly increase Miner

`’s utility). First, observe that c̃∗ > c̃` because ` ∈ A, so the sign depends entirely on the

term
(

2c̃` − (|A| − 1)(c̃∗ − ∆c̃∗

c̃∗−c̃` )
)

.

We now argue that when |A| ≥ 3 and ∆ ≥ 0 that the term is strictly negative. Indeed,

when |A| ≥ 3, 2c̃` − (|A| − 1)c̃∗ ≤ 2(c̃` − c̃∗) < 0. When δ ≥ 0, ∆(|A|−1)
(c̃∗)2 ≥ 0. Therefore,

∂U`(p,Q)
∂c∗ (c̃∗) < 0, and Miner ` can strictly profit by bringing a inactive miner into the

market.

This completes the proof. To recap the outline: we only needed Lemma 9 to claim

that in any possible instance where “no sales” is an equilibrium, it must be the case that

every active miner ` can bring some inactive miner into the market by setting a sufficiently

low price p` > hc`. Once we have this, we establish that this strategy is indeed strictly

profitable if there is any inactive miner with weakly lower operational cost.

At this point, we conclude the proof of Theorem 4

Proof of Theorem 4. Lemma 8 establishes the first bullet: hci ≤ hcj whenever Miner i is

active and Miner j is not. Lemma 10 establishes the second: oci < ocj whenever Miner i

is active and Miner j is not. Lemma 9 establishes the third bullet.
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