
GREEDY MATCHING IN BIPARTITE RANDOM GRAPHS

NICK ARNOSTI, COLUMBIA BUSINESS SCHOOL

THIS VERSION: APRIL 2021

Abstract. This paper studies the performance of greedy matching algorithms on bipartite graphs
G = (J ,D, E). We focus primarily on three classical algorithms: RANDOM-EDGE, which se-
quentially selects random edges from E ; RANDOM-VERTEX, which sequentially matches random
vertices in J to random neighbors, and RANKING, which generates a random priority order over
vertices in D and then sequentially matches random vertices in J to their highest-priority remain-
ing neighbor. Prior work has focused on identifying the worst-case approximation ratio for each
algorithm. This guarantee is highest for RANKING, and lowest for RANDOM-EDGE. Our work
instead studies the average performance of these algorithms when the edge set E is random.

Our first result compares RANDOM-VERTEX and RANDOM-EDGE, and shows that on aver-
age, RANDOM-VERTEX produces more matches. This result holds for finite graphs (in contrast
to previous asymptotic results), and also applies to “many to one” matching in which each vertex
in D can match with multiple vertices in J .

Our second result compares RANDOM-VERTEX and RANKING, and shows that the better
worst-case guarantee of RANKING does not translate into better average performance. In “one
to one” settings where each vertex in D can match with only one vertex in J , the algorithms
result in the same number of matches. When each vertex in D can match with two vertices in J ,
RANDOM-VERTEX produces more matches than RANKING.

1. Introduction

This paper studies the performance of greedy algorithms for many-to-one bipartite matching.
While bipartite matching has many applications, we adopt the terminology of scheduling “jobs” on
different “days.” Although maximum matchings can be found in polynomial time, there has been
considerable interest in understanding the performance of simple greedy algorithms. Performance
is traditionally measured by the worst case ratio between the size of the matching produced by the
algorithm and the size of a maximum matching. No deterministic greedy algorithm can provide a
guarantee above 1/2 (Karp et al. 1990), so attention has focused on randomized greedy algorithms.

One natural algorithm considers edges in a random order. We call this RANDOM-EDGE; it is
referred to as “simple case algorithm” by Tinhofer (1984), and “greedy” by Dyer and Frieze (1991).
Another algorithm schedules jobs sequentially, selecting among feasible days uniformly at random.
We call this RANDOM-VERTEX; it is referred to as “modified random greedy” by Aronson et al.
(1995) and “random” by Karp et al. (1990), and most subsequent work adopts one of these names.
A third alternative sequentially schedules jobs using a universal ordering over days. This approach
was introduced by Karp et al. (1990) under the name RANKING, which we also adopt.1

Dyer and Frieze (1991) show that the worst-case guarantee of RANDOM-EDGE is only 1/2. A
series of papers (discussed in more detail below) have established increasingly tight bounds for the
guarantees offered by RANDOM-VERTEX and RANKING; the tightest bounds of which we are

1Although we adopt the name RANKING, there is an important difference between our algorithm and that studied
by Karp et al. (1990): whereas they assume that the order in which jobs are considered is adversarial, most subsequent
work (including our own) assumes that this order is random. Similarly, the “random” algorithm of Karp et al. (1990)
assumes an adversarial order of jobs, whereas “modified random greedy” randomizes this order. As we discuss in
more detail below, randomizing arrival order allows for strictly better guarantees than those proved by Karp et al.
(1990).

1

2 NICK ARNOSTI, COLUMBIA BUSINESS SCHOOL THIS VERSION: APRIL 2021

Worst Case Ratio
RANDOM-EDGE 0.5
RANDOM-VERTEX [0.639, 0.646]
RANKING [0.696, 0.724]

Table 1. Worst-case approximation ratios for one-to-one bipartite matching, from prior
work. Although RANKING offers the best guarantee, on some graphs it is outperformed by
RANDOM-VERTEX and RANDOM-EDGE (see Figure 1). We study the average performance of
these algorithms. In one-to-one settings, RANKING and RANDOM-VERTEX have identical per-
formance, and both outperform RANDOM-EDGE. RANDOM-VERTEX continues to outperform
RANDOM-EDGE in many-to-one settings (Theorem 1), and outperforms RANKING in two-to-one
settings (Theorem 2).

aware are presented in Table 1. These bounds establish that of these algorithms, RANKING offers
the best guarantee, and RANDOM-EDGE the worst. Largely based on these worst-case bounds,
graduate students who study online matching learn that RANKING is a better algorithm for online
matching than RANDOM-VERTEX. Meanwhile, the following heuristic argument “explains” the
poor guarantee of RANDOM-EDGE: it disproportionately schedules high-degree jobs up front,
even though low-degree jobs intuitively face the greatest risk of going unassigned.

This reasoning and the bounds in Table 1 notwithstanding, there are in fact graphs where
RANDOM-VERTEX outperforms RANKING, and both are outperformed by RANDOM-EDGE
(see Figure 1). How common are these cases, and what is true on a “typical” graph? Does worst-
case analysis paint a representative picture of these algorithms’ performance?

We tackle these questions by comparing these algorithms’ average performance across all graphs
where jobs have a specified degree sequence. Our first result is that the aforementioned intuition for
the poor performance of RANDOM-EDGE can be made rigorous: for any specified degree sequence,
the average performance of RANDOM-VERTEX exceeds that of RANDOM-EDGE. Our second
result establishes that the apparent gap between RANDOM-VERTEX and RANKING does not
transfer to average performance: the two algorithms are equivalent for one-to-one matching, and
RANDOM-VERTEX produces more matches when two jobs can be assigned to each day.

In Section 1.1 we introduce our notation and formally define the algorithms RANDOM-EDGE,
RANDOM-VERTEX, and RANKING. Section 1.2 describes what is known about the worst-case
performance of these algorithms. Section 1.3 states our results, and compares these results to
existing average-case analyses. We prove our main results in Sections 2 and 3.

1.1. Preliminaries: Notation and Definitions. We adopt the terminology of assigning a set of
jobs J to a set of days D. Each job has associated scheduling constraints, which are captured by
the edge set E ⊆ J × D: the edge (j, d) ∈ E if and only if job j can be scheduled for day d. Each
day d has an associated capacity constraint Cd ∈ N, indicating the maximum number of jobs that
can be scheduled on that day. We adopt the following definitions.

Definition 1. Fix G = (J ,D, E), and C ∈ ND.

• A matching is a set of edges M⊆ J ×D.
• A matchingM is feasible (with respect to E and C) ifM⊆ E , and in the graph (J ,D,M),

each j ∈ J has at most one neighbor and each d ∈ D has at most Cd neighbors.
• A matchingM is maximal (with respect to E and C) if it is feasible, and for all e ∈ E\M,
M∪ {e} is not feasible.
• A matching M is maximum (with respect to E and C) if it is feasible, and no feasible

matching has more edges.

GREEDY MATCHING IN BIPARTITE RANDOM GRAPHS 3

j1 j4j3j2 j5 j6 j7 j8

d1 d4d3d2 d5 d6 d7 d8

j9 j11j10

d9 d11d10

(a) Expected unassigned jobs is < 0.704 under RANDOM-EDGE, 17/24 ≈ 0.708 under
RANDOM-VERTEX, and 17/24 + 1/48 ≈ 0.729 under RANKING.

j1 j4j3j2

d1 d4d3d2

(b) Expected unassigned jobs:
abc5/24 ≈ 0.21 under RANKING,
abc8/33 ≈ 0.24 under RANDOM-EDGE, and
abc1/4 = 0.25 under RANDOM-VERTEX.

j1 j3j2

d1 d3d2

(c) Expected unassigned jobs:
abc 11/24 ≈ 0.46 under RANDOM-VERTEX,
abc 8/15 ≈ 0.53 under RANDOM-EDGE, and
abc 13/24 ≈ 0.54 under RANKING.

Figure 1. Comparisons between RANKING, RANDOM-VERTEX, RANDOM-EDGE. Although
worst-case analysis suggests that RANKING performs best and RANDOM-EDGE worst (see Table
1), this ordering is reversed on the graph in 1a. For any pair of these algorithms, one performs
better on the graph in 1b, and the other performs better on the graph in 1c.

This paper considers greedy algorithms which are parameterized by a complete order �E on
J ×D. These algorithms start with M = ∅, and in the order given by �E , sequentially add edges
to M so long as the result remains feasible. We let M(E ,C,�E) denote the resulting matching.

Note that the order �E is non-adaptive, in that earlier matches do not affect the order in which
later edges are considered. This family of algorithms has been referred to as the ”query commit
problem” by Goel and Tripathi (2012) and the “oblivious matching model” by Tang et al. (2020).2

Although there are many ways to generate the order �E , several special cases are of particular
interest. The RANDOM-EDGE algorithm selects the order �E uniformly at random. A different
set of greedy algorithms consider jobs sequentially. They arise naturally in the context of online
matching, where the set of jobs is gradually revealed, and each job must be (irrevocably) scheduled
upon arrival. These algorithms are parameterized by an order �J in which jobs will be considered,
and a collection of rankings �D= {�Dj }j∈J , where �Dj is a ranking over days used when scheduling

job j. Formally, we define VI(�J ,�D) to be the order �E satisfying

(j, d) �E (j′, d′)⇔ j �J j′ or j = j′ and d �Dj d′.

Goel and Tripathi (2012) and Tang et al. (2020) refer to these as “vertex-iterative algorithms”, and
we choose the letters VI to align with this terminology. Both RANDOM-VERTEX, and RANKING
are special cases of vertex-iterative algorithms. RANDOM-VERTEX selects �J and the orders �Dj

2It is also closely related to the class of “randomized priority algorithms” described by Borodin et al. (2003) for a
class of scheduling problems.

4 NICK ARNOSTI, COLUMBIA BUSINESS SCHOOL THIS VERSION: APRIL 2021

independently and uniformly at random. RANKING selects the order �J and an order � on D
independently and uniformly at random, and sets �Dj =� for all j ∈ J .

1.2. Prior Work: Worst Case Analysis. Most existing analysis assumes one-to-one matching
(Cd = 1 for all d), and studies an algorithm’s worst-case approximation ratio: that is, the largest
number α such that the expected size of the matching produced by the algorithm is always at least
α times the size of a maximum matching.

Dyer and Frieze (1991) show that for RANDOM-EDGE, no guarantee greater than 1/2 is pos-
sible. Karp et al. (1990) study vertex-iterative algorithms in a setting where both the scheduling
constraints E and the job arrival order �J are adversarial, and only the orders �Dj can be cho-

sen. They show that if the �Dj are iid and uniformly distributed (the “random” algorithm) then

no guarantee greater than 1/2 is possible. They propose instead choosing the �Dj to be identical

(the “ranking” algorithm), and show that the expected size of the resulting matching is at least
1− 1/e ≈ 0.63 times the size of the maximum matching.3

Subsequent work has assumed that the arrival order �J is drawn uniformly at random, which
corresponds to the algorithms RANDOM-VERTEX and RANKING as described in this paper.
This enables stronger guarantees. Aronson et al. (1995) prove that RANDOM-VERTEX (which
they name “modified random greedy”) offers a guarantee of 1/2 + 2.5 × 10−6. This was state-of-
the-art until Poloczec and Szegedy (2012) proved4 1/2 + 1/256. In recent work, Tang et al. (2020)
prove a guarantee of 0.639, and establish an upper-bound of 0.646. For RANKING, Mahdian and
Yan (2011) establish a guarantee of 0.696 and Karande et al. (2011) provide an upper bound of
0.727 which has since been improved to 0.724 by Chan et al. (2018).5 Table 1 summarizes our
knowledge of the worst-case performance guarantee for each algorithm.

There is a natural intuition that it is best to start by scheduling low-degree jobs. A variant of
RANDOM-VERTEX which does this was proposed by Tinhofer (1984) and subsequently dubbed
“MINGREEDY.” Frieze et al. (1995) show that this algorithm performs well on random cubic
graphs, but somewhat surprisingly, Besser and Poloczek (2017) show that its worst-case guarantee
is the trivial one of 1/2.

1.3. Our Results: Average Case Analysis. This paper considers the performance of these
greedy algorithms when the scheduling constraints E are random, as defined below.

Definition 2. For any J ,D and N̄ ∈ {0, 1, . . . , |D|}J , define ψ(N̄) to be the uniform distribution
over edge sets E for which each j ∈ J has exactly N̄j neighbors.

Note that one can sample from ψ(N̄) by allowing each j ∈ J to independently select N̄j neighbors
in D uniformly at random. This family of bipartite random graphs has previously been studied in
the context of cuckoo hashing (Dietzfelbinger et al. 2010, Fountoulakis and Panagiotou 2012, Frieze
et al. 2018).

Our first result establishes that for this family of random graphs, the size of the matching
generated by RANDOM-VERTEX stochastically dominates the size of the matching generated by
RANDOM-EDGE.

Theorem 1. Fix J ,D, C ∈ ND and N̄ ∈ {0, 1, . . . |D|}J . If E is drawn from ψ(N̄), then ∀k ∈ N,
P(|M(E ,C,RANDOM-VERTEX)| ≥ k) ≥ P(|M(E ,C,RANDOM-EDGE)| ≥ k).

3Although the results claimed by Karp et al. (1990) are correct, Goel and Mehta (2008) observed and corrected
an error in their original analysis.

4Chan et al. (2018) comment that there are several gaps in their proof.
5It is possible to generalize RANDOM-VERTEX and RANKING to general (non-bipartite) graphs. Of course,

this results in lower worst-case performance. Goel and Tripathi (2012) claimed a guarantee of 0.56 for RANKING,
but retracted the paper after errors were found. Chan et al. (2018) establish a guarantee of 0.523 for RANKING, and
recent work by Tang et al. (2020) establishes a guarantee of 0.531 for both RANDOM-VERTEX and RANKING.

GREEDY MATCHING IN BIPARTITE RANDOM GRAPHS 5

Note that this immediately implies the corresponding result when the values N̄j are drawn from
an arbitrary joint distribution (i.e. the case of bipartite Erdös-Renyi graphs). Appendices A.1 and
A.2 establish that this result continues to hold in extensions where jobs have different “sizes” and
the neighbors of each job are drawn from a non-uniform distribution.

Our second result says while RANKING offers better worst-case guarantees than RANDOM-VERTEX,
this does not result in better average performance. In fact, when each day has capacity Cd = 1 (as
much of the literature assumes), RANKING and RANDOM-VERTEX have identical performance,
and when each day has capacity Cd = 2, RANDOM-VERTEX produces a stochastically larger
matching.

Theorem 2. Fix J ,D, and N̄ ∈ {0, 1, . . . |D|}J , and let E be drawn from ψ(N̄).
If Cd = 1 for all d ∈ D, then for all k ∈ N,

P(|M(E ,C,RANDOM-VERTEX)| ≥ k) = P(|M(E ,C,RANKING)| ≥ k).

If Cd = 2 for all d ∈ D, then for all k ∈ N,

P(|M(E ,C,RANDOM-VERTEX)| ≥ k) ≥ P(|M(E ,C,RANKING)| ≥ k).

In fact, when Cd = 1 for all days, all vertex-iterative algorithms that consider jobs in the same
order have equivalent performance: the preferences of individual jobs do not affect the distribution
of the size of the resulting matching. Therefore, Theorem 1 implies that any vertex-iterative
algorithm that considers jobs in a random order results in a stochastically larger matching than
RANDOM-EDGE.

The intuition for the second claim is that when jobs use the same order, highly-ranked days
tend to be chosen by many jobs. As a result, they reach their capacity quickly. This increases the
probability that later jobs go unassigned. We conjecture that RANDOM-VERTEX continues to
yield a stochastically larger matching when all days have identical capacity Cd = C > 2.6 At the
end of Section 3, we present simulations supporting this conjecture, and explain why our current
proof does not extend to this case.

1.4. Prior Work: Average Case Analysis. We are not the first paper to conduct average-case
analysis of these greedy matching algorithms. Dyer et al. (1993) study the asymptotic performance
of RANDOM-EDGE and RANDOM-VERTEX (which they refer to as “GREEDY” and “MODI-
FIED GREEDY,” respectively) on two families: sparse Erdös-Renyi random graphs, and random
labeled trees. For both families, they show that as the number of vertices grows large, the expected
matching size is larger under RANDOM-VERTEX than under RANDOM-EDGE. Although our
results are technically incomparable because we study bipartite random graphs, Theorem 1 is
“stronger” than this result in several ways.

• It holds for graphs of arbitrary size, rather than only asymptotically.
• It allows vertices in D to have arbitrary capacities, rather than assuming Cd = 1 ∀d.
• It allows for an arbitrary degree distribution among vertices in J , rather than the binomial

distribution that arises in Erdös-Renyi random graphs.

To our knowledge, the only other paper that attempts a non-asymptotic average-case comparison
of RANDOM-EDGE and RANDOM-VERTEX is Tinhofer (1984). That analysis is restricted to
the case of Erdös-Renyi random graphs, and a comparison between the algorithms is provided only
when each edge is present in E with probability exceeding 1/2.

6When days have unequal capacities, it is possible for RANKING to outperform RANDOM-VERTEX. Consider
an example with two days. For half of jobs, both days are feasible; for the other half, only one (randomly selected)
day is feasible. If Cd1 = 1

4
|J | and Cd2 = 3

4
|J |, then as |J | → ∞, the expected fraction of unassigned jobs approaches

1/12 under RANKING, 1/8 under RANDOM-VERTEX, and 0 under a maximum matching.

6 NICK ARNOSTI, COLUMBIA BUSINESS SCHOOL THIS VERSION: APRIL 2021

Lemma 4 in Mastin and Jaillet (2018) notes that on Erdös-Renyi random graphs, the perfor-
mances of RANKING and RANDOM-VERTEX are identical. The first part of Theorem 2 general-
izes their result by allowing for an arbitrary degree distribution among vertices in J . Furthermore,
our proof clarifies that this equivalence relies only on randomness of the edge set E , and not on
randomness of the algorithms themselves. We are unaware of any results similar to the second part
of Theorem 2, which compares RANKING and RANDOM-VERTEX when multiple jobs can be
assigned to each day.

2. Proof of Theorem 1

The key intuition underlying the proof of Theorem 1 is that it is best to start by scheduling
jobs with few feasible days, because jobs with many feasible days can likely be scheduled later.
RANDOM-EDGE does the opposite: at each step, jobs with more feasible days are more likely to
be scheduled. Meanwhile, RANDOM-VERTEX schedules jobs in a random order, and thus is more
likely than RANDOM-EDGE to schedule low-degree jobs.

To formalize this idea, Section 2.1 describes Markov chains corresponding to procedures RANDOM-
EDGE and RANDOM-VERTEX. In each Markov chain, the matchingM is constructed iteratively,
starting with M0 = ∅ and adding one edge at a time. Rather than revealing the random edges E
initially, these chains start with E0 = ∅ and reveal an edge e = (j, d) ∈ E only when either i) j is
matched, or ii) d reaches its capacity. Potential edges between unassigned jobs and days with excess
capacity remain unobserved. The size of the matching generated by each procedure corresponds to
the number of steps before the full edge set E is revealed (implying that no more matches can be
formed).

Section 2.2 couples these chains such that the number of unrevealed edges under RANDOM-
VERTEX is always weakly larger than the corresponding number under RANDOM-EDGE. When-
ever the number of jobs with at least k unrevealed edges is identical in the two chains, the coupling
ensures that if the next job assigned under RANDOM-VERTEX has at least k unrevealed edges,
then so does the next job assigned under RANDOM-EDGE. Figure 2 provides an illustration of
each chain, and the coupling between them.

2.1. Proof Step 1: Markov Chain Description. Throughout, we fix a number of feasible days
N̄j for each job j and capacities Cd for each day d. For both RANDOM-VERTEX and RANDOM-
EDGE, we start with an empty edge set and matching E0 =M0 = ∅. At each step t, we add one
edge between an unscheduled job and a day with idle capacity to the matchingMt (if no such edge
exists, then our procedure has finished). We also reveal any edges involving matched jobs or days
with no remaining capacity and add these to the edge set Et. This ensures that unrevealed edges
are precisely those that can be feasibly added to Mt. In other words, for any e = (j, d),

Mt ∪ {e} is feasible⇔ e ∈ E\Et.
Given a set of edges Et and a feasible matching Mt ⊆ Et, define

Id(Mt) = Cd − |{e ∈Mt : e = (j, d) for some j}| Idle capacity on day d.(1)

Nj(Et) = N̄j − |{e ∈ Et : e = (j, d) for some d}| Number of unknown feasible days for job j.(2)

Fk(Et) = |{j : Nj(Et) = k}| Number of jobs with k unknown feasible days.(3)

We now describe procedures for adding edges to Mt corresponding to each algorithm. For each
procedure, step t+ 1 consists of four stages. For RANDOM-VERTEX these stages are as follows.

V1 Reveal the next job to be assigned. Select a uniform random job jt+1 from the set of
unassigned jobs for which at least one feasible day has idle capacity:

(4) P(jt+1 = j|Mt, Et) =
1(Nj(Et) > 0))∑
j′ 1(Nj′(Et) > 0)

.

GREEDY MATCHING IN BIPARTITE RANDOM GRAPHS 7

V2 Reveal feasible days for jt+1. Select Dt+1 ⊆ {d : Id(Mt) > 0} uniformly at random
among subsets of size Njt+1(Mt), and define

(5) At+1 = {(jt+1, d) : d ∈ Dt+1}.

V3 Assign jt+1 to a feasible day. Select dt+1 uniformly at random from Dt+1, and set

(6) Mt+1 =Mt ∪ (jt+1, dt+1).

Note that steps V2 and V3 imply that dt+1 is selected uniformly at random from days with
idle capacity. That is,

(7) P(dt+1 = d|Mt, Et, jt+1) =
1(Id(Mt) > 0)

|{d : Id(Mt) > 0}|
.

V4 If dt+1 has no remaining capacity, reveal neighbors of dt+1 in E. Draw independent
binary random variables {B(t+1)j}j∈J , with

(8) P(B(t+1)j = 1|Et,Mt, jt+1, Dt+1, dt+1) =
Nj(Et)

|{d : Id(Mt) > 0}|
1(j 6= jt+1)1(Idt+1(Mt+1) = 0).

Set

(9) Bt+1 = {(j, dt+1) : B(t+1)j = 1}

(10) Et+1 = Et ∪ At+1 ∪ Bt+1.

Meanwhile, for RANDOM-EDGE we have the following.

E1 Reveal the job jt+1 which has the highest-ranking edge in E\Et (according to �E):

(11) P(jt+1 = j|Mt, Et) =
Nj(Et)∑
j′ Nj′(Et)

.

E2 Reveal feasible days for jt+1. (Identical to V2).
E3 Assign jt+1 to a feasible day. (Identical to V3).
E4 If dt+1 has no remaining capacity, reveal neighbors of dt+1 in E. (Identical to V4).

Note that the only difference between the procedures is that step V1 selects an unassigned job
uniformly at random among those with at least one feasible day remaining, whereas step E1 selects
among these jobs in proportion to the number of feasible days remaining.

Both procedures terminate when no more edges can be added – that is, Fk(Et) = 0 for all k ≥ 1.

2.2. Proof Step 2: Coupling. In what follows, we use the superscript V to denote the chain
corresponding to RANDOM-VERTEX, and E to denote the chain corresponding to RANDOM-
EDGE. In other words, MV

t , EVt refer to the (random) edges and matching generated after t steps
of V1-V4, and ME

t , EEt to the (random) edges and matching generated after t steps of E1-E4. For
X ∈ {V,E}, let jXt+1 be the job assigned at step t+ 1, let DX

t+1 be the days to which this job could

feasibly be assigned, and let dXt+1 be the day to which this job is actually assigned. Let τX be the

time satisfying Fk(EXτX) = 0 for all k ≥ 1. In other words, τX is the time at which it is no longer

possible to add feasible edges to MX
t . We also recall (1), which defines I(M) ∈ ND to be a vector

indicating the idle capacity for each day, given matching M. The following Lemma immediately
implies Theorem 1.

8 NICK ARNOSTI, COLUMBIA BUSINESS SCHOOL THIS VERSION: APRIL 2021

RANDOM-VERTEX RANDOM-EDGE

j1 j2 j3 j4 j5

d1 d2 d3 d4 d5

1 2 1 2

j1 j2 j3 j4 j5

d1 d2 d3 d4 d5

1 2 1 2

A match is formed between j1 and d2. Throughout, (12) ensures that the set of assigned days is identical for the
two chains. Because (16) is tight, the coupling ensures that the revealed (red dashed) edges for the two chains

coincide. It is revealed that d2 was also feasible for j2 and j4.

j1 j2 j3 j4 j5

d1 d2 d3 d4 d5

1 1 2

j1 j2 j3 j4 j5

d1 d2 d3 d4 d5

1 1 2

The next match under RANDOM-VERTEX involves j3, for which two remaining days are feasible. Because (13) is
tight, the coupling ensures that the next match under RANDOM-EDGE also involves a job for which two

remaining days are feasible. Because (16) is tight, the (empty) sets of revealed edges coincide. Jobs j2 and j4 are
more likely to go unassigned than j5, for which two of {d1, d3, d5} are feasible.

j1 j2 j3 j4 j5

d1 d2 d3 d4 d5

1 1

j1 j2 j3 j4 j5

d1 d2 d3 d4 d5

1 0

Because (13) is tight, the next job assigned under RANDOM-EDGE has weakly more remaining feasible days (see
Lemma 2). The next match under RANDOM-VERTEX involves j4, whereas under RANDOM-EDGE it involves j5.

For the first time, φ is not the identity: it permutes j4 and j5. Job j4 can no longer be feasibly assigned under
RANDOM-EDGE.

j1 j2 j3 j4 j5

d1 d2 d3 d4 d5

1

j1 j2 j3 j4 j5

d1 d2 d3 d4 d5

0

RANDOM-EDGE must match j2. RANDOM-VERTEX randomly selects which of j2 and j5 to match. Job j2 is
assigned to d1, and it is revealed that d1 was not feasible for j5. RANDOM-EDGE has completed, whereas

RANDOM-VERTEX will continue for one more step.

Figure 2. A visualization of the chains corresponding to RANDOM-VERTEX and RANDOM-
EDGE on an instance with five jobs and five days. Each job has two feasible days, and only one job
can be scheduled for each day. In each step, an unscheduled job is assigned to one remaining feasible
day (solid green line), and the set of other jobs that were feasible for this day is revealed (dashed
red lines). The numbers above each job denote the number of remaining feasible days. Under
RANDOM-VERTEX, jobs are selected in uniformly at random, whereas under RANDOM-EDGE,
they are selected in proportion to the number of remaining feasible days.

GREEDY MATCHING IN BIPARTITE RANDOM GRAPHS 9

Lemma 1. There exists a coupling of (MV
t , EVt) and (ME

t , EEt) such that for all t ≤ τE and all
k ∈ {1, . . . , |D|} the following hold:

I(MV
t) = I(ME

t).(12) ∑
i≥k

Fi(EVt) ≥
∑
i≥k

Fi(EEt).(13)

Proof. Proof. First, (7) implies that if I(MV
t) = I(ME

t), then regardless of the realizations
jVt+1, j

E
t+1, the chains can be coupled so that dVt+1 = dEt+1, and therefore (6) implies I(MV

t+1) =

I(ME
t+1). In light of this fact, we write dt+1 in place of dVt+1 = dEt+1, and I(Mt) in place of

I(MV
t) = I(ME

t).
We now turn to (13). For X ∈ {V,E} we define

(14) AXt+1 = {(jXt+1, d) : d ∈ DX
t+1}

Lemma 2 states that it is possible to couple AVt+1,AEt+1 such that

(15)
∑
i≥k

Fi(EVt ∪ AVt+1) ≥
∑
i≥k

Fi(EEt ∪ AVt+1).

That is, an analog of (13) holds after stages V3 and E3. If Idt+1(Mt+1) > 0, then by (8) and (9)

BVt+1 = BEt+1 = ∅, so for X ∈ {V,E}, (10) implies that EXt+1 = EXt ∪AXt+1, and there is nothing more
to do.

Otherwise, we must couple BV
t+1 and BE

t+1. It follows from (15) that there exists a permutation

φ on J such that φ(jVt+1) = jEt+1, and for all j,

(16) Nj(EVt ∪ AVt+1) ≥ Nφ(j)(EEt ∪ AEt+1).

For each j, if equality holds in (16), couple BV
(t+1)j and BE

(t+1)φ(j) such that BV
(t+1)j = BE

(t+1)φ(j). If

the inequality in (16) is strict, generate BV
(t+1)j and BE

(t+1)φ(j) independently. This ensures that

(17) Nj(EVt+1) = Nj(EVt ∪ AVt+1 ∪ BVt+1) ≥ Nφ(j)(EEt ∪ AEt+1 ∪ BEt+1) = Nφ(j)(EEt+1)

for all j, and therefore that (13) holds. �

Lemma 2. If (13) holds, then it is possible to couple AVt+1,AEt+1 such that for k ∈ {1, . . . , |D|},∑
i≥k

Fi(EVt ∪ AVt+1) ≥
∑
i≥k

Fi(EEt ∪ AEt+1).

Proof. Proof. For X ∈ {V,E} define KX
t+1 = Njt+1(EXt) to be the number of feasible days for job

jt+1 that still have idle capacity. Then the definition of AXt+1 in (5) implies that for k ∈ {1, . . . , |D|},∑
i≥k

Fi(EXt ∪ AXt+1) =
∑
i≥k

Fi(EXt)− 1(KX
t+1 ≥ k).

Thus, it is enough to show that if
∑

i≥k Fi(EVt) =
∑

i≥k Fi(EEt), it is possible to couple KV
t+1 and

KE
t+1 such that KV

t+1 ≥ k implies that KE
t+1 ≥ k. In other words, we must show that

P(KE
t+1 ≥ k|ME

t , EEt) ≥ P(KV
t+1 ≥ k|MV

t , EVt).

Note that (4) implies that for i ≥ 1,

P(KV
t+1 = i|MV

t , EVt) =
Fi(EVt)∑
j≥1 Fj(EVt)

.

10 NICK ARNOSTI, COLUMBIA BUSINESS SCHOOL THIS VERSION: APRIL 2021

Analogously, (11) implies that

P(KE
t+1 = i|ME

t , EEt) =
iFi(EEt)∑
j≥1 jFj(EEt)

.

It follows that if
∑

i≥k Fi(EVt) =
∑

i≥k Fi(EEt), then

P(KV
t+1 ≥ k|MV

t , EVt) =

∑
i≥k Fi(EVt)∑
i≥1 Fi(EVt)

≤
∑

i≥k Fi(EVt)∑
i≥1 Fi(EEt)

=

∑
i≥k Fi(EEt)∑
i≥1 Fi(EEt)

≤
∑

i≥k iFi(EEt)∑
i≥1 iFi(EEt)

= P(KE
t+1 ≥ k|ME

t , EEt).

The first inequality follows from (13), and the final inequality follows because∑
i≥k Fi(EEt)∑
i≥1 Fi(EEt)

=

1 +
∑
i<k

kFi(EEt)/
∑
i≥k

kFi(EEt)

−1

≤

1 +
∑
i<k

iFi(EEt)/
∑
i≥k

iFi(EEt)

−1 =

∑
i≥k iFi(EEt)∑
i≥1 iFi(EEt)

.

The inequality follows because replacing k with i makes the numerator smaller and the denominator
bigger, and therefore decreases the quantity in parentheses (which is then inverted). �

3. Proof of Theorem 2

The proof of Theorem 2 relies on coupling Markov chains corresponding to RANDOM-VERTEX
and RANKING. However, the chain for RANDOM-VERTEX is different from the chain used to
prove Theorem 1. Therefore, we begin by describing both Markov chains in Section 3.1, and then
show how they can be coupled to prove the result in Section 3.2.

3.1. Proof Step 1: Markov Chain Descriptions. We begin by defining Markov chains which
describe the matching procedures RANDOM-VERTEX and RANKING. In both chains, we fix the
order �J , and label jobs so that j1 �J j2 �J · · · �J j|J |. At each step t, the chains will attempt
to match job jt.

Given any matching M and d ∈ D, let Id(M) be the idle capacity of day d as defined in (1),
and define

Di(M) = {d : Id(M) = i}, Di(M) = |Di(M)|.(18)

D+(M) = D\D0(M), D+(M) = |D+(M)|.(19)

We refer to days with no idle capacity (days in D0(M)) as “unavailable,” and days with idle capacity
(days in D+(M)) as “available.” We say that day d is “feasible” for job j if (j, d) ∈ E .

We start with an empty matching, and attempt to match j1. Suppose that the order �Dj1 in
which j1 considers days is known, but feasible days for j1 have not yet been revealed. If j1 has N

GREEDY MATCHING IN BIPARTITE RANDOM GRAPHS 11

feasible days, it j1 will choose the kth ranked day (according to �Dj1) with probability

(20) f(k,N) =

(
|D| − k
N − 1

)
/

(
|D|
N

)
.

This is because the numerator counts the number of subsets of D of size N that include the kth-
ranked day and no higher-ranked day. Note that when N = 1, all days are equally likely, but
as N grows, higher-ranked days become increasingly likely. At the extreme where N = |D|, the
highest-ranked day is chosen with certainty.

In general, some days may no longer be available at step t. Thus, the probability that job jt
matches to a particular day depends not only on the ranking over days �Djt but also on the set of
available days: day d is selected whenever it is the highest-ranked feasible and available day. For
any order over days �, any subset of days D′ ⊆ D, and any day d ∈ D′, define

(21) Rank(d | D′,�) = 1 + |{d′ ∈ D′ : d′ � d}.
to be the ranking of d among days in D′. In step t, each day d ∈ D+(Mt−1) has effectively been
“promoted”: the probability that job jt matches to d given that Mt−1 =M, and �Djt=� is

(22) qt(d | M,�) =

{
0 : d ∈ D0(M).
f(Rank(d | D+(M),�), N̄jt) : d ∈ D+(M).

We also define

qt(∅ | M,�) = 1−
∑
d∈D

qt(d | M,�)

=

(
D0(M)

N̄jt

)
/

(
|D|
N̄jt

)
.(23)

to be the probability that job jt goes unassigned. Note that the second equality follows because
jt goes unassigned if and only if all of its feasible days are unavailable. Because the probability of
this does not depend on the order �, we sometimes write qt(∅ | M) in place of qt(∅ | M,�).

From these expressions, there is a natural Markov chain description of both procedures. Start
from an empty matching, and at each step t, reveal the order in which job jt will consider days
and the feasible days for jt, and use these to determine the day (if any) to which jt is matched.
Instead, we will define chains that reveal only the match outcome for jt. As a result, the state (and
history) are fully tracked by the matching Mt consisting of the matches after jobs j1, . . . , jt have
been considered.

3.1.1. Markov Chain Description of RANDOM-VERTEX.
Let O be the set of orderings of days. Under RANDOM-VERTEX, the orders �Dj are drawn

uniformly at random from O. Therefore, the probability that day d is assigned at step t given
Mt−1 =M is

(24) pVt (d | M) =
1

|D|!
∑
�∈O

qt(d | M,�).

By symmetry, each available day is equally likely to match next. Therefore, the matching process
for RANDOM-VERTEX can be described by the following Markov chain. Start withMV

0 = ∅, and
at step t, do the following:

V1. With probability qt(∅ | MV
t), job jt goes unassigned: MV

t =MV
t−1.

V2. Otherwise, match jt to a uniformly random day dt ∈ D+(MV
t−1): MV

t =MV
t−1 ∪ (jt, dt).

It follows from this description that equation in (24) can be re-expressed as

(25) pVt (d | M) =

{
0 : d ∈ D0(M).
1−qt(∅|M)
D+(M) : d ∈ D+(M).

12 NICK ARNOSTI, COLUMBIA BUSINESS SCHOOL THIS VERSION: APRIL 2021

3.1.2. Markov Chain Description of RANKING.
As mentioned above, our Markov chain will not reveal the feasible days for each job or the

universal order �D over days. Instead, it reveals only which day (if any) each job is matched to.
From this, we must make inferences about �D, and through this, about the probability that each
day will be selected at the next step.

Given a matchingM, let dt(M) be the day to which job jt is assigned inM (with dt = ∅ if jt is
unassigned), and let Mt denote the subset of the matching involving jobs j1, . . . , jt. For any order
over days �, the likelihood of Mt given that all jobs consider days in the order � is

(26) Pt(M |�) =

t∏
s=1

qs(ds(M) | Ms−1,�).

Because �D is drawn uniformly at random from the set of order over days O, Bayes’ theorem
implies that for any �∈ O, the conditional probability that �D equals � given Mt =M is

(27) Pt(�| M) =
Pt(M |�)∑
�′∈O Pt(M |�′)

.

From this, we can compute the conditional probability that job j is assigned to day d, given
Mt−1 =M:

(28) pRt (d | M) =
∑
�∈O

Pt−1(�| M)qt(d | M,�).

Putting everything together, we have the following Markov chain description of RANKING.
Start with MR

0 = ∅, and at step t, do the following.

R1. For each d ∈ D+(MR
t−1),with probability pRt (d | MR

t−1), match jt to d: MR
t =MR

t−1∪(jt, d).

R2. Otherwise job jt goes unassigned: MR
t =MR

t−1.

Note that the conditional probability that job jt goes unassigned is qt(∅ | MR
t−1).

3.2. Proof Step 2: Coupling. The claim when Cd = 1 for all d follows almost immediately
from the Markov chain descriptions. At each step t, (23) says that the probability that jt matches
depends only on the number of unavailable days, and not on the order �. Thus, so long as the
number of unavailable days is equal for the two chains after step t− 1, they can be coupled so that
jt matches in MV

t if and only if it matches in MR
t . Because Cd = 1 for all days, the number of

unavailable days is equal to the number of matches, and thus it remains equal for the two chains
after step t.

We now turn to the claim when Cd = 2 for all d, and show that under RANKING, days which
have one assigned job are weakly more likely to be selected next than days which have no assigned
jobs. The intuition is that having been previously selected is a positive signal about d’s position in
the ranking �D.

Lemma 3. Suppose that Cd = 2 for all d. If d1 ∈ D1(MR
t−1) and d2 ∈ D2(MR

t−1), then

pRt (d2 | MR
t−1) ≤ pRt (d1 | MR

t−1).

As a result, ∑
d∈D2(MR

t−1)

pRt (d | MR
t−1) ≤

∑
d∈D2(MR

t−1)

pVt (d | MR
t−1).

The second part of the lemma says that the chance that jt+1 is assigned to a day with no assigned
job is lower than it would be if jt were to draw a new random order over days (rather than using
the universal order �D).

GREEDY MATCHING IN BIPARTITE RANDOM GRAPHS 13

Proof. Throughout this proof, we fix t, and the matching MR
t−1, and remove explicit reference to

these objects in order to reduce notational clutter. Thus, (28) will be written as

pR(d) =
∑
�

P(�)q(d |�).

Given any order over days �, let �′ denote the order which is identical to � except that d1 and
d2 are transposed. Then we can express the difference pR(d1)−pR(d2) using the following sum over
orders in which d1 precedes d2:

(29) pR(d1)− pR(d2) =
∑

{� : d1�d2}

P(�) (q(d1 |�)− q(d2 |�)) + P(�′)
(
q(d1 |�′)− q(d2 |�′)

)
.

Note that (21) and (22) imply that q(d| �) depends only on d’s rank (according to �) among
available days. Therefore, exchanging the positions of d1 and d2 exchanges their probability of
being selected: q(d2 |�) = q(d1 |�′), and q(d2 |�′) = q(d1 |�). We can substitute these equalities
into (29) to get

(30) pR(d1)− pR(d2) =
∑

{� : d1�d2}

(
P(�)− P(�′)

) (
q(d1 |�)− q(d1 |�′)

)
.

We claim that for every � such that d1 � d2,
q(d1 |�)− q(d1 |�′) ≥ 0(31)

P(�) − P(�′) ≥ 0.(32)

From this, (30) implies the first claim of Lemma 3.
Both (31) and (32) follow from (20), (21) and (22), which jointly imply that d1 is more likely to

be selected under the order � in which it appears earlier. This directly implies (31). To see that it
also implies (32), note that by (27), (32) is equivalent to

P(MR
t−1 |�) ≥ P(MR

t−1 |�′).
By (26), each of these likelihoods can be expressed as a product of t− 1 terms, and the only term
that differs is the one corresponding to the step at which d1 was selected. But (20), (21) and (22)
imply that this term is (weakly) larger for � than �′. Therefore (32) holds, completing the proof
of the first claim of Lemma 3.

We now turn to the second claim. The argument is fairly simple, so we present it in English,
rather than symbolically. Note that pR(d) gives the chance that jt matches to d when it uses the
order �D used by all previous jobs, while pV (d) gives the chance that jt matches to d when it uses
a uniformly random order. In this case, jt is equally likely to match to each available day. When
using the order �D, the first part of the Lemma establishes that days in D2 are the least likely to
be matched. Because the overall probability that jt matches (that is, the probability of matching
to a day in D1 or D2) does not depend on the order in which jt considers days, it follows that jt is
less likely to match to a day in D2 when using the order �D. �

Next, we use Lemma 3 to demonstrate that the chains MR and MV can be coupled such that
under MR there are more days with two unfilled positions and more unfilled positions overall.

Lemma 4. Suppose that Cd = 2 for all d. There exists a coupling of the chainsMR andMV such
that at each step t,

D2(MR
t) ≥ D2(MV

t)(33)

2D2(MR
t) +D1(MR

t) ≥ 2D2(MV
t) +D1(MV

t).(34)

Note that for any matchingM, |M|+D1(M) + 2D2(M) =
∑

dCd = 2|D|, so (34) is equivalent
to |MV

t | ≥ |MR
t |. In other words, Lemma 4 immediately implies the Cd = 2 case of Theorem 2.

14 NICK ARNOSTI, COLUMBIA BUSINESS SCHOOL THIS VERSION: APRIL 2021

Proof. The proof is by induction. Both inequalities trivially hold at t = 0, so we assume that
(33) and (34) holds for MR

t−1 and MV
t−1, and show that the chains can be coupled such that this

continues to hold at step t. To simplify notation, we write DR
i and DV

i in place of Di(MR
t−1) and

Di(MV
t−1), and DRi and DVi in place of Di(MR

t−1) and Di(MV
t−1).

Notice that the expressions on both sides of (33) and (34) are integer-valued, and can only stay
the same or decrease by one when moving from Mt−1 to Mt. Therefore, if either inequality is
strict at time t− 1, it will continue to hold at time t. This leaves three possibilities to consider:

• Both (33) and (34) hold with equality.
• Equation (33) holds strictly but (34) holds with equality.
• Equation (34) holds strictly but (33) holds with equality.

If both (33) and (34) hold with equality, then DR
i = DV

i for i ∈ {0, 1, 2}. It follows from (23)
that the chance that jt matches is equal under the two chains, so the chains can be coupled so
that a match forms in MR whenever one forms in MV , ensuring that (34) continues to hold with
equality. Furthermore, Lemma 3 implies that the chance that jt is assigned to a day in D2 is smaller
under MR than MV , so the chains can be coupled such that (33) continues to hold.

If equation (33) holds strictly but (34) holds with equality, it follows that DR
2 +DR

1 < DV
2 +DV

1 ,
and therefore that DR

0 > DV
0 . That is, there are more unavailable days in chainMR. By (23), this

implies that job jt is weakly more likely to match in MV than MR. Therefore, we can couple the
chains such that whenever jt matches inMR, it also matches inMV , ensuring that (34) continues
to hold at step t.

The trickiest case is when (33) holds with equality and (34) holds strictly. In order to ensure
that (33) continues to hold at step t, we must show that we are more likely to assign jt to a day
with two remaining slots under RANDOM-VERTEX – that is,

pRt (DR2 |MR
t−1) ≤ pVt (DV2 |MV

t−1),

where for X ∈ {V,R} and D′ ⊆ D, we use pXt (D′ | M) as shorthand for
∑

d∈D′ p
X
t (d | M). Lemma

3 states that

pRt (DR2 | MR
t−1) ≤ pVt (DR2 | MR

t−1).

Therefore, it suffices to show that

(35) pVt (DR2 | MR
t−1) ≤ pVt (DV2 |MV

t−1).

By (24), the left side of this inequality gives the probability that jt matches to a day that is
unmatched in MR

t−1, if jt considers days in a uniformly random order (rather than the order �D).

Meanwhile, the right side is the probability that jt matches to a day that is unmatched in MV
t−1

(again when jt considers days in a uniformly random order).
From (25) it follows that for any d ∈ D+(M),

pVt (D2(M) | M) = D2(M)pVt (d | M).

By (25) and (23), pVt (d | M) depends on M only through D0(M). By (24), pVt (d | M) is
increasing in D0(M): for any order �, increasing the number of unavailable days weakly improves
d’s effective rank. Thus, to establish (35), it suffices to show that DR

2 = DV
2 and DR

0 < DV
0 . These

follow immediately from the assumption that (33) holds with equality and (34) holds strictly. �

We now briefly discuss why our proof applies only when days have identical capacity C ≤ 2. The
intuition underlying Lemma 3 is that days which have been selected more often in the past should
be more likely to be selected in the future. While this should continue to hold “on average” when
C > 2, it no longer can be made to hold along each sample path. The reason is that although being
selected is always a positive signal about a day’s position in �D, the strength of this signal depends
on the number of other feasible and available days. To illustrate, consider a simple case with only
two days. Both days are feasible for the first job, which chooses d1. This reveals that d1 �D d2.

GREEDY MATCHING IN BIPARTITE RANDOM GRAPHS 15

(a) Each job has 3 feasible days, there are |D| = 10
days, and the capacity of each day varies. For a
balanced market, the difference between RANKING
and RANDOM-VERTEX increases with C.

(b) Each job has 3 feasible days, each day has
capacity C = 10, and the number of days
varies. The difference between RANKING and
RANDOM-VERTEX increases with |D|.

Figure 3. Simulations comparing unmatched jobs under RANKING and RANDOM-VERTEX
when all days have identical capacity C, for various |J |, |D|, and C. The x-axis shows the ratio of
jobs to total capacity |J |/(C×|D|), while the y-axis gives the difference in the fraction of jobs that
are unmatched (|MV | − |MR|)/|J |. Theorem 2 proves that when C = 2, RANDOM-VERTEX
matches more jobs than RANKING. The simulations show that this also holds when C > 2.

(a) All jobs have N feasible days. Increasing N de-
creases unmatched jobs under both RANKING and
RANDOM-VERTEX.

(b) Half of jobs have N feasible days, the rest have
1 feasible day. Increasing N decreases unmatched
jobs under RANDOM-VERTEX, but often increases
unmatched jobs under RANKING.

Figure 4. Simulations when |D| = 10 and all days have capacity C = 10. The y-axis shows the
difference between the number of unmatched jobs and the minimum possible number of unmatched
jobs max(|J | − C|D|, 0). Differences between RANDOM-VERTEX and RANKING are biggest
when the number of feasible days varies significantly across jobs.

16 NICK ARNOSTI, COLUMBIA BUSINESS SCHOOL THIS VERSION: APRIL 2021

Suppose that the next two jobs have only one feasible day, d2. After these jobs have matched,
d2 has less idle capacity than d1, but d1 is nevertheless more likely to be matched in the next step.
In other words, the natural generalization of Lemma 3 does not hold.

This illustrates a limitation of our proof technique, rather than an example in which RANKING
matches more jobs. We conjecture that RANDOM-VERTEX continues to match more jobs than
RANKING when C > 2. Figures 3 and 4 present simulation results supporting this conjecture.

4. Discussion

The greedy matching algorithms RANDOM-EDGE, RANDOM-VERTEX and RANKING have
primarily been compared according to their worst-case performance for one-to-one matching. This
paper complements prior work by providing an average-case analysis for one-to-one and many-to-one
matching. In some cases, such as the comparison between RANDOM-EDGE and RANDOM-VERTEX
in Theorem 1, average-case analysis confirms the story told by worst-case guarantees. In others,
it does not: while RANKING offers a better worst-case guarantee than RANDOM-VERTEX for
one-to-one matching, they have identical average-case performance. Furthermore, Theorem 2 es-
tablishes that RANDOM-VERTEX outperforms RANKING for two-to-one matching.

Our results also have implications for weighted matching. If edge weights are drawn iid, then
RANDOM-EDGE corresponds to the natural greedy procedure which sequentially adds the highest-
weight edge that maintains feasibility. This guarantees a matching with weight at least half of op-
timal. Meanwhile, RANDOM-VERTEX corresponds to a vertex-iterative procedure that considers
jobs in random order and selects the highest-weight feasible edge. Although this approach does
not offer any worst-case guarantee, Theorem 1 implies that if the distribution of edge weights is
sufficiently concentrated, it will on average produce a higher-weight matching than greedy edge
selection.

Another example where worst-case and average-case analysis may disagree is the case of the
MINGREEDY algorithm, which considers jobs in increasing order of their degree. Although this
algorithm guarantees only the trivial factor of 1/2 (Besser and Poloczek 2017), we conjecture that
on average, it outperforms RANDOM-VERTEX for any degree distribution among jobs.

Our results are primarily intended to contribute to the academic literature, rather than to offer
immediate policy guidance. However, we briefly note that variants of the greedy algorithms studied
in this paper arise frequently in practice. In many contexts, for example, “jobs” arrive dynamically
and must be assigned immediately. The most well-studied example is online advertising, where
impressions are assigned to advertisers in real time: see for example Mehta et al. (2007), Goel and
Mehta (2008), Feldman et al. (2009), Aggarwal et al. (2011), and a helpful survey by Mehta (2013).
As another example, many wilderness areas have a limited number of camping permits for each day,
which are assigned dynamically: on a first-come-first-served basis, prospective campers can select
among days for which permits remain. This system corresponds to a vertex-iterative algorithm in
which �J encodes campers’ order of arrival, and �Dj encodes the preferences of camper j.

Even when items are allocated in a single round, it is common to use a “random serial dictator-
ship,” which is a vertex-iterative algorithm where the order �J is selected uniformly at random.7

In addition to its procedural fairness, this approach is simple to describe and implement, and incen-
tivizes applicants to submit their preferences and constraints truthfully. By contrast, algorithms
which select maximum matchings have none of these features. The algorithms RANDOM-VERTEX
and RANKING can be thought of as a random serial dictatorship in which applicants have indepen-
dent or identical preferences over days, respectively. Meanwhile, the procedure RANDOM-EDGE
arises if a new lottery number is assigned to each application rather than each applicant.

7This is in fact how permits for the popular Half Dome hike in Yosemite are allocated – see https://www.nps.

gov/yose/planyourvisit/hdpermits.htm.

https://www.nps.gov/yose/planyourvisit/hdpermits.htm
https://www.nps.gov/yose/planyourvisit/hdpermits.htm
https://www.nps.gov/yose/planyourvisit/hdpermits.htm
https://www.nps.gov/yose/planyourvisit/hdpermits.htm

GREEDY MATCHING IN BIPARTITE RANDOM GRAPHS 17

To get closer to these applications, bells and whistles can be added to our basic model. For
example, Appendix A extends the conclusions of Theorem 1 to settings where jobs have different
“sizes” and some days are more likely to be feasible than others.

Although our work focuses on directional comparisons, its practical relevance also depends on the
magnitude of the differences between procedures. This of course depends on the graph parameters.
For example, differences will be small if all jobs have sufficiently high degree, or if there is a
large imbalance between the sides. Meanwhile, Figure 3 suggests that in balanced markets, the
difference between RANDOM-VERTEX and RANKING is largest in large markets when days have
large capacities. Figure 4 suggests that the difference is largest when there is a lot of heterogeneity
in the number of feasible days across jobs. In particular, it shows that increasing the number of
feasible days for some jobs may decrease the expected number of jobs matched by RANKING.

Asymptotic analysis may help to explore these phenomena. There are (at least) two ways to
let the market grow large: by increasing the number of days, or the capacity of each day. In
the former limit, the differential equation method from Wormald (1995, 1999) makes it possible
to derive asymptotic expressions for the number of matches produced by RANDOM-VERTEX
and RANDOM-EDGE. Appendix B.1 provides such expressions for sparse bipartite Erdös-Renyi
random graphs. These expressions suggest that the difference between RANDOM-VERTEX and
RANDOM-EDGE is fairly small. Meanwhile, Appendix B.2 uses the latter limit to derive asymp-
totic expressions for the number of matches produced by RANDOM-VERTEX and RANKING.
We leave a more complete analysis of these expressions for future work.

18 NICK ARNOSTI, COLUMBIA BUSINESS SCHOOL THIS VERSION: APRIL 2021

Appendix A. Extensions of Theorem 1

This appendix extends the conclusions of Theorem 1 to more general settings.

A.1. Job Sizes. In our first extension, jobs have different “sizes” Sj . For example, Cd might
represent the number of hours that developer d can work, and Sj the number of hours that job j
will take to complete. Alternately, in the context of hiking permits or theater performances, Cd
might represent the number of permits or tickets available on day d, and Sj the number of permits
or tickets requested by group j.

We add to the primitives N̄ and C the size vector S ∈ N|J |. We make two key assumptions:

• Size is independent from the number of feasible dates. Formally, the size of job j is Sρ(j),
where ρ is a uniform random bijection from J to {1, . . . , |J |}.
• Small amounts of overbooking are allowed. Formally, we consider it feasible to add (j, d) to
M so long as (j, d) ∈ E and d has extra capacity underM (even if Sρ(j) exceeds this excess
capacity).

Under these assumptions, an analogous proof holds. In particular, we reveal ρ incrementally: af-
ter step t, we have a matchingMt and an injection ρt : {j : (j, d) ∈Mt for some d} → {1, . . . , |D|}.
In steps V1 and E1, we reveal the value ρt+1(jt+1) (that is, the size of the job matched at time
t+ 1) and ensure that ρt+1 is consistent with ρt on the domain of ρt. We define

Id(Mt, ρt) = Cd −
∑

j′:(j′,d)∈Mt

Sρt(j′),

and replace (8) with

P(B(t+1)j = 1|Et,Mt, jt+1, ρt+1, Dt+1, dt+1) =
Nj(Et)

|{d : Id(Mt) > 0}|
1(j 6= jt+1)1(Idt+1(Mt+1) ≤ 0).

We then couple the two chains as in Lemma 1. In order to maintain (12), we ensure that for all
t < τE we have dVt+1 = dEt+1 (as before) and ρVt+1(j

V
t+1) = ρEt+1(j

E
t+1). That is, the size of the group

matched at time t is identical in the two chains. It follows that both the number and total size of
matched jobs is higher under RANDOM-VERTEX than RANDOM-EDGE.

A.2. Non-Uniform Scheduling Constraints. In our second extension, some days are more
likely than others to be feasible for each job. For example,a programming task may be more likely
to be feasible for an experienced developer than an inexperienced one. Analogously, weekends may
be feasible for more hikers or theater-goers than weekdays.

We add to the primitives N̄ and C (and, if desired, S) the probability vector P ∈ [0, 1]D with∑
d Pd = 1. We make the following key assumption:

• The N̄j edges involving job j are drawn independently (with replacement) from P.

Formally, this requires allowing E to be a multiset – that is, (j, d) may appear in E multiple times.
The stages V2-V4 and E2-E4 are modified as follows.

V2/E2 Determine the multiset At+1 = {(jt+1, d(t+1)i)}
Nj(Mt)
i=1 by drawing the d(t+1)i iid, with

P(d(t+1)i = d|Mt, Et, jt+1) =
Pd1(Id(Mt) > 0)∑
d′ Pd′1(Id′(Mt) > 0)

.

V3/E3 Choose et+1 = (jt+1, dt+1) uniformly from At+1.
V4/E4 As before, if j = jt+1 or Idt+1(Mt+1) > 0, then B(t+1)j = 0. Otherwise, the value B(t+1)j

follows a binomial distribution with parameters Nj(Mt) and Pdt+1/
∑

d′ Pd′1(Id′(Mt) > 0).
For j ∈ J , let Bt+1 contain B(t+1)j copies of the edge (j, dt+1).

GREEDY MATCHING IN BIPARTITE RANDOM GRAPHS 19

We then couple the two chains as in Lemma 1. The only necessary modification is to the coupling
of BV

(t+1)j and BE
(t+1)j following (16). In this case, draw the values BE

(t+1)j as described in V4/E4

and set

BV
(t+1)j = BE

(t+1)φ(j) + B̃(t+1)j ,

where B̃(t+1)j = 0 if j = jVt+1 or IdVt+1
(MV

t+1) > 0, and otherwise B̃(t+1)j follows a binomial

distribution with parameters Nj(EVt) − Nφ(j)(EEt) and Pdt+1/
∑

d′ Pd′1(Id′(Mt) > 0). As before,
this coupling ensures that

Nj(EVt ∪ AVt+1 ∪ BVt+1) ≥ Nφ(j)(EEt ∪ AEt+1 ∪ BEt+1).

Appendix B. Asymptotic Performance

In this appendix, we briefly study the magnitude of the differences identified in Theorems 1 and
2. We consider two different asymptotic regimes. The expressions in Appendix B.1 correspond to
a case where the capacity of each day is Cd = 1, and the number of jobs and days both grow.
The expressions in Appendix B.2 correspond to a case where the number of days is fixed, and the
number of jobs and capacity of each day grow.

B.1. Comparing RANDOM-VERTEX and RANDOM-EDGE in sparse Erdös-Renyi
random graphs. Theorem 1 states that on average, RANDOM-VERTEX results in a larger
matching than RANDOM-EDGE. However, it is silent about the magnitude of this difference.
One way to address this question is to conduct asymptotic analysis as |J | and |D| grow, with
|J |/|D| = ρ fixed. Using techniques developed in Wormald (1995, 1999), we can write down a
differential equation whose solution gives the expected match size under each algorithm.

This differential equation has a clean solution for one-to-one matching in sparse Erdös-Renyi
random graphs. We obtain the following expressions for the fraction of jobs that are scheduled
under RANDOM-VERTEX and RANDOM-EDGE, respectively, as a function of the imbalance ρ
and the average number of feasible days for each job `:

FV =
1

ρ

(
1− 1

`
log
(

1 + (e` − 1)e−ρ`
))

,(36)

FE =

e(ρ−1)`−1
ρe(ρ−1)`−1 : ρ > 1
`

1+` : ρ = 1
e(1−ρ)`−1
e(1−ρ)`−ρ : ρ < 1.

(37)

Theorem 3 in Mastin and Jaillet (2018) gives the expression for FV in the special case where
ρ = 1. Their analysis directly implies (36) in the case ρ < 1. They do not give the expression
in (36) for ρ > 1, although it would be possible to obtain with small modifications to their work.
Dyer et al. (1993) study RANDOM-EDGE in non-bipartite Erdös-Renyi graphs, and obtain the
`/(`+ 1) expression that we claim for ρ = 1. We are unaware of any paper where the expression in
(37) appears for general ρ.

For the case ρ = 1, these expressions imply that the fraction of unscheduled jobs is 1
`+1 un-

der RANDOM-EDGE and log(2−e−`)
` ≥ log(2)

`+1 under RANDOM-EDGE. Both expressions are in-

versely proportional to `, and within a factor of log(2) ≈ 0.69 of each other. This suggests that
the gap between these procedures is small compared to the gap between them and a maximum
matching (under which the number of unscheduled jobs decreases exponentially in `). For general
ρ, a numerical search suggests that in sparse Erdös-Renyi random graphs, the expected size of
the matching produced by RANDOM-EDGE is always at least 96% of the expected size under
RANDOM-VERTEX.

20 NICK ARNOSTI, COLUMBIA BUSINESS SCHOOL THIS VERSION: APRIL 2021

When we move beyond Erdös-Renyi graphs, the gap between these algorithms can be larger.
For example, if there are equally many jobs and days, and half of jobs have degree 1 while the
other half have degree 10, then RANDOM-EDGE expects to schedule approximately 71% of all
jobs, whereas RANDOM-VERTEX schedules 78%; on this family, a maximum matching schedules
approximately 89%.

B.2. Comparing RANDOM-VERTEX and RANKING when each day has large capac-
ity. When running a vertex-iterative algorithm, the first jobs will be able to choose from all days.
Eventually one day reaches its capacity and can no longer be chosen. Then a second day reaches its
capacity, and so on. Let Tk be the (random) step at which the kth day reaches its capacity. In this
section, we define a fluid model which approximates the random times Tk with deterministic (frac-
tional) times tk. This approximation becomes exact in the limit as the number of jobs and capacity
of each day grow, holding the number of days fixed. We assume familiarity with fluid limits in other
contexts, and use an informal language to describe the model. Formally, the fluid limit estimate
of the number of unmatched agents under procedures RANKING and RANDOM-VERTEX are
UR(|J |) and UV (|J |), where UR is defined by (38) and (39) and UV is defined by (40). We plot
these expressions in black in Figure 3a.

We now give the fluid limit for RANKING, with the order over days �D fixed. For fixed
thresholds, t1 ≤ t2 ≤ · ≤ t|D|, imagine running a vertex-iterative algorithm in which the job

processed at step t can choose the kth-ranked day if and only if t ≤ tk (regardless of the choices
of other jobs). Our fluid limit calculates (fractional) thresholds such that the expected number of
jobs assigned to each day is equal to C.

If all days are available, a job with N feasible days selects the kth ranked day with probability
f(k,N) given in (20). For N ∈ {1, . . . , |D|}, let g(N) denote the fraction of jobs with N feasible
days. It follows that if we select a job at random, the probability that it chooses the kth-ranked
day is

fk =

|D|∑
N=1

g(N)f(k,N).

Thus, if t1 jobs are allowed to choose any day, the expected number that select the kth-ranked day
is fkt1. Set t1 so that the expected number of jobs choosing the first day is equal to C:

f1t1 = C.

Once the highest-ranked day has reached its capacity, each other day becomes more likely to be
selected. More specifically, equations (21) and (22) from the Markov chain description of RANKING
imply that each other day is effectively “promoted” one position: the second-ranked day is selected
with probability f1, the third with probability f2, and so on. Therefore, if t2 − t1 jobs are allowed
to choose any day but the first, the expected number that choose day k is (t2 − t1)fk−1. Set t2 so
that the expected number of jobs choosing the second day is equal to C:

f2t1 + f1(t2 − t1) = C.

Repeating this logic and setting each tk such that the expected number of matches equal to C for
each day yields the following linear system, which can be solved for t1, . . . , t|D|:

(38)

k∑
j=1

fj × (tk−j+1 − tk−j) = C, ∀k ∈ {1, . . . , |D|}.

For convenience, we define t0 = 0 and t|D|+1 =∞.
Given t1, . . . , t|D|, we define a fluid-limit estimate of the probability of going unassigned for a

random job processed in step t. Because the chance of going unassigned when k days are unavailable

GREEDY MATCHING IN BIPARTITE RANDOM GRAPHS 21

is equal to the chance of matching to one of the k lowest-ranked days when all days are available,
we define

u(t) =
k∑
j=1

f|D|+1−j for t ∈ (tk, tk+1).

From this, we estimate the expected number of unassigned jobs after step t to be

(39) UR(t) =

∫ t

0
u(s)ds =

|D|∑
k=1

f|D|+1−k max(t− tk, 0).

Note that the equality follows by exchanging orders of summation.
By contrast, under RANDOM-VERTEX, so long as all days are available, each job chooses

a uniformly random day. Thus, in our fluid limit approximation, all days fill at the same time
t = C|D|, and the expected number of unassigned jobs is simply

(40) UV (t) = max(t− C|D|, 0).

22 NICK ARNOSTI, COLUMBIA BUSINESS SCHOOL THIS VERSION: APRIL 2021

References

Aggarwal G, Goel G, Karande C, Mehta A (2011) Online vertex-weighted bipartite matching and single-bid
budgeted allocations. Symposium on Discrete Algorithms (SODA) 1253–1264.

Aronson J, Dyer M, Frieze A, Suen S (1995) Randomized greedy matching ii. Random Structures & Algo-
rithms 6(1):55–73.

Besser B, Poloczek M (2017) Greedy matching: Guarantees and limitations. Algorithmica 77:201–234.

Borodin A, Nielsen M, Rackoff C (2003) (incremental) priority algorithms. Algorithmica 37:295–326.

Chan THH, Chen F, Wu X, Zhao Z (2018) Ranking on arbitrary graphs: Rematch via continuous lp with
monotone and boundary condition constraints. SIAM Journal on Computing 47(4):1529–1546.

Dietzfelbinger M, Goerdt A, Mitzenmacher M, Montanari A, Pagh R, Rink M (2010) Tight thresholds for
cuckoo hashing via xorsat. Abramsky S, Gavoille C, Kirchner C, Meyer auf der Heide F, Spirakis P,
eds., Automata, Languages and Programming, volume 6198 of Lecture Notes in Computer Science,
213–225 (Springer Berlin Heidelberg), ISBN 978-3-642-14164-5, URL http://dx.doi.org/10.1007/

978-3-642-14165-2_19.

Dyer M, Frieze A (1991) Randomized greedy matching. Random Structures & Algorithms 2(1):29–45.

Dyer M, Frieze A, Pittel B (1993) The average performance of the greedy matching algorithm. The Annals of
Applied Probability 3(2):pp. 526–552, ISSN 10505164, URL http://www.jstor.org/stable/2959644.

Feldman J, Mehta A, Mirrokni V, Muthukrishnan S (2009) Online stochastic matching: Beating 1-1/e.
Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science 117–126.

Fountoulakis N, Panagiotou K (2012) Sharp load thresholds for cuckoo hashing. Random Structures &
Algorithms 41(3):306–333, ISSN 1098-2418, URL http://dx.doi.org/10.1002/rsa.20426.

Frieze A, Melsted P, Mitzenmacher M (2018) An analysis of random-walk cuckoo hashing.

Frieze A, Radcliffe A, Suen S (1995) Analysis of a simple greedy matching algorithm on random cubic graphs.
Combinatorics, Probability and Computing 4:47–66.

Goel G, Mehta A (2008) Online budgeted matching in random input models with applications to adwords.
Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms 982–991.

Goel G, Tripathi P (2012) Matching with our eyes closed. Symposium on Fondations of Computer Science
(FOCS) 718–727.

Karande C, Mehta A, Tripathi P (2011) Online bipartite matching with unknown distributions. ACM Sym-
posium on Theory of Computing (STOC).

Karp RM, Vazirani UV, Vazirani VV (1990) An optimal algorithm for on-line bipartite matching. Proceedings
of the twenty-second annual ACM symposium on theory of computing 352–358.

Mahdian M, Yan Q (2011) Online bipartite matching with random arrivals: An approach based on strongly
factor-revealing lps. ACM Symposium on Theory of Computing (STOC).

Mastin A, Jaillet P (2018) Greedy online bipartite matching on random graphs. arXiv preprint
arXiv:1307.2536 .

Mehta A (2013) Online matching and ad allocation. Foundations and Trends in Theoretical Computer Science
8(4):265–368.

Mehta A, Saberi A, Vazirani U, Vazirani V (2007) Adwords and generalized online matching. J. ACM 54(5).

Poloczec M, Szegedy M (2012) Randomized greedy algorithms for the maximum matching problem with new
analysis. Symposium on Fondations of Computer Science (FOCS) .

Tang ZG, Wu X, Zhang Y (2020) Towards a better understanding of randomized greedy matching. Symposium
on Theory of Computing (STOC) 1097–1110.

Tinhofer G (1984) A probabilistic analysis of some greedy cardinality matching algorithms. Annals of Oper-
ations Research 1(3):239–254.

Wormald NC (1995) Differential equations for random processes and random graphs. The Annals of Applied
Probability 5(4):pp. 1217–1235, ISSN 10505164, URL http://www.jstor.org/stable/2245111.

Wormald NC (1999) The differential equation method for random graph processes and greedy algorithms.
Lectures on approximation and randomized algorithms, 73–155.

http://dx.doi.org/10.1007/978-3-642-14165-2_19
http://dx.doi.org/10.1007/978-3-642-14165-2_19
http://www.jstor.org/stable/2959644
http://dx.doi.org/10.1002/rsa.20426
http://www.jstor.org/stable/2245111

	1. Introduction
	1.1. Preliminaries: Notation and Definitions
	1.2. Prior Work: Worst Case Analysis
	1.3. Our Results: Average Case Analysis
	1.4. Prior Work: Average Case Analysis

	2. Proof of Theorem 1
	2.1. Proof Step 1: Markov Chain Description
	2.2. Proof Step 2: Coupling

	3. Proof of Theorem 2
	3.1. Proof Step 1: Markov Chain Descriptions
	3.2. Proof Step 2: Coupling

	4. Discussion
	Appendix A. Extensions of Theorem 1
	A.1. Job Sizes
	A.2. Non-Uniform Scheduling Constraints

	Appendix B. Asymptotic Performance
	B.1. Comparing RANDOM-VERTEX and RANDOM-EDGE in sparse Erdös-Renyi random graphs
	B.2. Comparing RANDOM-VERTEX and RANKING when each day has large capacity.

	References

