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Abstract. This paper introduces a novel approach for generating probabilistic predictions in random two-

sided matching markets. Unlike prevailing approaches – which often assume a large or continuum of students

matching to each school – this approach generates a cutoff score distribution for each school, which depends

on the capacity of that school. In markets with as few as ten schools and twenty students, this approach

accurately predicts simulation results for the number and quality of matches, and the distribution of school

cutoff scores. Furthermore, the expressions generated by this approach are analytically tractable, making it

possible to explain simulation findings from Marx and Schummer (2021) and extend insights from Ashlagi

et al. (2017) to more general settings.

I introduce a new class of stable matching models, which generalizes classic finite (Gale and Shapley,

1962) and continuum (Azevedo and Leshno, 2016) models, but includes alternatives, including the approach

mentioned above. For any model in this class, stable matchings exist and form a lattice. The key innovation is

the introduction of a “vacancy function” which translates expected interest at each school into the probability

that the school fails to fill its seats. Whereas preceding work assumed a deterministic vacancy function which

predicts admissions probabilities in {0, 1}, the predictions discussed above use a vacancy function which

assumes that interest in each school should follow a Poisson distribution, enabling predicted assignment

probabilities in the full interval [0, 1].

1. Introduction

Ever since Gale and Shapley (1962) defined stability in two-sided matching markets, the topic has gen-

erated a great deal of interest from academics and practitioners alike: their paper has over 8,000 citations,

and variants of their deferred acceptance algorithm are used to assign medical residencies in the United

States and public school seats in cities across the globe. These developments prompted the award of the

2012 Nobel Prize to Alvin Roth and Lloyd Shapley “for the theory of stable allocations and the practice of

market design.”

Despite this attention, the relationship between market primitives and the set of stable outcomes remains

poorly understood. For example, Dur et al. (2018) demonstrated that a walk zone compromise in Boston

which had been in place for a decade had almost no effect! In New York, policymakers collected preferences

before finalizing tiebreaking rules, in order to simulate and compare several alternatives (Abdulkadiroglu

et al., 2009). The Brookings institution highlights the difficulty of anticipating final outcomes as a key

challenge facing school choice initiatives:
1
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Even if DA [Deferred Acceptance] algorithms are relatively simple, predicting how student

assignment policies will affect enrollment and outcomes is difficult... This creates challenges

for policymakers to assess a priori how policy decisions will affect students and schools – and

creates potential for unintended negative consequences.

(Kasman and Valant, 2019)

These challenges are not limited to policymakers in complex environments. They arise even in highly

stylized matching environments considered by academic researchers, as the following example shows.

Example 1. There are n students and n schools, each with a single seat.

Each student lists ` < n uniformly random schools (in a uniformly random order).

Schools assign each student independent U [0, 1] lottery numbers (higher is better).

Related examples were first proposed by Wilson (1972); Knuth (1976); Pittel (1989), and have been

studied by several subsequent papers. I pose the following questions.

I. What fraction of students will match to some school on their list?

II. Given a student’s priority at a particular school, what is her chance of being admitted?

III. How do answers change if priorities are determined differently?

Each of these questions is of interest to some stakeholder. The first addresses an aggregate statistic which

might be reported by the media or elected officials. The second is salient to students and their parents. The

third is relevant to administrators who set prioritization policies.

Section A explains in detail why previous models of stable matching fail to adequately address these

questions. In summary, past work can be grouped into three categories: models of finite random markets,

models with a continuum of participants on both sides, and models with a continuum of students matching

to a finite number of schools.

• Finite Number of Students and Schools. Complex interactions between individual participants

make it difficult to precisely analyze outcomes. As a result, past work imposes strong assumptions

on preferences and priorities (like those in Example 1). Even so, it only provides loose bounds on

the number of unassigned students.

• Continuum of Students and Schools. These models either assume a finite number of agent

types (with a continuum of identical agents of each type) or embed types in a topological space,

with agents who are “close” in this space having similar preferences and desirability to the other

side. Both cases rule out idiosyncratic preference shocks, which are present in Example 1 and many

econometric matching models.
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• Continuum of Students, Finitely Many Schools. These models can accommodate very general

preferences and priorities. However, their predictions are only accurate when schools have large

capacities, so that demand for each school is predictable. By predicting a deterministic outcome for

each student, this approach fails to capture the inherent uncertainty in markets with small capacities.

For example, when the model of Azevedo and Leshno (2016) is applied to Example 1, it predicts

that every student matches to her first choice, regardless of how priorities are determined. This

is clearly incorrect, as a simple balls-in-bins argument establishes that with high probability, only

approximately 1− 1/e ≈ 63% of schools are listed as the first choice of some student.

Recent work by Arnosti (2022) answers the first two questions above by establishing limiting equations that

describe outcomes in finite markets with many students and schools. That paper provides sharper results

than prior work (for example, it calculates the exact fraction of students who remain unassigned in the

limit), in a more general model (for example, the schools on students’ lists need not be sampled uniformly).

Fundamentally, however, the challenges of analyzing outcomes in finite markets remain, and force Arnosti

(2022) to maintain two important assumptions from prior work. First, the schools on each student’s list

are sampled without replacement from a fixed distribution over schools, implying that the top schools on

a student’s list provide almost no information about the identity of the remaining schools. Second, school

priorities come either from independent uniform lotteries or a single lottery that applies across all schools.

1.1. Summary of Contributions.

The preceding discussion illustrates the difficulty of addressing fundamental questions about even rela-

tively simple matching environments. This paper presents a new approach which can be used to generate

individual-level probabilistic predictions in random matching markets with arbitrary preferences, priorities,

and capacities. The resulting expressions are analytically tractable and offer answers to the three questions

above, as well as other insights about aggregate match outcomes. I now elaborate on these contributions.

Unifying Framework. I provide a definition of stability that depends (naturally) on school capacities

and the joint distribution of preferences and priorities, as well as (much more novelly) on a “vacancy func-

tion.” The vacancy function takes as arguments the capacity of a school and the expected demand at that

school, and generates a value in [0, 1] which can be interpreted as the probability that the school will have

a vacancy.

I show that using a deterministic vacancy function (whose output is always 0 or 1) recovers the traditional

definition of stability from Gale and Shapley (1962) (Proposition 3) as well as the definition from the

continuum model of Azevedo and Leshno (2016) (Proposition 4). I also show that well-known properties of

stable matchings continue to hold for general vacancy functions. In particular, the set of stable matchings

forms a non-empty lattice (Theorem 1), and the “Rural Hospital Theorem” holds so long as there are no
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ties in priority (Theorem 2). Finally, I establish that there is a unique stable matching so long as the

probability of a vacancy decreases strictly as expected demand increases (Theorem 3). This uniqueness

result is complementary to that of Azevedo and Leshno (2016), and helps to explain the small core observed

empirically by Roth and Peranson (1999), and theoretically by Immorlica and Mahdian (2005), Kojima and

Pathak (2009), and Ashlagi et al. (2017).

Probabilistic Predictions. One of the most novel and intriguing aspects of this framework is its ability

to generate individual-level probabilistic predictions through the use of non-deterministic vacancy functions.

By contrast, existing continuum models do not incorporate individual uncertainty: the model of Azevedo

and Leshno (2016) predicts a deterministic assignment for each student, and Greinecker and Kah (2021)

note that “there is nothing random about a matching in our distributional model: the underlying matching

of agents is deterministic.”

Using a vacancy function motivated by the assumption that demand at each school follows a Poisson

distribution, I generate numerical predictions that closely match simulation results. Figure 1 shows that this

approach accurately predicts the distribution of school cutoff scores in markets with as few as 20 students

and 10 schools, where school priorities are positively (but imperfectly) correlated. As capacities grow, the

predicted distributions concentrate around the cutoff predicted by Azevedo and Leshno (2016).

This model also generates predictions about aggregate outcomes. Figure 2 demonstrates that the model

predicts the striking finding of Ashlagi et al. (2017) that students’ average rank sharply increases as the

market transitions from having a slight surplus of seats to a slight shortage. Figure 5 shows that the model

accurately predicts the difference between the number of matches when using two different priority rules, by

comparing to simulation results from Marx and Schummer (2021). Meanwhile, the model of Azevedo and

Leshno (2016) predicts that these priority rules should result in the same number of matches.

Analytical Insights. Finally, the Poisson vacancy function can be used to derive analytical insights.

Under the assumptions imposed by Arnosti (2022), the Poisson vacancy function results in equations that

coincide with the limiting expressions established by his Theorem 1. Arnosti (2022) uses these expressions

to derive insights about the number of unmatched students. In this paper, I show that these expressions can

also be used to reproduce and generalize insights about students’ average rank from Ashlagi et al. (2017).

Specifically, when there is an excess of school seats I provide an upper bound which matches that of Ashlagi

et al. (2017) when each school has a single seat (Corollary 1), and generalizes this bound to cases where

schools have multiple seats (Proposition 1). Proposition 2 and Corollary 2 provide analogous bounds for the

case when there are more students than seats.

Section A provides an overview of existing papers on stable matching in large and/or continuum markets,

and explains why they cannot answer the questions posed above for Example 1. Section 2 introduces the
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FIG. 4.—Speed of convergence. The figure depicts statistics of student-optimal stable matchings in 1,000 simulations for each market size, with the
distribution of preferences as in the text. The top panels display the fraction Gk of students who receive different matches in the discrete economy, with
lines corresponding to the mean, 5th, and 95th percentiles across simulations. The bottom panels report cutoffs, with lines representing the mean, 5th,
and 95th percentiles, across all colleges and simulations. The dashed line represents the continuum cutoffs. Capacity per college, in the horizontal axes, is
depicted in a log scale.
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Figure 1. The distribution of “cutoff scores” required for admission in a class of examples considered by
Azevedo and Leshno (2016). In all scenarios, there are twice as many students as seats, students submit
complete lists drawn uniformly at random, and schools’ priority scores are imperfectly correlated: they
consist of the average of the student’s quality (drawn uniformly on [0, 1]) and iid student-school terms (also
drawn uniformly on [0, 1]). This correlation renders direct analysis of the finite random market intractable.
In the first column there are ten schools, in the second there are 100, and in the third there are 500. The
x-axis denotes the number of seats per school, which ranges from 1 to 200.
The bottom row displays simulation results reported by Azevedo and Leshno (2016): the blue line shows the
average cutoff score, with the red lines representing the 5th and 95th percentile of the empirical distribution.
Their model predicts a deterministic cutoff score, shown by the black dotted line. This prediction does not
depend on the number of seats at each school, and does not capture the uncertainty in cutoffs, which is
significant unless capacities are large. By contrast, my model can be used to predict the distribution of
cutoff scores, and captures the fact that there is greater uncertainty in markets with smaller capacities. The
top column shows the average, 5th percentile and 95th percentile of the predicted distribution.
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ing that theorem2 gives a good approximation for smallmarkets and that
the advantage of the short side persists under correlated preferences.

E. Special Cases: Small and Large Imbalances

To highlight two particular cases of interest, we present the following two
immediate corollaries. We first focus on markets with minimal imbal-
ance, where there is only one extra woman.
Corollary 1. Consider a sequence of randommatchingmarkets with

nmen and n1 1 women. Fix any ε > 0. With high probability, in every sta-
blematching, themen’s average rank of wives is nomore than ð1 1 εÞ log n,
the women’s average rank of husbands is at least n=ð1 1 εÞ log n, and the
fractions of men and women who have multiple stable partners are each
no more than ε.
The next case of interest is a randommatching market with a large im-

balance, taking k 5 ln for fixed l.
Corollary 2. For l > 0, consider a sequence of random matching

markets with jMj 5 n, jWj 5 ð1 1 lÞn. Fix any ε > 0. Define the constant
k 5 ð1 1 εÞð1 1 lÞlogð1 1 1=lÞ. We have that with high probability, in
every stable matching, the men’s average rank of wives is at most k, the
women’s average rank of husbands is at least n=ð1 1 kÞ, and the fractions
of men and women who have multiple stable partners are each no more
than ε.

FIG. 2.—Men’s average rank of wives under MOSM and WOSM in randommarkets with
40 women and a varying number of men. The lines indicate the average over 10,000 real-
izations.
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Figure 2. Students’ average rank for their assigned school. In this market, there are 40 schools, each with
a single seat. The number of students is given along the x axis, and both student preferences and school
priorities are drawn iid and uniformly at random. The left panel shows simulation results from Ashlagi et al.
(2017) demonstrating that (i) the difference between the school-optimal and student-optimal stable match
is typically small, and (ii) in a balanced market (highlighted in gray), adding or removing one student has a
dramatic effect. Our proposed model of stable matching generates a unique prediction (right), which closely
matches the simulations and captures the dramatic effect of additional students in nearly-balanced markets.
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model. Section 3 presents results for general vacancy functions, and shows that with a deterministic vacancy

function, my definition of stability coincides with those of prior work. Section 4 presents results when using

the Poisson vacancy function.

2. Model

There is a finite set of high schools H. School h ∈ H has capacity Ch ∈ N. Let H0 = H ∪ {∅} denote the

set of schools along with the outside option of going unassigned, and define C∅ = ∞. Let R be the set of

complete orders over H0. There is no restriction on the number of acceptable schools for each student (i.e.

the number of schools preferred to the outside option ∅), and the order of schools ranked below ∅ will be

irrelevant.

Students are characterized by their type θ = (�θ,pθ), where �θ∈ R indicates the student’s preferences

and pθ ∈ [0, 1]H indicates the student’s priority score at school h (higher is better). Let Θ = R × [0, 1]H

denote the space of student types. Students are distributed according to a positive finite measure η over Θ.

A fractional matching is a function M mapping each θ ∈ Θ to a probability distribution on H0. For each

h ∈ H0 and θ ∈ Θ, the quantity Mh(θ) can be interpreted as the probability that a student of type θ is

assigned to h. Hereafter, I use “matching” to mean a fractional matching, and denote the space of matchings

by M.

I now define what it means for a matching to be stable. This definition uses two auxiliary concepts, which

are based on the perspective of individual agents. What matters to each student is the set of schools that

admit them. What matters to a school is the set of students who are “interested,” meaning that they would

attend if admitted. In my model, these are described by

• An admissions function A : [0, 1]→ [0, 1]H0 .

• An interest function I : [0, 1]→ RH0
+ .

Given h ∈ H and p ∈ [0, 1], Ah(p) can be interpreted as the probability that a student with priority p at

h will be admitted, while Ih(p) can be interpreted as the expected number of students whose priority at

h exceeds p, and who are “interested” in h, meaning that they weakly prefer h to their assigned school.

Given these interpretations, it is natural that Ah should be increasing and Ih should be decreasing. Let A

denote the set of componentwise weakly increasing functions from [0, 1] to [0, 1]H0 , and let I denote the set

of componentwise weakly decreasing functions from [0, 1] to RH0
+ .

Next, I define consistency conditions that link a matching M to school interest I and student admissions

decisions A. Formally, I define maps I : M→ I, A : I→ A and M : A→M, and define a stable matching

as a fixed point of the composition of these maps. This approach is illustrated in Figure 3.
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Although this definition may seem unfamiliar, it subsumes existing ones. Section B.1 shows that for a

particular choice of η and V, Definition 1 is equivalent to the absence of blocking pairs in a finite market.

Section B.2 shows that when η is changed to a continuous measure, any matching that is stable according

to Definition 1 is associated with a set of market-clearing cutoffs, and vice versa.

2.1. Matching to Interest. Given any matching M ∈M, define I(M) ∈ I to be the interest function IM

such that for each h ∈ H0 and p ∈ [0, 1],

(1) IMh (p) =

∫
1(pθh ≥ p)(1−

∑
h′�θh

Mθ
h′) dη(θ).

Note that the sum in (1) gives the probability under matching M that student type θ matches to a school

preferred to h, so the interpretation of (1) is that students are interested in h if they are not matched to any

preferred school. The indicator ensures that the only students contributing to IMh (p) are those with priority

above p at h, allowing us to interpret IMh (p) as the expected number of students with priority above p who

are interested in h.

2.2. Interest to Admissions. The interest function I describes expected interest at each school h ∈ H and

priority level p ∈ [0, 1]. From this, I will determine an admissions function A : [0, 1]→ [0, 1]H, where Ah(p)

is interpreted as the probability that a student with priority p at h will be admitted to h (equivalently, the

probability that school h has a final cutoff below p). I define A using a vacancy function V : R+×N→ [0, 1].

Formally, let A(I) be the admissions function AI ∈ A that satisfies, for each h ∈ H and p ∈ [0, 1],

(2) AIh(p) = V(Ih(p), Ch).

Define AI∅(p) = 1 for all p ∈ [0, 1] (students are always admitted to the outside option).

The choice of vacancy function is an important feature of the model, and one of the key innovations

in this paper. The quantity V(λ,C) is interpreted as the probability that when expected interest is equal

Three Ways to Describe an Outcome
Fractional Matching 
𝑀 ∶ Θ → 0,1 ℋ

Interest Function
I ∶ [0,1] → ℝ!ℋ
(School perspective)

Admissions Function
A ∶ [0,1] → 0,1 ℋ

(Student perspective)

“What are my 
chances of 
getting in?”

“For any cutoff, how many 
students are expected to be 
interested in attending?”

“How likely is 𝜃 to 
match to each school?”

ℐℳ

𝒜 Depends on 𝒱

Depends on 𝜂
Assumes 
Independence

Admissions function A is 𝜂, 𝒱 -stable if 𝐴 = 𝒜(ℐ ℳ 𝐴 ).

Figure 3. I present three ways to describe a random outcome, each of which is most
relevant to different stakeholders. I present functions that link these descriptions, and
define an outcome to be stable if it is a fixed points of the composition of these functions.
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to λ, realized interest will be below C. Thus, if schools consider students in descending order of priority,

V(Ih(p), Ch) gives the probability that school h will still have at least one vacancy when it considers a student

with priority p.

One natural choice of vacancy function is

(3) Vdet(λ,C) = 1(λ < C) ∀λ ∈ R+, C ∈ N,

In other words, realized interest is deterministically equal to expected interest, and there is still a vacancy if

and only if expected interest is below the school’s capacity. This choice produces a deterministic prediction

for each student type θ and each school h. Sections B.1 and B.2 show that this choice of vacancy function

recovers the definition of stability in a finite market from Gale and Shapley (1962), as well as that used by

Azevedo and Leshno (2016).

One limitation of the deterministic vacancy function is that its predicted admissions probabilities are

always zero or one. In a random matching market, there is uncertainty about where each student will

be admitted. To capture this uncertainty, Section 4 uses an alternative choice of vacancy function, which

assumes that when expected interest equals λ, realized interest follows a Poisson distribution with mean λ.

2.3. Admissions to Matching. Recall that an admissions function A describes the probability that a

student of any given priority p ∈ [0, 1] will be admitted to each school. From this, I construct an associated

fractional matching M(A) = MA given by

(4) MA
h (θ) = Ah(pθh)

∏
h′�θh

(1−Ah′(p
θ
h′)).

This says that a student matches to h if and only if she is admitted to h and not to any preferred school. Note

that this formula implicitly assumes independence of admissions outcomes across schools. A straightforward

inductive argument implies that for any A ∈ A, θ ∈ Θ and h ∈ H0,

(5) 1−
∑
h′�θh

MA
h′(θ) =

∏
h′�θh

(1−Ah′(p
θ
h′)),

with both sides interpreted to be 1 if h is the first choice of θ.

2.4. Definition of Stability. The economy E = (H, C, η) determines student preferences and priorities as

well as school capacities. An additional key feature of the model is the vacancy function V. Note that η

determines the function I : M → I, while V and C determine the function A : I → A. I use the following

definition of stability.

Definition 1. Matching M ∈M is (E ,V)-stable if M =M(A(I(M))).

Admissions function A ∈ A is (E ,V)-stable if A = A(I(M(A))).

Interest function I ∈ I is (E ,V)-stable if I = I(M(A(I))).

Outcome (M, I,A) ∈M× I× A is (E ,V)-stable if M =M(A), I = I(M), and A = A(I).
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Definition 1 makes it clear that there is a one-to-one correspondence between stable matchings, stable

admissions functions, stable interest functions, and stable outcomes. I include each of these definitions

because it is sometimes most convenient to work with stable matchings, and at other times simpler to work

with stable interest functions or stable outcomes.

Our definition of stability in Definition 1 may seem strange to those familiar with more traditional def-

initions based on the absence of blocking pairs, or cutoffs that clear the market. It more closely resembles

fixed-point characterizations of stable matchings by Adachi (2000), Fleiner (2003), and Echenique (2004).

Appendix B establishes that when using the deterministic vacancy function Vdet from (3), our definition

encompasses more traditional definitions (absence of blocking pairs in finite markets and market-clearing

cutoffs in markets with a continuum of students) as special cases.

3. Results for General Vacancy Functions

This section establishes that for any η and V, several classic results hold: the set of stable matchings is a

non-empty lattice, the extreme points of this lattice can be found using the deferred acceptance algorithm,

and the rural hospital theorem applies. Finally, if η has strict priorities and V is strictly decreasing, there is

a unique stable matching.

3.1. Existence and Lattice Structure. Having established that when V = Vdet, our definition of stability

nests existing definitions, we now prove results for general type measures η and vacancy functions V. The

first of these results shows that stable matchings always exist and form a lattice. To state this result, we

define the following partial orders:

• M �M M̃ if for each h ∈ H0 and θ ∈ Θ,

∑
h′�θh

Mh′(θ) ≥
∑
h′�θh

M̃h′(θ).

That is, M �M M̃ if each student prefers M to M̃ in the sense of first-order stochastic dominance.

• A �A Ã if for each h ∈ H0 and p ∈ [0, 1], Ah(p) ≥ Ãh(p).

That is, A �A Ã if admissions probabilities are uniformly higher under A.

• I �I Ĩ if for each h ∈ H0 and p ∈ [0, 1], Ih(p) ≥ Ĩh(p).

That is, I �I Ĩ if each school receives more interest at every cutoff under I.

• (M,A, I) � (M̃, Ã, Ĩ) if M �M M̃ , A �A Ã, and Ĩ �I I.

Theorem 1 (Existence and Lattice Structure). If the vacancy function V is weakly decreasing in its first

argument, then for any (H,C, η), the set of (E ,V)-stable outcomes is non-empty, and forms complete lattice

with partial order �.
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Proof of Theorem 1. Define the function ξ : M→M by

(6) ξ(M) =M(A(I(M))).

Note that

• By (1), M̃ �M M implies I(M) �I I(M̃).

• By (2) and monotonicity of V, I �I Ĩ implies A(Ĩ) �A A(I).

• By (4), Ã �A A implies M(Ã) �MM(A).

From this, we draw two conclusions. First, if (M, I,A) and (M̃, Ĩ, Ã) are stable outcomes, then (M, I,A) �

(M̃, Ĩ, Ã) if and only if M �M M̃ . Second, the function ξ is an order preserving function, so Tarski’s fixed

point theorem implies that the set of fixed points of ξ (that is, the set of stable matchings) forms a complete

lattice with respect to �M (and in particular is non-empty). �

3.2. Deferred Acceptance Algorithm. Theorem 1 establishes the existence of stable outcomes, but does

not address how to find them. However, the proof suggests a natural procedure: start from a matching M

and repeatedly apply the function ξ defined by ξ(M) = M(A(I(M))). If one starts from the matching M

which assigns each student to her most preferred school, then this procedure corresponds to the student-

proposing deferred acceptance algorithm, and converges to the student-optimal stable matching. To see that

it converges, note that ξ(M) �M M , from which the fact that ξ is order-preserving implies that the sequence

{ξk(M)}∞k=0 is decreasing. Therefore, it converges by completeness of M. Conversely, repeatedly applying ξ

from the student-pessimal matching M (defined by M∅(θ) = 1 for all θ) produces an increasing sequence of

matchings that converges to the school-optimal stable matching.

Because of the correspondence between stable matchings, stable interest functions, and stable admissions

functions, it is also possible to apply an analogous iterative process using the admissions function as the

primitive of interest. In that case, one could start from Ah(p) = 1 for all h and p (resulting in convergence

to the student-optimal stable matching) or Ah(p) = 0 for all h and p (resulting in convergence to the

student-pessimal stable matching).

Although convergence is guaranteed, in general it does not occur in finitely many steps. In examples that

I have tried, convergence happens quickly enough that this algorithm can be applied fruitfully. The main

practical challenge is computing I(M), which requires taking an integral over student types. Although this

may be challenging for arbitrary measures η, it is tractable for many cases of interest.

3.3. Rural Hospital Theorem. I now establish a “rural hospital theorem,” which states that for any two

stable matchings, each student’s probability of assignment and each school’s measure of matched students is

identical. This is a generalization of the result for finite markets proved by McVitie and Wilson (1970) and

Roth (1986).
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Theorem 2 (Rural Hospital Theorem). If η has strict priorities and V is weakly decreasing in its first

argument, then the set of matched agents is identical across stable outcomes: if (M, I,A) and (M̃, Ĩ, Ã) are

(E ,V)-stable outcomes, then for each h ∈ H0,

(7)

∫
Mh(θ)dη(θ) =

∫
M̃h(θ)dη(θ),

and for each θ ∈ Θ outside of a set of η-measure zero,

(8)
∑
h�θ∅

Mh(θ) =
∑
h�θ∅

M̃h(θ).

In contrast to the existence result in Theorem 1, Theorem 2 requires an assumption of strict priorities.

This assumption is essential for the result to hold.1 The failure of the rural hospital theorem when there are

ties in priority is not specific to my definition of stability: in finite markets with indifferences, it is known

that strongly stable matchings may not exist (Irving, 1994), and weakly stable ones may not satisfy the rural

hospital theorem (Manlove, 1999).

3.4. Uniqueness. Finally, I establish conditions under which there is a unique stable outcome.

Theorem 3 (Uniqueness). If η has strict priorities and V is strictly decreasing in its first argument, then

there is a unique (E ,V)-stable outcome.

The intuition underlying this result is as follows. By Theorem 1, there are student-optimal and student-

pessimal stable admissions functions A and Ã, with A � Ã. It follows that all students will be weakly more

likely to match under A. If V is strictly decreasing, then A � Ã implies that some students will be strictly

more likely to match under Ã. This contradicts the rural hospital theorem, implying that we must have

A = Ã. The complete proof is provided in Appendix C.3.

If V is only weakly decreasing, it is possible that there are multiple stable matchings that lead to different

outcomes for a positive η-measure of students: see Azevedo and Leshno (2016) for an example with V = Vdet.

However, their Theorem 1 shows that even in this case, there is typically a unique stable matching: this

holds if η has full support, or for a generic set of school capacities.

4. Results for the Poisson Vacancy Function

Theorems 1, 2, 3 present results for general vacancy functions. The “secret sauce” of my alternative

approach is to use a different vacancy function which produces probabilistic predictions.

1To see that the conclusion of Theorem 2 may fail to hold if η does not have strict priorities, consider an example with two

schools, A and B, each with a single seat. The measure η corresponds to a finite market with three students, x, y, z. Students
x and y prefer A to B, while student z prefers B to A. Student x has priority 1/4 at school A and 3/4 at school B. Student y

has priority 1/4 at school A and 2/4 at school B. Student z has priority 3/4 at school A and 1/4 at school B.
We claim that there are two (E,Vdet)-stable matchings, and that y is assigned in one and unassigned in the other. In the

school-optimal stable matching, x goes to B, z goes to A, and y is unassigned. In the student-optimal stable matching, x and

y go to A, and z goes to B. Note that the student-optimal stable matching is infeasible (two students are assigned to A).
This illustrates that our definition of stability (which was intended for markets with strict priorities) does not enforce capacity

constraints in markets with ties.
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My goal is to predict outcomes in a random market with n students whose types are sampled iid from

a probability measure η̃ over Θ. For example, given a student who knows her own type but not the types

of others, I wish to predict the student’s interim probability of being assigned to each school on her list.

Which vacancy function should be used? This section proposes vacancy functions motivated by the Binomial

and Poisson distributions, and shows that the resulting expressions can be used to reproduce and generalize

insights from Ashlagi et al. (2017).

To motivate the Binomial and Poisson distributions, consider first how we could use the model of Azevedo

and Leshno (2016) to generate a prediction. If we define the measure η by η(S) = nη̃(S) and use a

deterministic vacancy function, we get their predicted cutoffs for each school. These cutoffs partition the

student type space. Let Θh(P ) denote the set of types that are assigned to h when cutoffs are P . That is,

Θh(P ) consists of students with priority above Ph at h, and priority below Ph′ at every h′ that they prefer

to h.

Note that when student types are sampled iid, the number of students with a type in Θh(P ) will follow

a Binomial distribution with parameters n and η̃(Θh(P )). If expected demand for h is λ = nη̃(Θh(P )) and

capacity is C, the probability that demand will be less than capacity (that is, the probability that h will

have a vacancy) is

(9) Vbin(λ,C) =

C−1∑
k=0

(
n

k

)(
λ

n

)k (
1− λ

n

)n−k
.

The uncertainty in realized demand will translate to uncertainty in h’s cutoff score. Although Azevedo and

Leshno (2016) generate binary predictions, the true admissions probabilities should vary continuously: a

student whose priority is a bit above the predicted cutoff score is not assured a spot, and one with priority

below the predicted cutoff still has a chance of admission.

This fact could be captured by using the binomial vacancy function in (9) rather than the deterministic

vacancy function in (3). If the number of students n is large relative to the demand at each school λ, then the

Binomial distribution is well-approximated by a Poisson distribution, inspiring the following slightly simpler

vacancy function:

(10) Vpois(λ,C) =

C−1∑
k=0

e−λλk

k!
.

The remainder of this section presents predictions when using the vacancy function Vpois.

In the limit as the number of students and the capacity of each school grow, the predictions of this new

model converge to those of Azevedo and Leshno (2016). This is because Poisson random variables with large

means are highly concentrated. The advantage of my model is not in this limit, but rather lies in its ability

to generate probabilistic predictions for markets where capacities are modest and cutoffs are uncertain.



PROBABILISTIC PREDICTIONS FOR TWO-SIDED MATCHING MARKETS 13

I will use this model to generate predictions about two quantities of interest: the number of matched

students and the average rank of matched students (both defined formally below). I compare these predictions

to existing analytical and simulation results for finite markets. To predict outcomes from random finite

markets with n students whose types are drawn drawn iid from a probability distribution η̃ on Θ, I define

the measure η by η(Θ̃) = nη̃(Θ̃) for all Θ̃ ⊆ Θ, and study (E ,Vpois)-stable matchings.

Section 4.1 provides results for students’ average rank, using the results of Ashlagi et al. (2017) as the

primary comparison. Section 4.2 provides results for the number of matches, and compares against findings

from Marx and Schummer (2021). In both cases, the model with a Poisson vacancy function accurately

predicts simulation results for finite markets of moderate size. In addition, this model provides new analytical

expressions and insights, described in more detail below.

4.1. Average Rank. I now present results on students’ average rank, and compare to simulations and

numerical bounds from Ashlagi et al. (2017). Denote θ’s rank of h ∈ H by

Rh(θ) = |{h′ ∈ H0 : h′ �θ h}|

and define

(11) AverageRank(M) =

∫ ∑
h∈HMh(θ)Rh(θ)dη(θ)∫ ∑

h∈HMh(θ)dη(θ)
.

Ashlagi et al. (2017) simulate outcomes in finite markets with 40 schools, each with a single seat, and a

varying number of students. Each student ranks all 40 schools in a uniformly random order, and priorities

are iid uniform across schools. To generate predictions for this market, I take η to be a uniform measure over

complete preference profiles with η(Θ) equal to the total number of students, and use the Poisson vacancy

function Vpois.

There are several reasons that the model’s predictions might not match the simulation results. First,

Theorem 3 implies that the model generates a unique prediction, whereas finite markets may have multiple

stable matchings. Thus, the “prediction error” must at least be comparable to the variation across stable

matchings. Second, the assumption of independent outcomes across schools introduces error: when the

number of students is below 40, every student in the finite market must match, whereas our model predicts

that each student has a positive (albeit small) probability of going unassigned.

Despite these concerns, the model’s predictions are excellent. Figure 2 displays simulations from Ashlagi

et al. (2017) alongside model predictions. The curves do not merely appear qualitatively similar, they also

match quantitatively. To emphasize this point, I reproduce their Table 1 in Figure 4. In their simulations, the

average rank of students differs by at most 2% between student-optimal and school-optimal stable matches.

My model’s predictions always lie in this interval.



14 NICK ARNOSTI, UNIVERSITY OF MINNESOTA

! = ℋ + %& 100 200 500 1000 2000 5000
Student-Optimal 29.5 53.6 115.8 203.8 364.5 793.1
School-Optimal 30.1 54.7 118.0 207.5 370.8 804.7
AKL Bound 25.3 45.7 98.2 175.2 314.6 690.5
Model Prediction 29.6 53.9 115.8 205.5 366.1 793.4

Figure 4. A reproduction of the first column of Table 1 from Ashlagi et al. (2017), alongside my model
predictions. Each column corresponds to a different market size, an there are always 10 more students than
schools. The first two rows show the (simulated) average rank under the student optimal and school optimal
stable matches, which differ by at most 2%. The third row shows lower bounds from Ashlagi et al. (2017),
which underestimate the average rank by approximately 15%. The final row shows my model’s predictions,
which always lie between the simulation results for the extremal stable matchings.

In addition to providing excellent quantitative predictions, my model can be used to derive analytical

insights. I illustrate the point by providing analytical bounds on students’ average rank. Figure 2 makes it

clear that the behavior of the market is very different depending on whether the number of students is less

or greater than the number of seats. Accordingly, the analysis will consider these cases separately. Define ρ

to be the ratio of students to schools:

(12) ρ = η(Θ)/|H|,

and let C denote the (common) capacity at each school. I analyze the case with more seats (ρ < C) in

Section 4.1.1, and the case with more students (ρ > C) in Section 4.1.2.

I focus on two special cases considered by Ashlagi et al. (2017): independent lotteries across schools (“IID

markets”) and a single lottery used by all schools (“RSD markets”).

Definition 2. The measure η describes a symmetric IID market if (i) the restriction of �θ to H is

uniformly distributed, and (ii) for each �∈ R, the conditional distribution of pθ given �θ=� is uniform on

[0, 1]H.

The measure η describes a symmetric RSD market if (i) the restriction of �θ to H is uniformly

distributed, and (ii) for each �θ∈ R, the conditional distribution of pθ given �θ=� is uniform on {θ : pθh =

pθh′ for all h, h′ ∈ H}.

4.1.1. More Seats than Students. Define

(13) Enrollment(λ,C) =

∫ λ

0

Vpois(x,C)dx,

and note that the definition of Vpois in (10) implies that for any C ∈ N,

(14)

∫ ∞
0

Vpois(λ,C) = C.
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For any ρ < C, define Λ(ρ, C) by the equation

Enrollment(Λ(ρ, C), C) = ρ.

Proposition 1. Fix C ∈ N, and let Ch = C for all h ∈ H. Let ηIID describe a symmetric iid market, and

let M IID be the unique (ηIID,Vpois)-stable matching guaranteed by Theorem 3. If there are more seats than

students (ρ < C), then

AverageRank(M IID) ≤ Λ(ρ, C)/ρ.

To clarify the relationship with results from Ashlagi et al. (2017), I parameterize ρ and apply Proposition

1 to the special case where C = 1.

Corollary 1. In a symmetric iid market, if schools have one seat and ρ = n
n+k < 1,

AverageRank(M IID) ≤ n+ k

n
log

(
n+ k

k

)
.

This upper bound exactly matches that from Theorem 2 of Ashlagi et al. (2017). Because we work with

different models, neither result directly implies the other. However, the bound in Proposition 1 provides

insight beyond the cases considered by Ashlagi et al. (2017). First, it allows for arbitrary school capacity, and

improves as school capacity grows: fixing the ratio of students to seats ρ/C = 0.97, the bound on average

rank is approximately 3.6 when C = 1, 2.0 when C = 3, 1.4 when C = 10, and tends to 1 as C →∞. Second,

my bound does not assume that students submit complete (or long) lists: the distribution of list lengths can

be arbitrary.2 Instead, fixing capacity C, the bound depends only on the ratio of students to schools ρ.

4.1.2. More Students than Seats. I now turn to the case where students outnumber seats.

Proposition 2. Suppose that Ch = Ch′ for all h, h′ ∈ H and that there are more students than seats (ρ > C).

Let ηIID describe a symmetric IID market in which all students list ` schools, and let M IID be the unique

(ηIID,Vpois)-stable matching. Then

AverageRank(M IID) ≥ `
(

1− ρ

C
− 1

log (1− C/ρ)

)
.

Let ηRSD describe a symmetric RSD market in which all students list ` schools, and let MRSD be the unique

(ηRSD,Vpois)-stable matching. Then

AverageRank(MRSD) ≤ 1 + log(`).

2While it is well known that increasing a student’s list makes outcomes worse for all other students, this does not imply that

extending a list increases the average rank, because average rank is calculated only for matched students. If some students
submit short lists, extending their list may cause these students to match in place of (or in addition to) others with longer lists,

thereby decreasing the average rank.
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To facilitate a comparison with bounds from Ashlagi et al. (2017), I parameterize ρ and consider the

special case where C = 1.

Corollary 2. In a symmetric iid market where C = 1, ρ = n+k
n and all students list n schools,

AverageRank(M IID) ≥ n

log
(
n+k
k

) − k.
Proposition 2 and Corollary 2 imply the now well-known result that RSD priorities result in a much

better average rank than IID priorities when students outnumber seats. In addition, they give quantitative

bounds on the performance of each approach. The lower bound in Corollary 2 is very similar to the bound

of n

1+n+k
n log(n+k

k )
from Theorem 2 of Ashlagi et al. (2017) (in fact, my bound is tighter for k ≤ n).3

More importantly, Proposition 2 clarifies the effect of list length, school capacity, and market size. In the

model of Ashlagi et al. (2017), n simultaneously represents the number of school seats, number of schools,

and the length of student lists. It is not clear how their bound changes if students list only a subset of the

market, or if schools have multiple seats. By contrast, Proposition 2 establishes that students’ average rank

under RSD is logarithmic in the list length (rather than the market size). With IID priorities, students’

average rank is linear in the list length, with a constant that depends on the ratio of students to seats ρ/C.

This implies that with IID priorities, large capacities don’t result in meaningfully better outcomes: given a

fixed ratio of students to seats ρ/C, the lower bound does not depend on whether schools are small or large.4

4.2. Number of Matches. Another metric of interest is the number of matches. Few theoretical papers

study this quantity, despite its salience in practice. In fact, many papers assume that students submit

complete lists, or at leasts lists that are long enough that the short side of the market matches fully.

One recent exception is Marx and Schummer (2021). They consider the problem facing a matching

platform that helps to match men and women, and charges both sides for each match. A man and woman

can only be matched if they are both willing to pay the fee. The platform thus faces a tradeoff: if its

prices are too high, there will be few mutually acceptable pairs, and few matches will form. The goal of the

platform is to choose prices to maximize its revenue.

The main technical challenge they confront is analyzing the number of matches that form at given prices.

They consider two matching algorithms. In the first, both sides rank acceptable partners, and a stable

match is selected. Let V IID(W,M, q) be the expected number of matches when using this procedure with

W women, M men, and probability of mutual compatibility 1− q. They argue that it is more tractable to

analyze an alternative procedure in which men declare all acceptable partners, and then women are placed

3Letting β = k/n, algebra reveals that the bound in Corollary 2 is tighter than the bound from Theorem 2 of Ashlagi et al.

(2017) so long as (1 + β)β log2(1 + β) ≤ 1, which holds for β ≤ 1.
4This is in contrast to RSD. In this case, fixing the ratio of students to seats ρ/C, the average rank is decreasing in C, and

converges to one as C grows (although this fact is not reflected in the bound in Proposition 2).
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in a random order and sequentially allowed to choose their favorite unmatched mutually acceptable man.

This is in essence a woman-selecting random serial dictatorship. Marx and Schummer (2021) show that the

expected number of matches that form in this case is

(15) V RSD(W,M, q) =

min(M,W )∑
j=1

∏j−1
i=0 (1− qM−i)

∏j−1
i=0 (1− qW−i)

1− qj
.

Figure 5 includes two plots from their paper: one uses (15) to plot V RSD, and the second compares V RSD and

V IID using simulation. Based on the second plot, Marx and Schummer (2021) argue that V RSD(W,M, q)

is a reasonable approximation of V IID(W,M, q).

My model can be used to generate accurate and tractable approximations to both quantities. Let W be

the mass of students and M be the number of schools, each with capacity C = 1. The cases studied by

Marx and Schummer (2021) correspond to IID and RSD markets, as defined in Definition 2. These cases

have also recently been studied by Arnosti (2022), whose expressions coincide with special cases of the model

presented in this paper.

Under the assumptions of Marx and Schummer (2021), the length of student lists follows a binomial

distribution, which satisfies the convexity condition in Theorem 3 of Arnosti (2022). This implies that the

number of matched students in the unique (ηRSD,Vpois) stable matching is lower than in the corresponding

(ηIID,Vpois) stable matching. In other words, the procedure that Marx and Schummer (2021) use to

approximate the size of a stable matching should offer a lower bound.

The work of Arnosti (2022) can also be used to provide tractable closed-form approximations to the

number of matches under each procedure. In Marx and Schummer (2021), the number of mutually compatible

partners for each woman follows a binomial distribution with parameters M and (1− q). If we approximate

this by a Poisson distribution with mean M(1 − q) then rearranging the expressions in Proposition 2 in

Arnosti (2022) yields the following approximations when W ≤M :5

V̂ RSD(W,M, q) = W − log(1 + e−(M−W )(1−q) − e−M(1−q))

1− q
.(16)

(1− q)V̂ IID(W,M, q) = log

(
1− V̂ IID(W,M, q)

W

)
log

(
1− V̂ IID(W,M, q)

M

)
.(17)

Note that the expression in (16) is simpler than that in (15), and more amenable to optimization. Further-

more, whereas exactly calculating V IID(W,M, q) is intractable, (17) gives a concise closed-form expression

relating the probability of incompatibility q and the match rate V̂ . Figure 5 shows predictions from using (16)

and (17) alongside the original graphs from Marx and Schummer (2021). Despite the error in approximating

the binomial distribution with a Poisson, the graphs closely match.

5In the model of Marx and Schummer (2021), the choice W ≤M is without loss of generality, and cleans up the expression in

(16) by allowing the use of W in place of min(W,M) and M in place of max(W,M).
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Figure 5. Studying the number of matches that form, with 50 participants on one side and varying the
number of participants on the other side. First panel: exact expressions from Marx and Schummer (2021)
for V RSD (each line represents a different probability of incompatibility q). Second panel: the corresponding

predictions V̂ RSD from my model. Third panel: Marx and Schummer (2021) have no analytical expression for
V IID, but their simulations study the relative difference (V IID − V RSD)/V RSD. Fourth panel: my model’s

predicted relative difference (V̂ IID−V̂ RSD)/V̂ RSD, which can be proven to be positive. A similar plot cannot
be made using the continuum model of Azevedo and Leshno (2016), which predicts that V IID = V RSD.

5. Conclusion

Stable matching algorithms are used to assign students to schools in cities across the globe. In theory,

the design of school priorities offers a flexible tool for encoding policy objectives. In practice, the benefits of

designing priorities are limited by the fact that the relationship between priorities and the final outcome is

complex and poorly understood.

This paper offers a new perspective on stable matching, which enables the study of settings – such as those

with small and asymmetrical schools – that cannot be readily studied using prior techniques. My model

has three desirable features: it is flexible enough to accommodate complex preferences and priorities, its

numerical predictions are extremely accurate, and it tractable enough to offer new insights. We use a novel

framework for stable matching to show that the only difference between our model and that of Azevedo and

Leshno (2016) is that they assume that interest at each school is deterministic, whereas we assume that it

follows a Poisson distribution. This difference allows our model to make probabilistic predictions that reflect

the uncertainty in finite random markets.

Much work remains, including the establishment of rigorous accuracy guarantees. The predictions of the

model can be shown to be asymptotically valid in the special cases considered by Arnosti (2022), and coincide

with those of Azevedo and Leshno (2016) in the limiting regime that they consider (where school capacities

grow large). However, numerical results indicate its surprising accuracy outside of these cases. Thus, I am

left with a useful tool, but only an incomplete understanding of why it works. Instead of letting the desire

for a complete understanding of this tool hold back progress, I take inspiration from theoretical physics,

which often uses calculations and formal frameworks as tools to generate insights, even if those calculations

have not been rigorously justified. Even before more complete justification is available, the model from this

paper can be used to generate new insights about matching markets, as I demonstrate in Section 4.
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Appendix A. Related Work

There is a vast literature on stable matching. This section focuses exclusively on papers that use “large

market” or “continuum” models to describe or approximate stable matching outcomes.

A.1. Finite Random Markets. One line of work studies outcomes in large finite markets. To maintain

tractability, these papers typically impose strong assumptions. For example, Pittel (1989), Knuth (1996),

Ashlagi et al. (2017), Ashlagi et al. (2019), Ashlagi and Nikzad (2019) and Kanoria et al. (2021) all assume

that schools are symmetric (student preferences are iid and uniformly distributed), and all but Knuth (1996)

assume that school priorities are either identical or drawn independently and uniformly at random.

Immorlica and Mahdian (2005) and Kojima and Pathak (2009) allow for slightly more general preferences,

in which the schools on a student’s list are generated by repeatedly sampling from a non-uniform distribution

over schools. However, these papers focus primarily on establishing the existence of a “nearly unique” stable

outcome, and that participants have little to gain from misreporting their preferences. They do not attempt

to get precise answers to questions about, for example, the number of students who match. Recent work by

Arnosti (2022) adopts the preference formation model of these papers, and does manage to provide a fairly

precise description of match outcomes. However, that work continues to assume that school priorities are

either identical or drawn independently and uniformly at random.

To be sure, these papers provide many interesting insights. Pittel (1989) shows that there can be a

significant gap between the student-proposing and school proposing outcomes. Ashlagi et al. (2017) show

https://doi.org/10.1137/0402048
https://doi.org/10.3386/w6963
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that students’ average rank rises dramatically once the number of students exceeds the number of school

seats. Ashlagi and Nikzad (2019) demonstrate that in such cases, using a single lottery “almost stochastically

dominates” using independent lotteries at each school. However, the analysis underlying these insights is not

flexible enough to accommodate more realistic assumptions on preferences and priorities, making it unclear

whether the insights derived using these models should be expected to hold in practice. Indeed, Ashlagi et al.

(2017) demonstrate that the gap identified by Pittel (1989) vanishes if the market is not perfectly balanced,

and Kanoria et al. (2021) argue that the results of Ashlagi et al. (2017) rely on sufficiently long preference

lists, and may not be relevant for the assignment of public schools in New York City and elsewhere.

A.2. Markets with a Continuum of Students and Schools. A number of papers consider models with

a continuum of students and schools. Azevedo and Hatfield (2018) assume a finite number of agent types

on both sides, and a continuum of agents of each type. A similar model is considered by Jagadeesan and

Vocke (2021). This approach is fairly tractable, and makes it possible to study many-to-many matching with

contracts. However, because agents of the same type are not distinguishable, it is impossible for this type of

model to capture the idiosyncratic preferences present in Example 1.

Another approach embeds agents into a topological space which incorporates features that determine each

agent’s preferences and desirability. The simplest approach assumes a single “quality” dimension, with all

agents on the opposite side preferring a higher-quality partner. For example, Bodoh-Creed and Hickman

(2018) assume that the only feature of college which matters to students is its “quality”, while Agarwal

(2015) assumes that residency programs have a common ranking of residents. Peski (2011) considers a more

general setting in which men and women are embedded into Rd, and all agents prefer higher values in each

coordinate. He is unable to establish existence of a stable match, although he shows that if one exists, it is

unique.

Greinecker and Kah (2021) consider a yet-more-general one-to-one matching model, which can accommo-

date matching with contracts, externalities, and transferable utility. However, one important assumption is

that preferences and desirability are continuous in the underlying type space. They write that “If a woman

of type w prefers a man of type m to a man of type m′ then a woman with a type sufficiently similar to w

prefers a man of type sufficiently similar to m to a man of type sufficiently similar to m′.” While seemingly

natural, this assumption rules out idiosyncratic utility shocks which are present in Example 1 and commonly

assumed by econometricians and theorists. Greinecker and Kah (2021) acknowledge that “our model cannot

be used to study the asymptotic stochastic behavior of large finite marriage models in which every agent’s

preferences are independently and uniformly chosen from the set of strict rankings of agents on the other

side, the approach of Pittel (1989) and many subsequent papers.”
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A.3. Markets with Large Schools. An alternative approach assumes a finite number of schools, each of

which matches to a continuum of students. This allows very general priorities and preferences: the model of

Azevedo and Leshno (2016) accommodates an arbitrary measure over student “types,” which encode both

a ranking of schools and a priority score at each school. Given this type measure and the capacity of each

school, they find a vector of “cutoff scores” that “clear the market”: if each school admits students whose

priority is above its cutoff, and students attend their favorite school where they are admitted, expected

“demand” (enrollment) is equal to “supply” (capacity) at each school with a positive cutoff. This approach

turns out to be quite tractable, and Che et al. (2019) generalize it by allowing schools to have non-responsive

(i.e. substitutable or complementary) choice functions. Many papers have used related models to derive

various insights (Abdulkadiroglu et al., 2015; Shi, 2015; Ashlagi and Shi, 2016; Abdulkadiroglu et al., 2017;

Bodoh-Creed, 2020; Shi, 2022; Allman et al., 2022).

Azevedo and Leshno (2016) establish that their model describes the limiting behavior of finite markets

as the number of seats at each school increases. Intuitively, if each school can match to many students,

then the law of large numbers implies that demand for each school is highly predictable. However, their

model fails to capture the variability that is inherent in markets with small or modest capacities. Although

their model predicts a deterministic cutoff score for each school, Figure 1 shows simulations from their paper

demonstrating that cutoff scores vary significantly when school capacities are not large.

The inability to generate stochastic predictions causes their model to make inaccurate predictions when

applied to Example 1. It predicts a cutoff score of 0 at each school, implying that every student matches to

his or her first choice. This prediction holds for any length of student lists, and any method for determining

student priorities. This is clearly incorrect: a simple balls-in-bins analysis demonstrates that only approxi-

mately 1 − (1 − 1/n)n ≈ 63% of schools are listed as some student’s first choice. Furthermore, simulations

clearly indicate that the number of unassigned students depends on both the length of student lists and on

school priorities.

A.4. Simulation. As a result of the limitations discussed above, existing matching models are often of

limited use when trying to tackle practical problems. Parents want to know how likely their child is to be

admitted to a particular school. Administrators want to predict how a proposed policy change will affect

the number of students who fail to match to any school on their list. For these problems, the best tool is

often simulation. Abdulkadiroglu et al. (2009) use simulations to compare different tiebreaking procedures

in New York City and Boston, and de Haan et al. (2018) do the same for Amsterdam. Ashlagi and Nikzad

(2019) use simulations based on data from New York to study the effect of changing priorities, and Kanoria

et al. (2021) use the same data to study the effect of changing the length of student lists. While simulation

is a flexible and accurate tool, it typically does not offer much insight. It shows what is true, but not why it
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is true. If a pattern is observed through simulation, it can be difficult to predict whether the same pattern

will continue to hold in other settings.

Appendix B. Relationship To Existing Definitions of Stability

Our definition of stability in Definition 1 may seem strange to those familiar with more traditional def-

initions based on the absence of blocking pairs, or cutoffs that clear the market. It more closely resembles

fixed-point characterizations of stable matchings by Adachi (2000), Fleiner (2003), and Echenique (2004).

This section bridges this divide by showing that when using the deterministic vacancy function Vdet from

(3), our definition encompasses more traditional definitions as special cases. Section B.1 shows that in finite

markets, our definition corresponds to the absence of blocking pairs. Section B.2 shows that in continuum

markets, our definition is equivalent to one based on market-clearing cutoffs.

B.1. Finite Markets: Stability = No Blocking Pairs. Traditionally, stable matching problems involve

a finite set of students S ⊂ Θ. We adopt the standard assumption that S has “strict priorities”: no two

students in S have identical priority at any school. Given h ∈ H and p ∈ [0, 1], define

(18) Θh(p) = {θ : h �θ ∅, pθh = p}

to be the set of student types that consider school h acceptable and have priority p at school h.

Definition 3 (Strict Priorities).

A finite subset S ⊂ Θ has strict priorities if for each h ∈ H and p ∈ [0, 1], |S ∩Θh(p)| ≤ 1.

A positive measure η on Θ has strict priorities if for each h ∈ H and p ∈ [0, 1], η(Θh(p)) = 0.

The second part of this definition is motivated by the study of random finite matching markets, where S

is generated by drawing student types iid from some measure η over Θ. In this case, the condition above

ensures that S has strict priorities with probability one.6

We now give a version of the traditional definition of stability based on the absence of blocking pairs. We

refer to this concept as “no blocking pairs” to distinguish it from the definition of stability in Definition 1.

Definition 4 (No Blocking Pairs). Given any finite set S ⊂ Θ, an S-matching is a function µ : S → H0.

An S-matching µ is feasible if for each h ∈ H0,

(19) |{θ ∈ S : µ(θ) = h}| ≤ Ch.

An S-matching µ has no blocking pairs if it is feasible, and for each θ′ ∈ S and each h ∈ H0 such that

h �θ
′
µ(θ′),

(20) |{θ ∈ S : µ(θ) = h, pθh > pθ
′

h }| = Ch.6The assumption that there are no ties is essential to many of our results. This is not an artifact of our definitions or proof

techniques, but rather reflects fundamental challenges to defining stable matchings with indifferences.
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Definition 4 states that a feasible S-matching has no blocking pairs if for each student θ′ ∈ S, each school

that θ′ prefers to its assignment is filled with higher-priority students. Note that this implies individual

rationality: because C∅ = ∞, the outside option is never filled to capacity. Therefore, if µ has no blocking

pairs, then it does not assign any student to a school that she considers inferior to the outside option.

Our first result is to show that our definition of stability corresponds with the traditional definition based

on the absence of blocking pairs. To state this result formally, we note that each finite set S ⊂ Θ is naturally

associated with an associated counting measure ηS over Θ, defined by

ηS(Θ̃) = |Θ̃ ∩ S| ∀Θ̃ ⊆ Θ.(21)

Similarly, there is a natural correspondence between S-matchings (which define an assignment only for

student types in S) and deterministic matchings (which define an assignment for all types in Θ). Any

deterministic matching M naturally defines an S-matching µM : for each θ ∈ S, let

(22) µM (θ) = h⇔Mh(θ) = 1.

Similarly, each S-matching µ naturally induces a deterministic matchingMµ as follows. Define the admissions

outcome Aµ by

(23) Aµh(p) = 1(|{θ ∈ S : pθh > p, µ(θ) = h}| < Ch),

and define Mµ =M(Aµ). In other words, (23) says that student θ ∈ Θ is admitted to h if there are fewer

than Ch higher-priority students from S matched to h under µ, and Mµ(θ) is the matching that results when

each student type θ is assigned to its most-preferred school among those where it is admitted.

The following result says that if priorities are strict, then the functions M → µM and µ → Mµ define a

bijection between the set of (ηS ,Vdet)-stable matchings, and the set of S-matchings with no blocking pairs.

The proof of this result is deferred to Appendix C.1.

Proposition 3 (No Blocking Pairs Corresponds to a Stable Matching). Let S be a finite subset of Θ with

strict priorities. If M is a (ηS ,Vdet)-stable matching, then µM has no blocking pairs. If µ is an S-matching

with no blocking pairs, then Mµ is (ηS ,Vdet)-stable, and µM
µ

= µ.

B.2. Continuum Markets: Stability = Market-Clearing Cutoffs. Azevedo and Leshno (2016) provide

a continuum model in which a market is described by a positive measure η over Θ and a stable matching is

described by a vector of priority cutoffs P ∈ [0, 1]H. Students are admitted to school h if and only if their
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priority at h exceeds its cutoff Ph. They define demand for school h at cutoffs P by7

Dh(P ) =

∫
1(pθh > Ph)

∏
h′�θh

1(pθh′ ≤ Ph′)dη(θ).(24)

That is, demand for h at cutoffs P is equal to the measure of students who are admitted to h and are not

admitted to any school that they prefer to h. Each cutoff vector is naturally associated with a deterministic

matching in which students attend the school that they demand. The definition of stability used by Azevedo

and Leshno (2016) is that the cutoff vector should clear the market.

Definition 5. A cutoff P ∈ [0, 1]H is η-market-clearing if Dh(P ) ≤ Ch for all h ∈ H, with equality if

Ph > 0.

In this section, we show that in continuum markets, a cutoff vector P is η-market-clearing if and only if a

corresponding interest function is (E ,Vdet)-stable. To formalize this claim, we first define a natural associate

between cutoff vectors and interest functions. Each cutoff vector P is naturally associated with an interest

function IP defined for each h ∈ H and p ∈ [0, 1] by

(25) IPh (p) =

∫
1(pθh > p)

∏
h′�θh

1(pθh′ ≤ Ph′)dη(θ).

That is, students contribute to this quantity if they have priority above p at h and do not “clear the cutoff”

at any school that they prefer. Note that when p = Ph, we have IPh (Ph) = Dh(P ).

Conversely, from any interest function I ∈ I, we can define the associated cutoffs P(I) = {Ph(I)}h∈H ∈

[0, 1]H by

(26) Ph(I) = inf{p ≥ 0 : Ih(p) < Ch}.

Equation (25) defines a mapping from cutoffs to interest functions, while (26) defines mapping from interest

functions to cutoffs. It turns out that these mappings take stable interest functions to market-clearing cutoffs,

and vice versa.8

Proposition 4 (Market-Clearing Cutoffs Correspond to Stable Interest Functions).

Let η have strict priorities. If P is η-market-clearing, then IP is (E ,Vdet)-stable. If I is (E ,Vdet)-stable,

then P(I) is η-market-clearing, and I = IP(I).

7An astute and informed reader might notice that our choice of AP assumes that student types θ with pθh = Ph are not
admitted to h, whereas Azevedo and Leshno (2016) assume that they are admitted. Because η is a continuous measure with

strict priorities in both cases, this distinction is of consequence only to sets of η-measure zero.
8We briefly comment on a subtlety that explains why Proposition 4 is stated in terms of the interest function IP rather than

the admissions function AP or the matching MP . In general, multiple market-clearing cutoffs may correspond to the same
stable matching (up to a set of measure zero). For example, suppose that there is a single school h with capacity C, and

that the total measure of students is η(Θ) = 2C, with priorities uniformly distributed on (0, 1/3) ∪ (2/3, 1). Then any cutoff

P ∈ [1/3, 2/3] clears the market. Our definition of stability eliminates this redundancy: the unique (E,Vdet)-stable matching
corresponds to a cutoff of 2/3 and leaves students in [0, 2/3] unassigned. Thus, if P ∈ [1/3, 2/3), P clears the market but MP

is not (E,Vdet)-stable. By contrast, for any P , IP (p) = η({Θ : pθh > p}) is a stable interest function.
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We prove this result in Appendix C.2.

Appendix C. Proofs from Section 3

C.1. Proof of Proposition 3. The following Lemma states that for any (ηS ,Vdet)-stable outcome, the

enrollment at each school will be the minimum of the school’s capacity and the number of interested students.

Lemma 1. If S is a finite subset of Θ with strict priorities, and (M, I,A) is (ηS ,Vdet)-stable, then for any

h ∈ H and p ∈ [0, 1], ∑
θ∈S

1(pθh > p)Mh(θ) = min(Ih(p), Ch).

Proof of Lemma 1. Define p̄ = inf{p ∈ [0, 1] : Ih(p) < Ch}. Note that (1) and (21) imply that Ih is

right-continuous, and therefore Ih(p̄) < Ch. It follows from (2) and (3) that for p ∈ [0, 1],

(27) Ah(p) = Vdet(Ih(p), Ch) = 1(Ih(p) < Ch) = 1(p ≥ p̄).

Combining (5) and (27) we see that if Ih(p) < Ch then p ≥ p̄ and

(28)
∑
θ∈S

1(pθh > p)Mh(θ) =
∑
θ∈S

1(pθh > p)(1−
∑
h′�θh

Mh′(θ)) = Ih(p),

where the final inequality uses (1) and (21).

Meanwhile, if Ih(p) ≥ Ch, then p̄ > p, and (5) and (27) imply that

∑
θ∈S

1(pθh > p)Mh(θ) =
∑
θ∈S

1(pθh > p̄)(1−
∑
h′�θh

Mh′(θ)) +
∑
θ∈S

1(pθh = p̄)(1−
∑
h′�θh

Mh′(θ)),

= Ih(p̄) +
∑
θ∈S

1(pθh = p̄)(1−
∑
h′�θh

Mh′(θ)),(29)

where the second line also follows from (27).

Note that because Vdet(λ,C) ∈ {0, 1}, (2) and (4) imply that Mh(θ) ∈ {0, 1} and therefore (1) implies

that Ih(p) ∈ N. Furthermore, the fact that S has strict priorities implies that at discontinuities of Ih, it

decreases by exactly one. We know from the definition of p̄ that Ih(p̄) < Ch but Ih(p) ≥ Ch for all p < p̄,

so Ih(p̄) = Ch − 1 and
∑
θ∈S 1(pθh = p̄)(1−

∑
h′�θhMh′(θ)) = 1. This implies that the expression in (29) is

equal to Ch, completing the proof. �

Proof of Proposition 3. We first suppose that (M, I,A) is (ηS ,Vdet)-stable, and show that µM has no block-

ing pairs. Note that the definition of Vdet in (3) implies that for all λ ∈ R+, C ∈ N we have Vdet(λ,C) ∈ {0, 1},
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so by (2) and (4), M is deterministic and µM is well-defined. We now show that µ is feasible. Note that

∑
θ∈S

Mh(θ) =
∑
θ∈S

Mh(θ)1(pθh > 0) +
∑
θ∈S

Mh(θ)1(pθh = 0)

≤
∑
θ∈S

Mθ
h1(pθh > 0) + ηS(Θh(0))Ah(Ih(0))

= min(Ih(0), Ch) + ηS(Θh(0))1(Ih(0) < Ch)

≤ min(Ih(0), Ch) + 1(Ih(0) < Ch)

≤ Ch.

The second line follows from Mh(θ) ≤ Ah(pθh) (see (4)) and
∑
θ∈S 1(pθh = 0) = ηS(Θh(0)) (see (21)); the

third from Lemma 1, along with (2) and (3), and the fourth because S has strict priorities.

Finally, we show that µM has no blocking pairs. By definition, if h �θ
′
µM (θ′) then Mh(θ′) = 0, and

Ah(pθ
′

h ) = 0 by (4). From this, (2) and (3) imply that Ih(pθ
′

h )) ≥ Ch, so by Lemma 1,

|{θ ∈ S : µM (θ) = h, pθh > pθ
′

h }| =
∑
θ∈S

Mh(θ)1(pθh > pθ
′

h ) = min(Ih(pθ
′

h ), Ch) = Ch.

That is, (20) holds, so µM has no blocking pairs.

Next, we assume that µ is an S-matching with no blocking pairs, and show that

i) Mµ “agrees” with µ: for θ ∈ S, h ∈ H0, we have

(30) Mµ
h (θ) = 1(µ(θ) = h).

ii) Mµ is (ηS ,Vdet)-stable.

We start by showing (30). Fix θ′ ∈ S. Then for any h �θ
′
µ(θ′), the fact that µ has no blocking pairs

implies that (20) holds, from which the definition of Aµ in (23) implies that Aµh(pθ
′

h ) = 0, so Mµ
h (θ′) = 0.

Meanwhile, for h′ = µ(θ′), feasibility of µ implies

|{θ ∈ S : µ(θ) = h′, pθh′ > pθ
′

h′}| < |{θ ∈ S : µ(θ) = h′}| ≤ Ch′ .

Therefore, the definition of Aµ in (23) implies that Aµh′(p
θ′

h′) = 1, from which (4) implies that Mh′(θ′) = 1

(and that Mh(θ) = 0 for all h such that µ(θ′) �θ
′
h). Thus, (30) holds, implying that µ = µM

µ

.

We now show that Mµ is (ηS ,Vdet)-stable. Define Iµ = I(Mµ). Then we have

Iµh (p) =
∑
θ∈S

1(pθh > p)(1−
∑
h′�θh

Mµ
h (θ))(31)

≥
∑
θ∈S

1(pθh > p)1(µ(θ) = h) = |{θ ∈ S : pθh > p, µ(θ) = h}|,(32)
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where the first equality follows from (1) and the definition of ηS in (21), and the inequality from (30). We

claim that for h ∈ H0, p ∈ [0, 1],

(33) Aµh(p) = 1(Iµh (p) < Ch) = Vdet(Iµh (p), Ch),

implying that Aµ = A(Iµ) = A(I(M(Aµ))), so Aµ is (ηS ,Vdet)-stable, and therefore so is Mµ. To establish

(33), we show that Aµh(p) = 0 implies Iµh (p) ≥ Ch, and Aµh(p) = 1 implies Iµh (p) < Ch.

If Aµh(p) = 0, then by definition of Aµ in (23),

|{θ ∈ S : pθh > p, µ(θ) = h}| ≥ Ch.

By (32), this implies that Iµh (p) ≥ Ch. Conversely, if Aµh(p) = 1, then by definition

|{θ ∈ S : pθh > p, µ(θ) = h}| < Ch.

This implies that for each θ ∈ S that contributes to the sum in (31), µ(θ) = h (otherwise, (20) would be

violated). Therefore, the inequality in (32) is an equality, implying that Iµh (p) < Ch. �

C.2. Proof of Proposition 4. We start by establishing an analog to Lemma 1, which says that for any

(E ,V)-stable outcome, the measure of students matched to school h can be determined by the measure of

interest in h.

Lemma 2. If η has strict priorities and V is weakly decreasing in its first argument, then for any (E ,V)-stable

outcome (M, I,A), any school h ∈ H, and any p ∈ [0, 1],∫
1(pθh > p)Mh(θ)dη(θ) =

∫ Ih(p)

0

V(λ,Ch)dλ.

If V = Vdet, then the expression on the right is min(Ih(p), Ch), matching that in Lemma 1. However,

Lemma 2 provides a more general expression that holds for any monotone vacancy function.9

Proof of Lemma 2. Fix n ∈ N, define m = dnIh(p)e, and define {Li}
m
i=0 by Li = i/n for i < m, and

Lm = Ih(p). Note that if η is a continuous measure with strict priorities, then (1) implies that I is

continuous and decreasing. In particular, this implies that we can choose 1 = P0 > P1 > · · ·Pm = p such

9The result does not hold when η is a discrete measure. To see this, consider a simple case with one school with capacity
one, and two students, with priority pH > pL. Regardless of what matching we start with, both students are interested in the

school, so the resulting interest function is I(p) = 1(p ≤ pH) + 1(p ≤ pL) (a step function that steps down at pL and pH). For

this interest function, if we use Vpois, the resulting admissions function is A(p) = 1 for p ∈ [pH , 1], A(p) = 1/e for p ∈ [pL, pH)
and A(p) = 1/e2 for p ∈ [0, pL). Therefore, the top student gets in for sure, and the lower student with probability 1/e. The

total number of matches predicted by the stable matching M is 1 + 1/e; this is more than
∫∞
0 V

pois(λ, 1)dλ = 1.
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that Ih(Pi) = Li for each i. We claim the following chain of inequalities:∫
1(pθh > p)Mh(θ)dη(θ) =

∫
1(pθh > p)Ah(pθh)

∏
h′�θh

(1−Ah′(p
θ
h′))dη(θ)

=

∫
1(pθh > p)V(Ih(pθh), Ch)

∏
h′�θh

(1−Ah′(p
θ
h′))dη(θ)

=

∫ m∑
i=1

1(Pi−1 ≥ p
θ
h > Pi)V(Ih(pθh), Ch)

∏
h′�θh

(1−Ah′(p
θ
h′))dη(θ)

≥
m∑
i=1

V(Li, Ch)

∫
1(Pi−1 ≥ p

θ
h > Pi)

∏
h′�θh

(1−Ah′(p
θ
h′))dη(θ).(34)

The first equality holds from (4), the second from (2), and the third by definition of Pi. The final inequality

comes from the fact that V is weakly decreasing in its first argument and Ih is weakly decreasing, and thus

pθh > Pi implies V(Ih(pθh), Ch) ≥ V(Ih(Pi), Ch) = V(Li, Ch). Note that∫
1(Pi−1 ≥ pθh > Pi)

∏
h′�θh

(1−Ah′(p
θ
h′))dη(θ)

=

∫
1(pθh > Pi)

∏
h′�θh

(1−Ah′(p
θ
h′))dη(θ)−

∫
1(pθh > Pi−1)

∏
h′�θh

(1−Ah′(p
θ
h′))dη(θ)

= Ih(Pi)− Ih(Pi−1)

= Li − Li−1.(35)

The second equality follows from (1) and the third from the choice of Pi. Combining (34) and (35), and

noting that Li − Li−1 = 1/n for i < m, we get

∫
1(pθh > p)Mh(θ)dη(θ) ≥ 1

n

m−1∑
i=1

V(Li, Ch).

This holds for any n ∈ N. Taking the limit as n→∞ yields

(36)

∫
1(pθh > p)Mh(θ)dη(θ) ≥

∫ Ih(p)

0

V(λ,Ch)dλ.

The inequality in (34) can be reversed if we replace V(Li, Ch) with V(Li−1, Ch). From there, an analogous

argument implies (36) with the inequality reversed, completing the proof.

�

Proof of Proposition 4. Given cutoffs P ∈ [0, 1]H, we define

APh (p) = 1(p > Ph).(37)

MP =M(AP ).(38)
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We begin by noting two equalities that will repeatedly prove useful. Note that the definition of A through

(2) and (3), and the definition of AP and P(I) in (37) and (26) imply that for any interest function I ∈ I,

(39) A(I) = AP(I).

Furthermore, the definition of IP , AP and MP in (25), (37) and (38), along with (1) and (4), imply that for

any cutoff vector P ,

(40) IP = I(M(AP )).

We first assume that I is (E ,Vdet)-stable, and show that I = IP(I). By Definition 1, if I is (E ,Vdet)-stable,

then so is

(41) M(A(I)) =M(AP(I)) = MP(I),

where the equalities follow from (39) and (38), respectively. Furthermore, stability of I implies that

(42) I = I(M(A(I))) = I(M(AP(I))) = IP(I),

where the second and third equalities follow from (41) and (40), respectively.

Next, we show that P(I) is market-clearing. We claim that

(43) Dh(P(I)) =

∫
M
P(I)
h (θ)dη(θ) =

∫ Ih(0)

0

Vdet(λ,Ch)dλ = min(Ih(0), Ch) ≤ Ch.

The first equality follows from (24), the second from Lemma 2 and the fact that I(MP(I)) = I (by (41) and

(42)), and the third from the definition of Vdet in (3). Furthermore, if Ph(I) > 0, it follows from definition

of P in (26) that Ih(Ph) ≥ Ch (this also uses the fact that Ih is continuous, which follows from (1) and the

fact that η is a continuous measure with strict priorities). Because (1) implies that Ih is weakly decreasing,

it follows that Ih(0) ≥ Ch, and therefore the inequality in (43) is tight. Therefore, P(I) is market-clearing.

Finally, we show that if P ∈ [0, 1]H is market-clearing, then IP is (E ,Vdet)-stable. By (39) and (40),

(44) I(M(A(IP ))) = I(M(AP(I
P ))) = IP(I

P ).

We wish to show that this is equal to IP . For less cumbersome notation, we define the cutoff vector

(45) P̃ = P(IP ).

The steps to prove that I P̃ = IP are as follows:

I. Show that IPh (Ph) = Dh(P ). Conclude that

(46) P̃h ≥ Ph.

II. Define

(47) ∆h = {θ : pθh ∈ (Ph, P̃h], pθh′ ≤ Ph′ for all h′ �θ h}

to be the η-measure of students who have priority between Ph and P̃h at h, and are not admitted

to any school preferred to h under either P or P̃ . Establish that IPh is constant on (Ph, P̃h], and
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therefore that

(48) 0 = IPh (Ph)− IPh (P̃h) = η(∆h).

III. Conclude that for all h ∈ H and p ∈ [0, 1],

(49) I P̃h (p) = IPh (p).

We now establish step I. Note that

IPh (p) =

∫
1(pθh > p)(1−

∑
h′�θh

MP
h′(θ))dη(θ)

=

∫
1(pθh > p)

∏
h′�θh

(1−APh′(p
θ
h′))dη(θ),

where the first line follows from (40) and (1), and the second from (5). It follows that

IPh (Ph) =

∫
APh (pθh)

∏
h′�θh

(1−APh′(p
θ
h′))dη(θ)

=

∫
MP
h dη(θ) = Dh(P ),(50)

where the second line follows from (4) and the definitions of AP and Dh(P ) in (37) and (24). From (50) and

the definition of P(·) in (26), (46) follows.

Next, we move to step II. Because η is a continuous measure with strict priorities, (1) implies that IPh is

continuous for each h ∈ H0. Therefore, the definition of P(·) in (26) implies that either P̃h = 0 (in which

case (46) implies that Ph = P̃h), or IPh (P̃ ) = Ch. But then (46) and the fact that IP is decreasing imply

that

IPh (Ph) ≥ IPh (P̃h) = Ch.

Because P is market-clearing, Dh(P ) ≤ Ch, implying that the inequality above must hold with equality.

Therefore, IPh is constant on (Ph, P̃h]. In particular, applying the definition of IP in (25) reveals that (48)

holds.

Finally, we move to step III. By (25), for any h ∈ H and p ∈ [0, 1] we have

(51) I P̃h (p)− IPh (p) = η(∆),

where

∆ = {θ : pθh > p,
∏
h′�θh

1(pθh′ ≤ P̃h′)−
∏
h′�θh

1(pθh′ ≤ Ph′) = 1}

That is, the difference I P̃h (p) − IPh (p) is the measure of students who have priority above p at h, and are

admitted to a school preferred to h under cutoffs P , but are not admitted to any such school under P̃ . For

any θ ∈ ∆, there is some most-preferred school h′ where θ is admitted under P but not under P̃ . Then
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(47) implies that θ ∈ ∆h′ . In other words, ∆ ⊆
⋃
h∈H∆h. From this, (48) implies that η(∆) = 0, and (51)

implies that (49) holds. This establishes that IP = I P̃ = IP(I
P ), from which (44) implies that IP is stable.

�

C.3. Proof of Theorems 2 and 3.

Proof of Theorem 2. By Theorem 1, there exist maximal and minimal stable outcomes, corresponding to the

school-optimal and student-optimal stable outcomes, respectively. Denote these outcomes by (MH , IH , AH) �

(ML, IL, AL), respectively. It is enough to prove the result for these outcomes. Note that

∫ ∑
h�θ∅

ML
h (θ)dη(θ) =

∑
h∈H

∫
ML
h (θ)dη(θ) =

∑
h∈H

∫ ILh (0)

0

V(λ,Ch)dλ

≥
∑
h∈H

∫ IHh (0)

0

V(λ,Ch) =
∑
h∈H

∫
MH
h (θ)dη(θ) =

∫ ∑
h�θ∅

MH
h (θ)dη(θ).(52)

The first and last equalities hold because A∅(p) = 1 for all p, so by (4), Mh(θ) = 0 if ∅ �θ h. The second

and second-to-last equalities hold by Lemma 2. The inequality follows from the fact that IL �I IH . But

MH �M ML implies

(53)
∑
h�θ∅

ML
h (θ) ≤

∑
h�θ∅

MH
h (θ) ∀θ ∈ Θ.

Therefore, the inequality in (52) must hold with equality. In particular, this implies that (7) holds for each

h ∈ H. Furthermore, this implies that (8) holds for all θ except possibly a set of η-measure zero. �

Proof of Theorem 3. It suffices to show that there is a unique stable interest function: that is, if IH and IL

are the largest and smallest stable interest functions according to �I, then IH = IL. We let AH ,MH be

the admissions function and matching associated with IH , and define AL,ML analogously. We note that by

(2) and the fact that V is decreasing in its first argument, IH �I IL implies that

(54) AL �A AH .

The proof proceeds by contradiction, showing that IH �I IL implies that Theorem 2 does not hold. That

is, IH �I IL implies the existence of a set Θ̃ with η(Θ̃) > 0 such that

(55)
∑
h∈H

MH
h (θ) <

∑
h∈H

ML
h (θ) for all θ ∈ Θ̃.

We establish existence of such a Θ̃ in three steps.

I. Note that Definition 3 and (1) imply the following.

a) The stable interest functions IH and IL are component-wise continuous.

b) For all h ∈ H, IHh (1) = ILh (1) = 0.
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II. These jointly imply that if IHh (p) > ILh (p) for some p ∈ [0, 1] and h ∈ H, then there must exist an

interval (p, p) such that:

a) IHh (p) > ILh (p) for p ∈ (p, p), and

b) IHh (p) > IHh (p).

That is, IHh is not constant and strictly larger than ILh on this interval.

III. Define

(56) S = {θ : MH
∅ (θ) = 0}}

to be the set of student types who are sure to be matched. Define

(57) Θ̃ = {θ : h �θ ∅, pθh ∈ (p, p)}\S.

We will show that (55) holds, and that η(Θ̃) > 0.

To see that (55) holds, note that if θ ∈ Θ̃,

(58) AHh (pθh) = V(IH(pθh), Ch) < V(IL(pθh), Ch) = ALh (pθh),

where the equalities hold by (2) and the inequality follows from II.a), the fact that pθh ∈ (p, p), and the fact

that V(·, Ch) is strictly decreasing. Thus, when comparing AH to AL, each student in Θ̃ is

i. weakly less likely to be admitted to each school under AH by (54),

ii. strictly less likely to be admitted to h under AH by (58), and

iii. not certain to be admitted to any school by definition of Θ̃ in (57).

From this, (4) implies that each θ ∈ Θ̃ is strictly less likely to match under AH . That is, (55) holds.

Finally, we show that η(Θ̃) > 0. By definition of Θ̃ in (57)

η(Θ̃ ∪ S) ≥
∫

1(h �θ ∅, pθh ∈ (p, p))dη(θ)(59)

≥
∫

1(h �θ ∅, pθh ∈ (p, p))(1−
∑
h′�θh

MH
h′ (θ))dη(θ)

= IHh (p)− IHh (p)

> 0,

where the equality follows from (1) and stability of IH , and the final line follows from II.b). We complete

the proof by showing that η(S) = 0.

Because V(·, Ch) is strictly decreasing, (2) implies that AHh (p) = 1 if and only if IHh (p) = 0. Define

ph = inf{p : IHh (pθh) = 0} to be the lowest priority at school h that guarantees admission, and note that

(60) 0 = IHh (ph) =

∫
1(pθh > ph)(1−

∑
h′�θh

MH
h′ (θ))dη(θ),
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where the second equality comes from stability of IH . Define

Sh = {θ : pθh > ph,
∑
h′�θh

MH
h′ (θ) < 1}

to be the set of agents who are certain to be admitted to h, and not certain to be admitted to any option

that they prefer to h. Note that

η(Sh) =

∫
1(pθh > ph)1

 ∑
h′�θh

MH
h′ (θ) < 1

 dη(θ) = 0,

where the second equality follows from (60). Because S =
⋃
h∈H Sh, it follows that η(S) = 0 and thus

η(Θ̃) > 0 by (59). �

Appendix D. Proofs from Section 4

Define

(61) AcceptanceRate(λ,C) = Enrollment(λ,C)/λ =
1

λ

∫ λ

0

V(x,C)dx,

where the second equality follows from the definition of Enrollment in (13). The following result implies

that AcceptanceRate is decreasing in its first argument.

Lemma 3. Given f : R+ → R+, define g : R+ → R+ by

g(y) =
1

y

∫ y

0

f(x)dx.

If f is weakly increasing, then so is g. If f is weakly decreasing, then so is g.

Proof of Lemma 3. Note that

g′(y) =
yf(y)−

∫ y
0
f(x)dx

y2
.

If f is weakly increasing, then yf(y) ≥
∫ y
0
f(x)dx; if f is weakly decreasing, the inequality reverses. �
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Proof of Proposition 1. Let `(θ) = |{h : h �θ ∅}| be the number of schools listed by type θ. We note that

for any individually rational matching M and any θ,

∑
h′�θ∅

Mh′(θ)Rh′(θ) ≤ `(θ)(1−
∑
h′�θ∅

Mh′(θ)) +
∑
h′�θ∅

Mh′(θ)Rh′(θ)

= `(θ)−
∑
h′�θ∅

Mh′(θ)(`(θ)−Rh′(θ))

= `(θ)−
∑
h′�θ∅

∑
h′�θh�θ∅

Mh′(θ)

=
∑
h�θ∅

(1−
∑
h′�θh

Mh′(θ))(62)

=
∑
h∈H∅

(1−
∑
h′�θh

Mh′(θ))(63)

where the third line follows from the fact that `(θ) − Rh′(θ) is the number of acceptable schools that rank

below h′, the fourth follows by exchanging the order of summation, and the last uses the fact that M is

individually rational.

From (63) and the definition of AverageRank in (11), it follows that if (M, I,A) is an (E ,Vpois) stable

outcome,

(64) AverageRank(M) ≤
∫ ∑

h∈HMh(θ)(1−
∑
h′�θhMh′(θ))dη(θ)∫ ∑

h∈HMh(θ)dη(θ)
=

∑
h∈H Ih(0)∑

h∈H
∫ Ih(0)
0

Vpois(λ,Ch)dλ
.

Note that the final equality follows by the fact that M is stable, (1) and Lemma 2. In a symmetric iid

market, Ch = Ch′ and Ih = Ih′ for all h, h′ ∈ H , so implies that for any h ∈ H,

(65) AverageRank(M) ≤
Ih(0)∫ Ih(0)

0
V(λ,Ch)dλ

=
1

AcceptanceRate(Ih(0), Ch)
.

Lemma 3 implies that AcceptanceRate is decreasing in its first argument, so we can obtain an upper bound

on this expression by obtaining an upper bound on Ih(0). But it is clear that the denominator in (64) is

at most η(Θ), from which symmetry implies that Enrollment(Ih(0), Ch) ≤ ρ = Enrollment(Λ(ρ, Ch), Ch).

Because Enrollment is increasing in its first argument, this implies that Ih(0) ≤ Λ(ρ, C). Plugging this into

(65) completes the proof. �

Lemma 4. The function AR : (0, 1]→ R+ defined by10

(66) AR(q) =
1

q
− `(1− q)`

1− (1− q)`
,

is decreasing in q.

10For a general list length distribution, the appropriate definition is

AR(α) =
µ(α)− E[`(1− α)`]

E[1− (1− α)`]
= 1−

(1− α)µ′(α)

µ(α)
.
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Proof of Proposition 2. Let (M, I,A) be the unique (ηIID,Vpois)-stable outcome. Note that by symmetry,

Ih(p) = Ih′(p) and Ah(p) = Ah′(p) for all h, h′ ∈ H and p ∈ [0, 1], so in what follows, we write I(p) and A(p)

in place of Ih(p) and Ah(p).

Define

(67) q =

∫ 1

0

Vpois(I(p), C)dp.

Note that ∫ ∑
h∈H

Mh(θ)dη(θ) =

∫
(1−

∏
h�θ∅

(1−A(pθh))dηIID(θ)

=

∫
(1−

∏
h�θ∅

(1− Vpois(I(pθh), C))dηIID(θ)

= ηIID(Θ)(1− (1− q)`),(68)

where the first equality follows from (4), the second from (2), and the last from the fact that we assume all

students list ` schools, and in an iid market, the priorities ph are drawn iid U [0, 1].

Furthermore, we have∫ ∑
h∈H

Mh(θ)Rh(θ)dη(θ) =

∫ ∑
h∈H

Rh(θ)Ah(pθh)
∏
h′�θh

(1−Ah′(p
θ
h′))dη

IID(θ)

= ηIID(Θ)
∑̀
k=1

kq(1− q)k−1

= ηIID(Θ)(1− (1− q)`)AR(q).(69)

Jointly, (68) and (69) imply that

(70) AverageRank(M) = AR(q).

Note that (14) implies that

(71) Enrollment(λ,C) ≤ C for all λ ∈ R+,

and therefore

(72) ηIID(Θ)(1− (1− q)`) = |H|Enrollment(I(0), C) ≤ |H|C.

Define α and α′ as the solutions to

(73) ηIID(Θ)(1− (1− α)`) = |H|C = ηIID(Θ)(1− e−α
′`).

Then it follows that

(74) q ≤ α ≤ α′,
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with the last inequality holding because e−α
′` ≥ (1−α′)`. Because AR is decreasing by Lemma 4, equations

(70) and (74) imply that

(75) AverageRank(M) = AR(q) ≥ AR(α) = 1/α− `(ρ/C − 1) ≥ 1/α′ + `(1− ρ/C),

where the second equality follows from the definition of α. Finally, noting that α′ = − log(1−C/ρ)
` completes

the proof.

We now turn to the case where priorities are identical across schools. We define

(76) q(u) = Vpois(Λ(u,C), C).

We will prove that the following chain of inequalities hold:

AverageRank(M) =
1

Enrollment(I(0), C)

∫ Enrollment(I(0),C)

0

AR(q(u))du(77)

≤ 1

C

∫ C

0

AR(q(u))du(78)

≤
∫ 1

0

AR(q)dq(79)

≤ 1 + log(`).(80)

To evaluate AverageRank(M), we note that∫ ∑
h∈H

Mh(θ)Rh(θ)dηRSD(θ) = |H|Enrollment(I(0), C).(81)

∫ ∑
h∈H

Mh(θ)Rh(θ)dηRSD(θ) = ηRSD(Θ)

∫ 1

0

(1− (1− Vpois(I(p), C))`)AR(Vpois(I(p), C))dp.

We apply u-substitution to the latter integral, with u = Enrollment(I(p), C), so that

du

dp
= Vpois(I(p), C)I ′(p) = −η

RSD(Θ)

|H|
(1− (1− Vpois(I(p), C))`).

This yields

ηRSD(Θ)

∫ 1

0

(1− (1− Vpois(I(p), C))`)AR(Vpois(I(p), C))dp = |H|
∫ Enrollment(I(0),C)

0

AR(q(u))du,

which when combined with (81) yields (77).

We now establish (78). The function q given in (76) is decreasing, as is AR by Lemma 4. Therefore, (71)

and Lemma 3 imply (78).

We move on to establishing (79). Define f : [0, 1]→ R+ implicitly by

(82) Vpois(f(q), C) = q.

We note that
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(83) − d

dλ
Vpois(λ,C) = Vpois(λ,C)− Vpois(λ,C − 1) ≤ Vpois(λ,C).

Therefore, by (76) and (82), we have

1

C

∫ C

0

AR(q(u))du =
1

C

∫ 1

0

AR(q)
Vpois(f(q), C)

Vpois(f(q), C)− Vpois(f(q), C − 1)
dq.(84)

(85)

The function

h(λ) =
1

C

Vpois(λ,C)

Vpois(λ,C)− Vpois(λ,C − 1)

is decreasing in λ , from which it follows that h(f(q)) is increasing in q. Meanwhile, AR is decreasing in q

by Lemma 4. It follows that

(86)

∫ 1

0

AR(q)h(f(q))dq ≤
∫ 1

0

AR(q)dq

∫ 1

0

h(f(q))dq =

∫ 1

0

AR(q)dq.

The final inequality follows because by (82) and (14) we have∫ 1

0

h(f(q))dq =
1

C

∫ ∞
0

Vpois(λ)dλ = 1.

Finally, we show (80). We note that by u-substitution with 1− u = (1− q)`,∫ 1

ε

`(1− q)`

1− (1− q)`
dq =

∫ 1

1−(1−ε)`

(1− u)1/`

u
du.

Thus, we can write∫ 1

ε

AR(q)dq =

∫ 1

ε

1

q
− `(1− 1)`

1− (1− q)`
dq =

∫ 1−(1−ε)`

ε

1

q
dq +

∫ 1

1−(1−ε)`

1− (1− u)1/`

u
du

≤ log

(
1− (1− ε)`

ε

)
+ 1,

where the second line follows by evaluating the first integral and bounding the second using the fact that

(1− (1− u)1/`)/u ≤ (1− (1− u))/u = 1. Combining this with the fact that11∫ 1

0

AR(q)dq = lim
ε→0

∫ 1

ε

AR(q)dq.

implies (80).

�

11Despite appearances, AR is well-behaved at zero: for q > 0,

1 ≤
1

q
−

`(1− q)`

1− (1− q)`
≤
`+ 1

2
.
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