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Abstract. We study outcomes of the Deferred Acceptance Algorithm in large random matching

markets where priorities are generated either by a single lottery or by independent lotteries. In

contrast to prior work, our model permits students to submit lists of varying lengths, and schools

to vary in their popularity and number of seats. In a limiting regime where the number of students

and schools grow while the length of student lists and number of seats at each school remain

bounded, we provide exact expressions for the number of students who list l schools and match to

one of their top k choices, for each k  l. We use these expressions to provide three main insights.

First, we identify a persistent tradeo↵ between using a single lottery and independent lotteries.

For students who submit short lists, the rank distribution under a single lottery stochastically

dominates the corresponding distribution under independent lotteries. However, the students who

submit the longest lists are always more likely to match when schools use independent lotteries.

Second, we compare the total number of matches in the two lottery systems. We find that shape

of the list length distribution plays a key role. If this distribution has an increasing hazard rate,

then independent lotteries match more students. If it has a decreasing hazard rate, the comparison

reverses. To our knowledge, this is the first analytical result comparing the size of stable matchings

under di↵erent priority rules.

Finally, we study the fraction of assigned students who receive their first choice. Under indepen-

dent lotteries, this fraction may be arbitrarily small, even if schools are equally popular. Under a

single lottery, we provide a tight lower bound on this fraction which depends on the ratio r of the

popularity of the most to least popular school. When each school has a single seat, the fraction of

assigned students who receive their first choice is at least
p
r/(1 + r). This guarantee increases to

2/(1 +
p
r) as the number of seats at each school increases.

1



2 NICK ARNOSTI, UNIVERSITY OF MINNESOTA

1. Introduction

Many cities across the world allow students to choose which public school they will attend. In

the United States, 56% of major school districts have a school choice program, up from 29% in

2000 (Whitehurst, 2017). Advocates argue that school choice o↵ers increased equity and e�ciency

relative to neighborhood assignment: students from neighborhoods with undesirable schools can

go elsewhere, and students can select schools with curricula and clubs that match their interests.

These advantages are mitigated by capacity constraints, which prevent schools from admitting

every student who wishes to attend. As a result, districts must have a policy to determine who

gets seats in popular schools.

The Deferred Acceptance algorithm is an increasingly popular approach, having been adopted in

cities across the United States and Europe.1 This algorithm was introduced by Gale and Shapley

(1962), and is also used to match doctors to residencies at US hospitals (Roth and Peranson, 1999;

Abdulkadiroglu and Sönmez, 2003). One key input to this algorithm is a priority list (ranking of

students) for each school, which determines who to reject when too many students express interest.

Students are often ranked using coarse criteria such as whether they live within a designated zone,

or have a sibling who attends the school. This results in many ties, which must be broken in order to

generate a strict ranking of students. Pathak (2016) remarks that “Questions related to tie-breaking

have re-appeared in nearly every city I have interacted with using [Deferred Acceptance].”

There are two common tie-breaking procedures. One uses independent lotteries at each school:

if two students are tied at multiple schools, each school flips a coin to decide which student to prior-

itize. The second uses a single district-wide lottery: for any two students, one will receive priority

over the other at all schools where they are tied. Parents often feel intuitively that independent

lotteries are “more fair,” but academics have cautioned that they may produce ine�cient outcomes

ex post (Abdulkadiroglu and Sönmez, 2003; Abdulkadiroglu et al., 2009). To provide guidance to

practitioners, Abdulkadiroglu et al. (2009) compare these tie-breaking procedures using simulations

based on data from Boston and New York. They find that using a single lottery gives more students

their first choice, but leaves more students unassigned. de Haan et al. (2018) observe a similar pat-

tern in Amsterdam. Pathak (2011) writes, “these empirical results raise the need for quantitative

results in matching theory that provide guidance on what features of the student preferences and

school priorities are responsible for these di↵erences.”

The goal of this paper is to answer this call by comparing the distribution of match outcomes

under the two tie-breaking procedures. One outcome of particular interest is the number of students

who fail to match to any of the schools on their list. This can happen even when there are more

seats than students, because students typically list only a limited number of schools. As a result,

3.8% of students in Boston, 7.1% of students in New York (Abdulkadiroglu et al., 2009), and 18.7%

of students in New Orleans (EnrollNOLA, 2017) fail to match to any of their listed schools. In

some cities, these students are administratively assigned to a school with unfilled seats; in others,

1American cities using Deferred Acceptance include New York City (Abdulkadiroglu et al., 2005a), Boston (Abdulka-
diroglu et al., 2005b), Chicago (Pathak and Sönmez, 2013), New Orleans (Abdulkadiroglu et al., 2017), Denver,
Washington DC, and Newark (Pathak, 2016). Internationally, it is used to in Amsterdam (de Haan et al., 2018),
Paris (Fack et al., 2019), and London (Pathak and Sönmez, 2013), as well as for higher-education in many countries
(see Table 1 by Fack et al. (2019)).
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they are invited to apply in a second round.2 Regardless of which approach is taken, these students

are often disappointed with the process, and may leave for a private school, generate negative

headlines, or create administrative burdens by challenging the outcome. For these reasons, school

districts are motivated to match as many students as possible to one of the schools on their list.

Which lottery procedure leaves fewer students unassigned? Although recent papers by Ashlagi

et al. (2017), Ashlagi et al. (2019), and Ashlagi and Nikzad (2020) study match outcomes under

single and independent lotteries, none of them address this question. All three papers assume that

students submit complete lists, implying that all students will match so long as there are more

seats than students.3 By contrast, we consider a model in which students submit incomplete lists of

varying lengths. In addition, we relax the assumption of homogeneous schools in the aforementioned

papers by allowing schools to di↵er in their capacity and popularity. The generality of our model

allows us to (i) identify how the choice of lottery procedure a↵ects the total number of matches,

as well as the match rate for di↵erent student populations, and (ii) identify how the number of

students getting their first choice when using a single lottery depends on the relative popularity of

di↵erent schools.

We summarize our key findings below, while highlighting connections to a few closely related

papers. Section 2 provides a more complete discussion of prior work. Sections 3 and 4 present our

model and results, and Section 5 concludes by discussing policy implications of our work, as well

as its limitations.

Exact Asymptotics. We consider a model with a finite number of students and schools, in which

schools may have di↵erent capacities. Each student’s list is drawn through a two-stage process.

First, the length of the list is sampled from a distribution on N. Next, the list is generated

by sampling schools without replacement from a fixed distribution over schools. This procedure

enables us to capture features of real-world markets, such as that students submit incomplete lists

of varying lengths, and some schools are more popular than others. We assume that school priorities

are generated either using a single lottery, or using independent lotteries at each school. Finally, a

matching is determined using the student-proposing Deferred Acceptance algorithm.

We analyze our model by letting the number of students and schools grow, while the number

of schools listed by each student and the capacity of each school remain bounded. In this limit,

Immorlica and Mahdian (2005) and Kojima and Pathak (2009) show that there is a “nearly unique”

stable matching, but do not describe this matching in detail. We do, by showing that aggregate

outcome measures concentrate around a deterministic limit which we give explicitly. More specif-

ically, for any integers k  l, Theorem 1 provides exact asymptotic expressions for the fraction

of students who list l schools and match to one of their top k choices under each lottery proce-

dure. This result requires a more precise analysis than those of Immorlica and Mahdian (2005)

and Kojima and Pathak (2009), forcing us to use di↵erent proof techniques. Our proof constructs

Markov Chains corresponding to each procedure, and then applies the di↵erential equation method

2New York changed from the latter procedure to the former for students entering high school in 2020.
3Ashlagi et al. (2019) briefly consider independent lotteries with incomplete lists, and establish that when there are
more seats than students, the number of unassigned students is bounded by a function which decreases exponentially
in the length of student lists. However, their bound is not tight, and cannot be used to compare unassigned students
across lottery procedures.

https://www1.nyc.gov/office-of-the-mayor/news/390-19/mayor-de-blasio-chancellor-carranza-easier-more-transparent-middle-high-school#/0
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of Wormald (1999) to establish that certain match outcomes concentrate around the solution to a

set of di↵erential equations. We describe our proof technique in more detail in Section 3.

The limiting expressions from Theorem 1 provide significant insight into match outcomes. Our

remaining results use these expressions to compare outcomes under single and independent lotteries.

Establishing a Tradeo↵. Theorem 2 establishes that a single lottery always assigns more students

to their first choice school. This is consistent with the findings of Ashlagi et al. (2019), and Ashlagi

and Nikzad (2020), although our model is more general in several ways. Theorem 2 also establishes

a single-crossing property that implies a tradeo↵ between these lottery procedures: although a

single lottery gives more students their first choice, it also results in a lower probability of matching

for students who submit the longest lists.

It is fairly intuitive that students with longer lists are those most likely to benefit from the

use of independent lotteries, as they get the most independent draws. However, a priori it seems

possible that one lottery procedure could dominate the other. The intuition for why this cannot

occur is as follows. If student outcomes were uniformly better under one lottery procedure, then

that procedure would result in fewer total proposals by students. However, fewer proposals also

implies fewer matches, contradicting the assumption that one procedure dominates the other. This

reasoning is formalized by Lemma 7 in the Appendix.

The tradeo↵ identified by Theorem 2 parallels a finding of Ashlagi and Nikzad (2020) when

there are fewer students than seats. However, it may seem at odds with their finding that a single

lottery almost dominates independent lotteries when there is a shortage of seats. The results can

be reconciled by noting that in our model, if there is a shortage of seats and all students submit

reasonably long lists, the crossing point occurs in the far right tail (see Figure 1). As such, the

findings can be viewed as complementary: our work shows that a tradeo↵ always exists, and they

point out circumstances in which this tradeo↵ almost vanishes. However, we also show that the

dominance of a single lottery when there is a shortage of seats partly depends on the assumption

that students submit lists of the same length. When some students submit short lists while other

submit long ones, using a single lottery may harm the latter group. We elaborate upon this point

when discussing policy implications of our work in Section 5.

Comparing the Total Number of Matches. Which lottery procedure matches more students?

When all students submit lists of the same length, Theorem 2 implies that the answer is independent

lotteries. However, there are also cases where a single lottery yields more matches. Theorem 3 and

Proposition 1 state that in general, the answer depends on the distribution of student list lengths: if

it has an increasing hazard rate, independent lotteries will assign more students, while the opposite

holds if the distribution has a decreasing hazard rate. Interestingly, these conclusions hold for any

joint distribution of school popularity and capacity. To our knowledge, our work is the first to

analytically compare the number of assigned students under di↵erent priorities, and the first to

identify the shape of the list length distribution as a parameter of interest.

We now attempt to give intuition for why the shape of the list length distribution is so crucial.

Consider a scenario where student A and student B have both proposed to a school, which A lists

in position kA, and B lists in position kB > kA. Suppose that the school has room for only one of
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these students. We ask two questions. First, which student is most likely to be rejected? And if

rejected, which student is more likely to go unmatched?

The answer to the first question does not depend on the list length distribution. With indepen-

dent lotteries, the school is equally likely to accept each student. With a single lottery, the fact

that B has been rejected from more schools than A suggests that B is likely to have the lower

lottery number. Therefore, the school is more likely to accept A, and reject B.

The answer to the second question depends on the list length distribution:

• If both students list the same number of schools, then B faces a greater risk of going

unmatched than A: because B has been rejected from more schools, she has fewer remaining

opportunities to match.

• If most students are “selective” and submit lists of length kA, while a few “unselective”

students submit very long lists, then we know that B is unselective (and thus likely to find

a match somewhere), but suspect that A is selective (and thus at risk of going unassigned).

When the list length distribution has an increasing hazard rate, then students proposing to schools

further down their list (such as B in this example) are likely to have fewer options remaining, and

therefore face the greatest risk of going unassigned. In these cases, a single lottery (which is more

likely to reject B) will result in fewer matches. This reasoning reverses if the list length distribution

has a decreasing hazard rate.

In practice, list length distributions from New York, Amsterdam, Hungary, and Chile (shown in

Figure 4) have neither an increasing nor a decreasing hazard rate. However, all four distributions

satisfy a weaker condition under which Theorem 3 predicts that independent lotteries will result

in more matches. This is consistent with simulation results from Boston and New York (Abdulka-

diroglu et al., 2009) and Amsterdam de Haan et al. (2018). Our work gives an explanation for these

observations, and suggests that typically, independent lotteries will match more students.

We also demonstrate that the di↵erence in the number of unassigned students can be significant.

Figure 5 provides an example where moving from a single lottery to independent lotteries reduces

the number of unassigned students from 6.4% to 3.4%. Under a single lottery, reducing the number

of unassigned students below 3.4% would require doubling the length of student lists, or increasing

the number of schools by 8%. Proposition 2 establishes the rate at which the number of unassigned

students goes to zero under each lottery procedure, as the average list length ` increases. In a

balanced market, this number decays exponentially in
p
` with independent lotteries, but decays

at a rate of 1/` with a single lottery.

Bounding the Number of Students Matched to their First Choice. Although our focus is

on comparing the number of matches under each procedure, the expressions from Theorem 1 are

also useful in other ways. We illustrate this fact by studying the fraction of assigned students who

match to their first choice school. In markets where schools are equally popular and each have a

single seat, Ashlagi et al. (2019) show that this fraction can be arbitrarily small with independent

lotteries, but is always at least 1/2 with a single lottery. Our Proposition 3 generalizes this result

to cases where schools each have C � 1 seats and di↵er in their popularity.
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Increasing the number of seats C improves the lower bound for a single lottery: when schools

are equally popular, the lower bound of 1/2 for C = 1 increases to 5/8 when C = 2, is above 3/4

when C = 5, and approaches 1 as C ! 1.

Meanwhile, when some schools are more popular than others, this lower bound decreases, because

many students have the same first choice school. Proposition 3 quantifies this e↵ect. When the

most popular school is listed r times as often as the least popular school, it establishes that the

fraction of assigned students who get their first choice is at least
p
r/(1 + r). Thus, the bound of

50% when r = 1 decays to 40% for r = 4 and 30% for r = 9. These bounds are tight when schools

have a single seat. Proposition 3 also gives (larger) tight lower bounds for any C > 1. To our

knowledge, Proposition 2 o↵ers the first analysis of how the number of students receiving their first

choice depends on the relative popularity of di↵erent schools.

2. Related Work

In their seminal paper, Gale and Shapley (1962) defined the concept of a stable matching, and

proved that the Deferred Acceptance algorithm will always find such a matching. Roth (1984)

identified this algorithm was being used by the NRMP to match medical residents to hospitals, and

Roth and Peranson (1999) describe the redesign of this algorithm. Abdulkadiroglu and Sönmez

(2003) proposed using the Deferred Acceptance algorithm to assign seats at public schools, and

it has since been adopted in many cities (Pathak (2016) provides a partial list). There is a vast

academic literature on stable matching: for surveys, see Roth and Sotomayor (1990), Pathak (2011),

Abdulkadiroglu and Sonmez (2013) and Kojima (2015).

This paper’s focus is on lotteries to break ties in priority. Although there are many ways that

this could be done, Erdil and Ergin (2008) show that it is impossible to produce a student-optimal

stable matching in a strategy-proof manner. Subsequent papers (and real-world implementations)

have focused on the two simple procedures that we study: using independent lotteries at each

school, and using a single lottery that applies to all schools. Our literature review focuses on work

that studies match outcomes under these procedures.

2.1. Top Trading Cycles with Lotteries. It is not a priori obvious that the method of breaking

ties matters. For example, the Top Trading Cycles algorithm (attributed to David Gale, introduced

by Shapley and Scarf (1974), and adapted for school choice by Abdulkadiroglu and Sönmez (2003))

uses the same input as Deferred Acceptance: preferences, priorities, and capacities. It turns out

that under TTC, independent lotteries at each school result in an identical distribution of outcomes

as using a single lottery! This was first observed by Knuth (1996) and Abdulkadiroglu and Sonmez

(1998), and has since been extended to more general settings and mechanisms (Sonmez and Unver,

2005; Pathak and Sethuraman, 2011; Lee and Sethuraman, 2011; Carroll, 2014; Ekici, 2015). Most

recently, Bade (2019) showed that given any deterministic, strategy-proof, Pareto e�cient and non-

bossy allocation rule, randomly permuting the roles of agents yields a distribution over allocations

that is equivalent to a random serial dictatorship.4

4If the district uses TTC with coarse deterministic priorities and lotteries serving only as a tiebreaker, then using a
single lottery and using independent lotteries are no longer equivalent.
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2.2. Deferred Acceptance with Lotteries. This equivalence result does not apply to the De-

ferred Acceptance algorithm, which is bossy and not Pareto e�cient. Indeed, under Deferred

Acceptance, the lottery method matters. Abdulkadiroglu and Sönmez (2003) observe that using

independent lotteries at each school may produce an outcome that is not Pareto e�cient. Ab-

dulkadiroglu et al. (2009) show that for any student-optimal stable matching, there exists a single

lottery draw that produces it. However, Pathak (2016) notes that “Their results represent an ex

post perspective, and as far as I know, there is no stronger ex ante argument for single versus

multiple tie-breaking based on the distribution of matchings.”

2.3. Quantitative Results in Markets with a Large Number of Students and Schools.

Pittel (1989) considers a large one-to-one market with an equal number n of students and schools,

complete preferences drawn independently and uniformly at random, and priorities drawn from

independent lotteries at each school. His work shows that under the student-proposing Deferred

Acceptance algorithm, students’ average rank is approximately log(n). Pittel (1992) shows that

under these same assumptions, with high probability every student receives a school ranked no worse

than log2(n). Ashlagi et al. (2017) relax the assumption that there are equally many students and

schools. They show that adding a single student dramatically increases students’ average rank, to

n/ log(n).

Ashlagi et al. (2017) also study outcomes when using a single lottery, and find that this results

in a similar average rank to independent lotteries when there are enough seats for all students, but

a much better average rank when there is a shortage of seats. Ashlagi and Nikzad (2020) extend

the comparison beyond students’ average rank. They show that when there is a shortage seats,

the student rank distribution when using a single lottery “almost stochastically dominates” that

which arises from independent lotteries. By contrast, when there are enough seats for all students,

the two distributions are incomparable. Ashlagi et al. (2019) study another metric: the fraction of

students receiving one of their first k choices. They show that when there is a shortage of seats, this

fraction tends to zero as the market grows when using independent lotteries, whereas it remains

constant under a single lottery. Collectively, these papers tell a consistent story: using a single

lottery is preferable when there is a shortage of seats, but the comparison is more ambiguous when

there are enough seats for all students.

As mentioned in the introduction, all of these papers assume ex-ante identical schools, and that

students submit complete lists. We relax both assumptions. We adopt the preference formation

model of Immorlica and Mahdian (2005) and Kojima and Pathak (2009), which allows schools to

di↵er in their popularity. Furthermore, we allow the length of students’ lists to follow an arbitrary

distribution. The generality of our model allows us to study new questions: to our knowledge,

Theorem 3 provides the first analytical comparison of the number of matches under di↵erent priority

rules, while Proposition 2 o↵ers the first analysis of how the number of students receiving their first

choice depends on the relative popularity of di↵erent schools.

We note that Che and Tercieux (2019) also consider a large market model in which schools di↵er

in their popularity. Their model for generating student lists sums a school quality term and an

idiosyncratic term, which is more general than our approach of sampling schools without replace-

ment from a fixed distribution. However, they assume that students submit complete lists, implying
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that the number of matches does not depend school priorities. Furthermore, their assumption that

idiosyncratic terms are drawn iid from a bounded distribution implies that any assignment that

matches each student to one of her top k choices is asymptotically optimal so long as k is o(n): in

their model, there is no meaningful di↵erence between matching a student to her first choice and

her fifth. By contrast, our work treats these outcomes very di↵erently, and characterizes the exact

rank distribution in the final assignment.

2.4. Large Markets with a Finite Number of Schools. Azevedo and Leshno (2016) take a

di↵erent type of large market limit, in which the number of schools is fixed and the capacity of

each school grows with the number of students. An advantage of their approach is that in the

limit, outcomes at each school become deterministic, enabling tractable analysis for a richer class

of preferences and priorities. For example, Shi (2021) uses a variant of this model in which students

have cardinal utilities to optimize aggregate welfare over a large class of priority rules.

The advantages of this approach also come with disadvantages. Assuming that each school is large

eliminates certain frictions, causing the model to make overly optimistic predictions. For example,

when schools are homogeneous and there are more seats than students, this model predicts that it

will be possible to assign every student to their first choice school, rendering priorities irrelevant.

By contrast, in our model, the number of seats at each school is fixed and the number of students

who list each school first is stochastic. As a result, even when schools are equally popular, not all

students will be able to match to their first choice school, and priorities play a role in determining

final outcomes.

3. Model

For expositional purposes, we begin by introducing a model with ex-ante homogeneous schools.

Section 3.3 extends the model to allow schools to di↵er in their popularity and capacity, and all of

our results hold for this more general model.

3.1. Finite Market with Homogeneous Schools. There are n schools and ⇢n students, for

some ⇢ 2 R+. There are C 2 N seats at each school. Each student submits a ranked list of schools,

which does not include every school. Each student also has a priority score at each school, and

schools prioritize students with higher scores. Given student lists and priorities, the final allocation

is determined using the student-proposing deferred acceptance algorithm. This algorithm starts

with each student “proposing” to the first school on her list. From there, the following steps are

repeated until convergence:

i. Schools consider students that have proposed to them, rejecting any for which the number

of higher-priority interested students is at least the school’s capacity.

ii. Students for whom all proposals have been rejected propose to the next school on their list

(if any such school exists).

We assume that lists and priority scores are drawn iid across students. To generate student lists,

each student samples a list length l from a distribution L on N, and lists l uniformly random schools

in a uniformly random order. For l 2 N we let L(l) denote the probability of listing l schools, and
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define L(� l) =
P

j�l
L(j) and L(>l) =

P
j>l

L(j) to be the probability of listing at least l schools

and more than l schools, respectively.

We consider two ways to generate priority scores. In one, schools use independent lotteries:

students’ priorities at each school are drawn independently and uniformly on [0, 1]. In the other,

schools use a single lottery: each student receives a score drawn uniformly on [0, 1], which is their

priority at every school.

To summarize, our model with homogeneous schools has five parameters: the number of schools

n, the ratio of students to schools ⇢, the capacity of each school C, the list length distribution L,
and the priority rule R 2 {I, S} (R = I for independent lotteries, R = S for a single lottery).

Given these parameters, our goal is to understand the distribution of outcomes for students. For

any fixed ⇢, C,L and any k, l 2 N with k  l, let G
n

I
(k, l) denote a random variable equal to the

number of students who list l schools and match one of their top k choices when n schools use

independent lotteries. Let Gn

S
(k, l) be the analogous quantity when schools use a single lottery.

3.2. Large Market Limit. Analyzing the distribution of Gn

R
is challenging. Although student

lists are independent, student interest is not. Whether a student proposes to her third choice

depends on whether she gets into her first two choices, which in turn depends on how many other

students propose to these schools. In this section, we provide a tractable approximation for the

statistics G
n

R
. We first o↵er heuristic motivation for our approximation, and then establish the

accuracy of this approximation as the number of schools n grows large.

The intuition underlying our approximation is that when students list only a small number of

schools, there is little di↵erence between sampling schools with and without replacement. Hence,

each time a student proposes, there is approximately a 1/n chance that their proposal goes to

any fixed school. For this reason, we expect that if a total of �n proposals have been sent by

students, the number of proposals received by each school should be approximately Binomial with

parameters �n and 1/n, which is in turn well-approximated by the Poisson distribution with mean

�. We will define values �I and �S , which are intended to approximate the expected number of

proposals received by each school under independent and single lotteries, respectively.

To define these values, we make use of two functions derived from the Poisson distribution. If

the number of proposals received by a school with capacity C follows a Poisson distribution with

mean �, then the probability that this school has at least one Vacancy is

V(�) =
C�1X

j=0

e
��

�
j

j!
,(1)

Meanwhile, if this school ranks students according to a uniform lottery, then a student who proposes

to this school will be Accepted with probability

A(�) =
1X

j=0

e
��

�
j

j!
min

✓
C

j + 1
, 1

◆
.(2)

This is because the probability that j other students apply to the school is e
��

�
j

j! . When j other

students apply, the probability of acceptance is 1 if j < C, and C/(j + 1) otherwise (since the

school selects students at random).
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We now define one more important function. For a student who has list length drawn from L
and is accepted independently with probability q at each listed school, the expected number of

schools in which she is interested is given by

(3) µ(q) =
1X

k=0

L(>k)(1� q)k.

This uses the fact that for a non-negative integer-valued random variableN , E[N ] =
P1

k=0 P(N>k),

alongside the observation that a student proposes to more than k schools if and only if she lists

more than k schools and is rejected from the first k schools on her list. Note that µ(1) is the

fraction of students listing at least one school, which we assume without loss of generality to be

one, while µ(0) =
P

k�0 L(>k) is the average list length.

We are now prepared to define the scalar �I , which represents the expected number of proposals

received by each school under independent lotteries. This should equal the expected number of

proposals made by each student, times the ratio of students to schools ⇢. Given �I , students should

find that each proposal is accepted with probability A(�I), as explained above, and thus should send

an average of µ(A(�I)) proposals. Therefore, �I should satisfy the following consistency condition:

(4) �I = ⇢ · µ(A(�I)).

Theorem 1 establishes that for any ⇢, C,L, there is a unique value �I 2 R+ satisfying (4). Given

�I , the probability that a student who lists k schools is accepted by at least one of them is

(5) FI(k) = 1� (1�A(�I))
k
.

Next, we turn to our approximation for outcomes under a single lottery. Here, rather than

calculating a scalar �S , we will define a function ⇤S : [0, 1] ! R+, where ⇤S(t) represents the

average number of proposals that each school receives from students with priority above t, when

priorities are generated by a single lottery. Fixing ⇢, C,L, we define ⇤S to be the solution to the

following di↵erential equation:

⇤S(1) = 0, ⇤0
S(t) = �⇢ · µ(V(⇤S(t))).(6)

The motivation is that a market where schools have identical priorities can be analyzed in a top-

down manner. A student of priority t is accepted to a school only if the number of higher-priority

students who have proposed to that school is below its capacity C. If the number of such students

follows a Poisson distribution with mean ⇤S(t), then V(⇤S(t)) gives the acceptance probability for

a student of priority t, and therefore µ(V(⇤S(t))) gives the expected number of schools to which

this student will propose. The expected number of students with priority in an interval of width dt

is ⇢n · dt, so the expected number of proposals from these students received by the average school

is ⇢ · µ(V(⇤S(t)))dt.

Given ⇤S , we can calculate the fraction of students with list length k who are matched to a

school on their list. Each time a student with priority t proposes to the next school on her list, her

probability of being accepted by this school is V(⇤S(t)). It follows that she is rejected from her
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first k choices with probability (1� V(⇤S(t)))
k. Integrating across priorities, we define

(7) FS(k) = 1�
Z 1

0
(1� V(⇤S(t)))

k
dt.

Our first result establishes that the heuristic reasoning above can be made rigorous, and that as

the market grows large, the values FI(k) and FS(k) give the fraction of students who get a top k

choice, among those who list at least k schools.

Theorem 1. Fix ⇢ 2 R+, C 2 N, and L satisfying L(> `) = 0 for some ` 2 N. There is a unique

function FI defined by (4) and (5), and a unique function FS defined by (6) and (7). For any

1  k  l  ` and ✏ > 0, as n ! 1,

P
✓����

G
n

I
(k, l)

⇢n
� L(l)FI(k)

���� > ✏

◆
! 0, P

✓����
G

n

S
(k, l)

⇢n
� L(l)FS(k)

���� > ✏

◆
! 0.

This says that in large markets, the fraction of students who list exactly l schools and match to

a top k choice is close to L(l)FR(k) with high probability.

The proof of this result defines discrete time Markov Chains that correspond to the execution

of the Deferred Acceptance algorithm on randomly drawn preferences. These chains deploy the

“principle of deferred decisions” (Pittel, 1992; Immorlica and Mahdian, 2005), meaning that they

reveal the next school on a student’s list only when it is time for that student to propose. They also

make use of the implementation of Deferred Acceptance described by McVitie and Wilson (1971),

in which students are invited to propose sequentially, rather than in parallel. Each round of the

algorithm captures the e↵ect of adding a single student to the market, tracking a series of rejections

until a student either fills a vacancy or reaches the end of her list.

Past work has used a similar approach, but has been limited by the challenge of tracking the

evolution of a very high-dimensional Markov chain. There are two primary ways to overcome this

challenge: reduce the dimensionality of the state space by imposing restrictive assumptions (such

as homogeneity of students and schools), or conduct a coarse analysis that limits the types of

conclusions that can be drawn.5

In order to get precise results in a general model, we deploy the di↵erential equation method of

Wormald (1999). The first step of this method is to show that the evolution of the Markov Chain

can be well-approximated using only a limited number of summary statistics. From this, it follows

that the values of these summary statistics remain close to the solution of a corresponding set of

di↵erential equations. The key to making this approach work was coming up with a set of summary

statistics that is rich enough to capture the first-order behavior of the Markov Chain, but simple

enough to result in a tractable set of di↵erential equations. Our proof involves a high-dimensional

set of di↵erential equations, which we solve by using the intuition outlined above and in remarks

provided in the Appendix to guess a solution (which we then verify).

The final product is a very precise description of outcomes in large markets. Our main results

study and compare the values FI and FS . Before getting to these results, we first show how to

extend our model to handle heterogeneous schools.

5Ashlagi et al. (2017) use the former approach, Immorlica and Mahdian (2005) and Kojima and Pathak (2009) use
the latter, and Ashlagi et al. (2019) and Ashlagi and Nikzad (2020) deploy a combination of the two.
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3.3. Adding School Heterogeneity. We now extend the model to allow schools which di↵er in

their popularity and capacity. We adopt the preference formation model of Immorlica and Mahdian

(2005) and Kojima and Pathak (2009): student list lengths are drawn iid from L, and then lists are

completed by sampling schools without replacement from a fixed distribution over the set of schools.

We say that a school’s “popularity” is n times its probability of being selected first. Therefore, the

average school popularity is one by definition.

In this model, the relevant information about a school is captured by two numbers: its capacity

and its popularity. We refer to this pair as a school’s “type.” We consider a limiting regime in

which there is a finite set of school types T ✓ N⇥R+, and a large number of schools of each type.

We let D be the empirical distribution of school types. In other words, each school has a type

⌧ = (C⌧ , p⌧ ) 2 T (where C⌧ represents the capacity of the school and p⌧ represents its popularity),

and D⌧ 2 [0, 1] represents the fraction of schools with type ⌧ . We place no restriction on the

distribution D other than that it has bounded support. Because the average school popularity has

been normalized to one, the probability that the first school on a student’s list is of type ⌧ is p⌧D⌧ .

This motivates us to define the following generalizations of V(·) and A(·):

V(�) =
X

⌧2T
p⌧D⌧⌫(p⌧�, C⌧ ),(8)

A(�) =
X

⌧2T
p⌧D⌧↵(p⌧�, C⌧ )(9)

where ⌫ and ↵ are our new names for the expressions in (1) and (2):

⌫(�, C) =
C�1X

k=0

e
��

�
k

k!
= P(Po(�) < C),(10)

↵(�, C) =
1X

k=0

e
��

�
k

k!
min

✓
C

k + 1
, 1

◆
.(11)

The model with homogeneous schools corresponds to a singleton type space T = {(C, 1)}, in which

case the expressions in (8) and (9) coincide with (1) and (2). The intuition for these more general

expressions is that if the average school receives � proposals, and a school of type ⌧ is p⌧ times

more popular than average, then the number of proposals received by a school of type ⌧ should

be Poisson with mean p⌧�, and therefore the probability of a vacancy at that school should be

⌫(p⌧�, C⌧ ), with a corresponding acceptance rate of ↵(p⌧�, C⌧ ). The expressions in (8) and (9)

calculate a weighted average of these probabilities, accounting for the fact that p⌧D⌧ gives the

probability of proposing to a type-⌧ school. We continue to define FI and FS by (4), (5), (6), (7).

Small modifications to the proof establish that Theorem 1 continues to hold in markets with an

arbitrary fixed type space T and many schools of each type. Incorporating an arbitrary distribution

of school types D significantly generalizes the model, permitting it to capture setting where some

schools are listed much more frequently than others, some are larger than others, and the popularity

of large schools di↵ers systematically from the popularity of small schools. All of our main results

hold in this general model, and Proposition 3 exploits this generality to study how the number of

students getting their first choice depends on the distribution of school popularity.
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Figure 1. The probability of matching, as a function of list length, under single and independent
lotteries. Each panel displays results for a di↵erent market. In each market, schools are equally
popular and have C = 10 seats, and all students list 6 schools. The ratio of students to seats
varies across markets: on the left, there are 10% fewer students than seats, on the right there are
10% more students than seats, and the middle panel shows a balanced market. The location of
the crossing point established by Theorem 2 depends on the market imbalance. When there is
a surplus of seats (left panel), students are more likely to get one of their top two choices under
independent lotteries, while with a shortage of seats (right panel), a single lottery appears to
dominate independent lotteries.

4. Insights from Our Model

We will study properties of the quantities FR(k). Theorem 1 establishes that FR(k) is equal to

the fraction of students who get one of their top k choices, among those who list at least k schools.

Alternatively, FR(k) can be thought of as the probability of matching for students who list exactly

k schools.

4.1. Identifying a Tradeo↵. We begin with our first main result, which establishes a tradeo↵

when choosing between a single lottery and independent lotteries.

Theorem 2. Given any ⇢,L,D, the functions FI and FS cross exactly once: there exists ` 2 N
with L(> `) > 0 such that FI(k) < FS(k) for k  `, and FI(k) � FS(k) for k > `.

Recall from Theorem 1 that FR(k) can be interpreted as the probability of matching for students

who submit lists of length k. Therefore, if we call a list of length l short if l  `, and long if

l > `, then Theorem 2 states that students with long lists are more likely to match when using

independent lotteries, while those with short lists are more likely to match when using a single

lottery. This establishes a tradeo↵ between these procedures. Theorem 2 additionally implies that

a single lottery always matches more students to their first choice school, and that for students

submitting short lists, the rank distribution under a single lottery stochastically dominates the rank

distribution under independent lotteries.

4.1.1. The Location of the Crossing Point. Although Theorem 2 establishes that FS and FI cross

at a single position, it is silent about where the crossing point falls, as well as the magnitude of

the di↵erence between FS and FI . This will depend on the market imbalance ⇢, the distribution of

student list length L, and the size and popularity of various schools, as captured by D.

Figure 1 shows how the crossing point depends on the market imbalance, in markets where all

students list 6 schools. When there are 10% fewer students than seats, independent lotteries look
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Figure 2. The probability of matching, as a function of list length, under single and independent
lotteries. Each panel displays results for a di↵erent market. In each market, schools are equally
popular and have C = 10 seats, there are 20% more students than seats, and students list an
average of 6 schools. The list length distribution varies across markets: on the left, half of students
list 1 school and the other half list 11; in the middle, list lengths are uniformly distributed on
{1, 2, . . . , 10, 11}; and on the right, all students list 6 schools. In the latter case, a single lottery
seems the clearly superior choice (because all students list six schools, the part of the graph to the
right of six is irrelevant). When list lengths vary, students with shorter lists favor a single lottery,
while those with longer lists are more likely to match under independent lotteries.

somewhat attractive, as they result in more students getting one of their top two choices. When

there are 10% more students than seats, a single lottery “almost dominates” independent lotteries:

FS(k) > FI(k)� ✏ for all k and some small ✏. These findings are consistent with the conclusions of

Ashlagi and Nikzad (2020), who write “In a market with a surplus of seats... there are e�ciency

tradeo↵s between the two tie-breaking rules. However, a common lottery is always preferable when

there is a shortage of seats.”

Figure 2 shows that this conclusion may no longer hold when student lists vary in length. It

displays results from markets where each school has 10 seats and there are 20% more students than

seats. Despite this imbalance, when the list length distribution is bimodal (with some very long

lists and other very short ones), independent lotteries match more students with long lists, while

a single lottery matches more students with short lists. Thus, even in markets with a shortage of

seats, a meaningful tradeo↵ emerges. There may be cases where it is most important to match

students with long lists, in which case independent lotteries might be preferable. We elaborate on

this point in Section 5.

4.1.2. Multiple Priority Classes. Our model assumes that priorities are determined purely by lot-

tery. In practice, students are often given priority if they live in the neighborhood, or have a sibling

who attends the school. Lotteries are then used to break ties within each priority class.

Although Theorem 2 does not directly apply to these cases, the intuition underlying it is fairly

robust. Independent lotteries give a relative advantage to students who submit longer lists, who

benefit from having the most independent draws. Meanwhile, using a single lottery increases the

number of students who receive their first choice, by minimizing the chance that a student who has

been rejected from one school will have high priority at another.

We illustrate this point using simulation results of more complex priority structures. Figure 3

displays simulation results when there are no inherent priorities alongside corresponding results

when some students have priority at their first choice school, or at a random school, and lotteries
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Figure 3. Although our model assumes that priorities are determined solely by lottery, simulation
results show that our qualitative findings continue to hold when there are multiple priority classes
and lotteries are used only as a tiebreaker. Each panel shows simulations from markets where there
are 100 schools with 10 seats each, and 1000 students, each of whom list 6 schools. In the center,
priorities are purely by lottery: these results match the predictions in the center panel of Figure
1. On the left, each student has “neighborhood priority” at one of the six schools on her list. This
significantly reduces the number of students matching to their first choice (because of the di�culty
of matching to a non-neighborhood school), but increases the number of matches under a single
lottery (because even students with bad lottery numbers have high priority at their neighborhood
school). On the right, 40% of students have “sibling priority” at the first school on their list. This
notably increases the number of students who get their first choice under independent lotteries.
Although introducing underlying priorities a↵ects aggregate outcomes, the insights from Theorem
2 continue to apply: a single lottery gives more students their first choice, and FI and FS cross
exactly once.

are used only to break ties in priority. Adding priority classes a↵ects the distribution of outcomes

under both lottery procedures, and reduces the importance of the lottery. However, the qualitative

conclusions from Theorem 2 continue to apply in all three scenarios: a single lottery gives more

students their first choice, independent lotteries result in more matches for students submitting

long lists, and the values FI and FS cross exactly once.

4.2. Comparing the Number of Assigned Students.

Theorem 2 established a tradeo↵: students with short lists are more likely to match when using

a single lottery, while those with the longest lists are more likely to match when using independent

lotteries. Which procedure matches more students overall?

The answer to this question would seem to depend on the crossing point (which determines what

counts as a “short” or a “long” list), the number of students submitting lists of each length, and

the magnitude of the di↵erences between FI and FS for each list length k. Each of these, in turn,

depend on the ratio of students to schools ⇢, the distribution D of schools’ capacity and popularity,

and the distribution L of students’ list lengths, as Figures 1 and 2 illustrate. A priori, there is no

reason to expect a simple characterization.

In one special case, however, Theorem 2 provides the answer: if all students list the same number

of schools, then all students “submit the longest lists”, so independent lotteries assign more students.

In this case, knowing the list length distribution L su�ces to reach a conclusion that holds for any

⇢ and D. Theorem 3 generalizes this observation by establishing conditions on L which ensure that

one procedure matches more students than the other, regardless of the parameters ⇢ and D. We
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define

(12) FR(L) = E
`⇠L

[FR(`)]

to be the fraction of students who match under lottery rule R.

Theorem 3. Fix any ⇢,D. If the list length distribution L is such that f(q) = 1/µ(q) is
• concave, then more students are assigned under a single lottery: FI(L)  FS(L).
• convex, then more students are assigned under independent lotteries: FI(L) � FS(L).

This establishes that either lottery procedure may result in more matches than the other, and

that the comparison depends on whether the function f is concave or convex. A natural question

is which case, if either, should be considered “typical”? To answer this question, we examine list

length data from New York City, Amsterdam, Hungary, and Chile in Figure 4. In all four cases,

the function f is convex. Therefore, Theorem 3 suggests that using a single lottery to break ties

should result in fewer assigned students. This prediction is consistent with the simulation results

presented by Abdulkadiroglu et al. (2009) and de Haan et al. (2018).

4.2.1. A simple su�cient condition. Although Theorem 3 provides a clean characterization, it is

also opaque. What is the meaning of the function f? One interpretation is as follows. Suppose

that there is a population of students with list lengths drawn from L, who are accepted to each

school on their list independently with probability q. Then the fraction of students receiving their

first choice is q, while the fraction who match can be shown to be q · µ(q). Therefore, the fraction

of assigned students who attend their first choice school is f(q). Even with this interpretation,

however, it is di�cult to think about whether a particular list length distribution will cause f to

be convex or concave. Proposition 1 simplifies the process by relating the convexity or concavity

of f to the hazard rate of the list length distribution.

Proposition 1. Define the hazard rate of the list length distribution at k to be
L(k)
L(�k) .

If the hazard rate of the list length distribution weakly increases in k, then f(q) = 1/µ(q) is convex.

If the hazard rate of the list length distribution weakly decreases in k, then f(q) = 1/µ(q) is concave.

Many common distributions have an increasing hazard rate, including deterministic distributions,

uniform distributions on an interval, binomial distributions, and truncated Poisson distributions.

An example of distribution with a decreasing hazard rate is the Power law distribution L(�k) = k
�d

for some d � 2. The geometric distribution has a constant hazard rate. Therefore, Theorem 3

and Proposition 1 jointly imply that if the list length distribution is geometric, the two lottery

procedures match the same number of students.

It is important to note that a distribution with a decreasing hazard rate is necessarily unbounded,

and therefore cannot arise in practice. There do exist distributions with bounded support for which

f is concave, but Proposition 1 along with the evidence in Figure 4 suggests that the convex case is

much more common. Therefore, Theorem 3 suggests that we should typically expect independent

lotteries to produce more matches.

4.2.2. How big is the di↵erence? Theorem 3 does not address the magnitude of the di↵erence be-

tween the number of matches with single and independent lotteries. In some cases, these procedures
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Figure 4. Left panel: list length distributions from four centralized admissions programs. Middle
panel: the corresponding functions f(q). Despite di↵erences in the average list length and the
shape of the distributions, in all cases, f is convex, as seen by removing the linear trend and
plotting f(q) � qf(1) � (1 � q)f(0) (right panel). Theorem 3 suggests that when f is convex,
breaking ties using a single lottery should match fewer students. This prediction is consistent with
the empirical findings from New York (Abdulkadiroglu et al. (2009)) and Amsterdam (de Haan
et al. (2018)). Hungarian list length data taken from Aue et al. (2019), and Chilean data from
Larroucau and Rios (2019).
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Figure 5. Comparison of unassigned students when using single and independent lotteries to a
lower bound based on the fact that the number of assigned students is at most the total number
of seats. When students list the same number of schools, Theorems 2 and 3 establish that a single
lottery results in more unassigned students. This figure shows that the di↵erence can be significant.
In both panels, schools are equally popular and have capacity C = 1. On the left, the market is
balanced (⇢ = 1) and the list length ` varies. When ` = 10, moving from a single lottery to
independent lotteries reduces the fraction of unassigned students from 6.4% to 3.4%. In order to
reduce the number of unassigned students below 3.4% while using a single lottery, lists must be
lengthened to ` = 20 schools. On the right, students list eight schools, and the ratio of students to
seats varies. When the market is balanced, moving from a single lottery to independent lotteries
causes a larger reduction in unassigned students than increasing the number of schools by 7%.

leave similar numbers of students unassigned. For example, if the market is very imbalanced or

lists are very long, the number of matches will be close to the size of the short side of the market.

However, in other cases, independent lotteries leave significantly fewer students unassigned. Figure

5 shows results for markets with homogeneous schools, each with a single seat. When the market

is balanced and each student lists 10 schools, 6.4% of students go unassigned when using a single

lottery, compared to 3.4% with independent lotteries. In order to reduce the number of unassigned

students below 3.4% while using a single lottery, lists must be lengthened to ` = 20 schools!

This motivates us to study the rate at which the number of unmatched students decreases as

lists get longer. To obtain simple expressions, we consider the special case where C = 1, schools

are equally popular, and student list lengths follow a Poisson distribution with mean `.6

6Qualitatively similar results hold for other parameter choices, but the expressions are not as clean.
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Proposition 2. Suppose that schools are equally popular and have a single seat, and the list length

distribution is Poisson with mean `. If ⇢ = 1, then

1� FI(L) = e
�
p

`FI(L), 1� FS(L) = log(2� e
�`)/`.

If ⇢ < 1, then as ` ! 1,

1

`
log(1� FI(L)) !

⇢

log(1� ⇢)
,

1

`
log(1� FS(L)) ! �(1� ⇢).

1

`
log(1� FI(L)) =

⇢FI(L)
log(1� ⇢FI(L))

! ⇢

log(1� ⇢)
.(13)

1

`
log(1� FS(L)) =

1

`
log

✓
1� 1

⇢
+

1

⇢`
log(1 + e

`(1�⇢) � e
�`⇢)

◆
! �(1� ⇢).(14)

Proposition 2 says that in a balanced one-to-one market, the fraction of unassigned students

decreases at very di↵erent rates under the two procedures: it is approximately e
�
p
` with indepen-

dent lotteries, and approximately log(2)/` under a single lottery. When there are fewer students

than seats (⇢ < 1), then the number of unassigned students decays exponentially in ` under both

procedures, because each additional proposal has a constant probability of being sent to a school

with a vacancy. However, the rate of exponential decay is very di↵erent: 1 � FI(L) ⇡ e

⇢
log(1�⇢) `,

while 1 � FS(L) ⇡ e
�(1�⇢)`. If ⇢ = 0.9, this means that for large `, 1 � FI(L) ⇡ e

�0.4`, while

1� FS(L) ⇡ e
�0.1`.

4.3. Number of First Choices. Theorem 2 implies that more students are assigned to their first

choice when using a single lottery, but how big can the di↵erence be? If the number of students

(parameterized by ⇢) is very large, then the fraction of students who match (and therefore the

fraction who get their first choice) is necessarily small under any allocation procedure. Accordingly,

it makes sense to study the fraction of assigned students who receive their first choice.

Ashlagi et al. (2019) show that the di↵erence between single and independent lotteries can be

extreme: when schools have a single seat and are equally popular, the fraction of assigned students

who receive their first choice can be arbitrarily small under independent lotteries, but is always at

least 1/2 when using a single lottery.

Our next result generalizes the lower bound for independent lotteries to cases where schools have

multiple seats and di↵er in their popularity. Unsurprisingly, our bound is largest when schools are

equally popular, and close to zero if schools di↵er dramatically in their popularity. Proposition

3 quantifies the decay in the number of students receiving their first choice as discrepancies in

popularity become more pronounced.

Proposition 3. If the type distribution D is such that each school has C seats and the most popular

school is at most r times as popular as the least popular school, then

FS(1)

FS(L)
� LBT (r, C) =

2

(1 +
p
r)2

Z 1

0

p
r · ⌫(Cx,C)2 + ⌫(Cx,C)⌫(Cx/r, C)dx.

The proof in Appendix A.4 establishes that the lower bound of LBT (r, C) is tight (it is attained

when students submit long lists, there are as many students as seats, and schools either have
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Figure 6. Using a single lottery ensures that a sizeable fraction of assigned students receive their
first choice school. The figure shows tight lower bounds on this quantity when schools have identical
capacity C. The x axis represents the ratio in popularity of the least to most popular school, which
is the reciprocal of the parameter r mentioned in Proposition 3. On the far right, schools are equally
popular, and at least half of assigned students receive their first choice. This guarantee increases
to one as C grows. Moving to the left, the discrepancy in popularity r increases, and the number
of students receiving their first choice falls. Proposition 3 states that when C = 1 the fraction
of assigned students who receive their first choice is at least

p
r/(1 + r). This bound approaches

2/(1 +
p
r) as C increases.

popularity
p
r or 1/

p
r). While this bound appears complex, it is decreasing in r and increasing in

C, and can be readily evaluated for each C. In particular,

LBT (r, 1) =

p
r

1 + r
.

LBT (r, 2) =
2

(1 +
p
r)2

✓
1 +

5

8

p
r � 2r + 1

(r + 1)3

◆
.

lim
C!1

LBT (r, C) =
2

1 +
p
r
.

The values LBT (r, C) are displayed in Figure 6. They imply that if no school is more than four

times more popular than any other, then at least 40% of assigned students get their top choice.

If no school is more than nine times more popular than any other, then at least 30% of assigned

students get their top choice. As C ! 1, at least 2/3 of assigned students receiving their first

choice when r = 4 and 1/2 of assigned students receiving their first choice when r = 9.
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5. Discussion

This paper addresses an operational question facing school districts that use the Deferred Accep-

tance Algorithm: how should lotteries to determine school priorities be implemented? Prior work

has focused on metrics such as students’ average rank, or the number of students receiving their top

choice, and generally concluded that a single lottery is superior to independent lotteries. Our work

is the first to compare the number of matches under each procedure. It identifies the importance

of a parameter – the list length distribution – which has received little attention in prior work.

5.1. Policy Implications. Our findings provides new information for policymakers to consider.

For distributions that arise in practice, our results suggest that using a single lottery will typically

match fewer students. Therefore, if maximizing the number of assigned students is su�ciently

important, independent lotteries may be preferable. In fact, the logic underlying our results suggests

that negatively correlated lotteries should match even more students, as those who are rejected from

their top choices will tend to have good lottery draws at schools further down their lists.

In practice, policymakers may care not only about aggregate statistics, but also about outcomes

for certain subpopulations of students. Our work takes a first step towards understanding which

students benefit from each lottery procedure. Even if using a single lottery improves aggregate

statistics, Theorem 2 implies that this may hurt students who submit long lists.

To make this idea concrete, consider the example discussed in Section 4.1.1, where the list length

distribution is bimodal: some students list only one school, while others submit long lists. In that

case, a single lottery matches more students to their first choice and more students overall. Based

on these statistics, it might seem like a clear winner. However, for the population of students who

submit long lists, a single lottery leaves 6.6% unmatched, while independent lotteries match them

all. One might imagine that students who list a single school tend to have strong outside options,

such as attending an elite private school. In this case, adopting a single lottery could have the

unintended consequence of exacerbating inequality, by transferring positions at top public schools

away from underprivileged students who submit long lists, and towards students whose parents can

a↵ord private school.

This is merely one story that could be told. An alternative narrative might conclude that

students submitting long lists are those whose parents have the time and resources to research

many options. Ultimately, the question of which students submit short lists is an empirical one.

However, our work is the first in its line to consider outcomes for specific subpopulations of students.

It identifies not only how lottery design a↵ects the total number of matches, but also how it a↵ects

who matches. This information could be valuable to policymakers tasked with implementing tie-

breaking procedures.

Although we focus on lottery design, the expressions for match outcomes provided in Theorem 1

are a contribution which could o↵er many other insights. One question that merits further study is

the e↵ect of lengthening student lists. Policymakers often encourage students to list more schools,

in order to reduce their chance of going unassigned. While this is good advice at an individual level,

it could lead to worse societal outcomes, as lengthening one student’s list increases the competition

that other students face. Our model is well-suited to provide quantitative guidance on this tradeo↵.
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For example, Proposition 2 highlights that when using a single lottery, lengthening student lists

may not be especially e↵ective at reducing the number of unassigned students. With independent

lotteries, lengthening lists is more e↵ective at increasing matches, but is also more likely to impose

externalities on other students. Future studies might use our results to study how the length of

student lists a↵ects the number of students getting one of their top choices.

5.2. Model Limitations. Despite the generality of our model, it is important to note that it still

imposes a lot of structure on student preferences, and does not capture certain features expected

in real-world markets. Our procedure for generating student preferences allows some schools to be

much more popular than others, but also ensures that learning a subset of a student’s list conveys

almost no information about the remaining schools on the list. In reality, students are likely to list

multiple schools that are in a similar location, or have similar academic o↵erings. Generalizing our

results to richer models of student preferences is an important direction for future work. Similarly,

it would be valuable to move beyond single and independent lotteries to richer priority structures

that more closely reflect reality.

A second caveat is that our comparisons implicitly assume that changing priorities doesn’t a↵ect

student lists. In theory, this seems a reasonable assumption: when using student-proposing Deferred

Acceptance, it is a dominant strategy for students to submit their true preferences, regardless of

how priorities are determined (Dubins and Freedman, 1981; Roth, 1984).

In practice, however, there are several reasons to believe that students might respond to changes

in priority. One is that most school districts limit the number of schools that each student can rank

(Pathak and Sönmez, 2013), and students who cannot list all acceptable schools have an incentive

to strategically list those where they have high priority. Additionally, students who are confident of

admission to a particular school might neglect to list inferior options, while students who consider

a school unattainable might not list it, even if there is no cost to doing so (Chen and Pereyra, 2019;

Hassidim et al., 2021). In all of these cases, changes to priorities could plausibly cause students to

list additional schools, or drop schools from their lists.

Despite these concerns, we think that the assumption that lists do not change is a reasonable

point to start analysis. Regarding list length constraints, most students do not submit the maximum

number of allowed schools. For example, only 22% do so in New York, 27% in Denver, and 5% in

New Orleans (Pathak, 2016). Additionally, even for students who submit the maximum number

of schools, it is not clear that their reports respond significantly to the mechanism. As evidence,

consider a policy change made by Chicago’s exam schools in 2009. Before the change, these schools

had been assigned using a variant of the Boston mechanism. Preferences were collected from over

13,000 families in 2009, before a decision was made to dramatically change the mechanism (to

Deferred Acceptance with a list length limit) and the priorities (giving a�rmative action based

on socioeconomic status rather than race). Students were allowed to resubmit their preferences,

but only 11% made any changes (Pathak, 2016). Pathak (2016) concludes, “The magnitude of

the behavioral response is swamped, for instance, by the mechanical change in how applicants are

processed by the mechanism.” Meanwhile, Hastings et al. (2009) study data from Charlotte, North

Carolina, and conclude that there is little evidence that applicants’ preferences reacted to a change

in neighborhood boundaries. Thus, while changes to the assignment mechanism no doubt a↵ect
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some students’ lists, the e↵ect appears to be modest even for dramatic changes, and would likely

be smaller for changes such as the implementation of the lottery.7

For those who insist on taking seriously the idea that students generate lists strategically, we note

that any analysis of this behavior requires students to form beliefs about what options are available

to them. This has generally been viewed as intractable unless the students have perfect information

or view all schools symmetrically. The model presented in this paper generates tractable predictions

of an asymmetric market where students have incomplete information about others’ preferences,

and therefore could be used as a building block for the analysis of strategic listing.
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A. Proofs From Section 4

A.1. Preliminaries. We begin with several technical lemmas that will come in handy. When

possible, we include remarks interpreting the quantities involved. Our first lemma is a well-known

result about non-negative random variables.

Lemma 1. Let N be a random variable on N. Then E[N ] =
P1

k=0 P(N > k).

Proof.

E[N ] =
1X

j=0

j P(N = j) =
1X

j=0

j�1X

k=0

P(N = j) =
1X

k=0

1X

j=k+1

P(N = j) =
1X

k=0

P(N > k).

⇤

We now establish basic facts about the Poisson distribution. We start by defining several addi-

tional functions of interest.

pj(�) =
e
��

�
j

j!
,(15)

"(�, C) =
1X

k=0

e
��

�
k

k!
min(k, C),(16)

E(�) =
X

⌧2T
D⌧"(p⌧�, C⌧ ).(17)

Remark 1. A school that receives interest from k students and has capacity C will enroll min(k, C)

students. Therefore, "(�, C) gives expected "nrollment at a school with capacity C when the number

of interested students follows a Poisson distribution with mean �. When the average interest per

school is �, the average interest per school of type ⌧ is p⌧�, so E(�) gives the average Enrollment

across schools, given that the average interest per school is �.

Lemma 2. For C 2 N,

d

d�
⌫(�, C) = �e

��
�
C�1

(C � 1)!
, ↵(�, C) = "(�, C)/�,

d

d�
"(�, C) = ⌫(�, C), lim

�!1
"(�, C) = C.

Therefore for any T ,D,

��V 0(�)
�� 

X

⌧2T
D⌧p

2
⌧ , A(�) = E(�)/� E 0(�) = V(�), lim

�!1
E(�) =

X

⌧2T
D⌧C⌧ .

Proof. By (10),

(18)
d
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��
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From (10) and (18) it follows that

��V 0(�)
�� =
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Meanwhile, we have

↵(�, C) =
1X

k=0

e
��

�
k

k!
min

✓
C

k + 1
, 1

◆
=

1X

k=0

e
��

�
k

(k + 1)!
min (k + 1, C) =

1

�

1X

k=0

e
��

�
k

k!
min (k,C) =

1

�
"(�, C).

From this, it follows that

A(�) =
X

⌧2T
p⌧D⌧↵(p⌧�, C⌧ ) =

X

⌧2T
D⌧"(p⌧�, C⌧ )/� = E(�)/�.

By Lemma 1 it follows that

"(�, C) = E[min(Po(�), C)] =
C�1X

k=0

P(Po(�) > k) =
C�1X

k=0

(1� ⌫(�, k + 1))

Therefore, by (18),

(19)
d

d�
"(�, C) =

d

d�

C�1X

k=0

(1� ⌫(�, k + 1)) =
C�1X

k=0

e
��

�
k

k!
= ⌫(�, C).

Similarly, (16) and (19) imply that E 0(�) = V(�).
Finally, as � ! 1, it is clear that "(�, C) = E[min(Po(�), C)] ! C, and E(�) !

P
⌧2T D⌧C⌧ .

⇤

Remark 2. Lemma 2 has an intuitive explanation. Recall that "(�, C) represents the expected

enrollment at a school with C seats which receives a number of proposals that follows a Pois-

son distribution with mean �. Meanwhile, ↵(�, C) represents the acceptance rate at this school,

and ⌫(�, C) represents the probability that this school has at least one vacancy. Thus, the result

↵(�, C) = "(�, C)/� states that the acceptance rate is equal to the expected number of accepted stu-

dents divided by the expected number of interested students, while the result
d

d�
⌫(�, C) = � e

��
�
C�1

(C�1)!

states that an additional student expressing interest eliminates the last vacancy if and only if C� 1

students had previously proposed. The result
d

d�
"(�, C) = ⌫(�, C) states that the increase in en-

rollment due to an additional student expressing interest is equal to the probability that the school

previously had a vacancy. The result lim�!1 "(�, C) = C states that if the school has a lot of

interest, it will almost always fill all seats.

Lemma 3. �A0(�) = V(�)�A(�)  0, with strict inequality for � > 0.

Proof. The equality follows from Lemma 2:

A0(�) =
d

d�

E(�)
�

=
�V(�)� E(�)

�2
=

V(�)�A(�)

�
.

The inequality follows because

A(�) = E(�)/� =

Z 1

0
V((1� t)�)dt >

Z 1

0
V(�)dt = V(�).

(Note that the first equality holds by definition, the second follows by the substitution u = (1� t)�

and Lemma 2, and the inequality follows because V(·) is decreasing.) ⇤

Remark 3. The quantity V(�) represents the fraction of interest that is directed to schools with

a vacancy. The quantity A(�) represents the aggregate acceptance rate. Because schools with
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vacancies accept all interested students, it follows that V(�)  A(�), and that their di↵erence

can be interpreted as the fraction of interest that triggers rejection of another student. Therefore,

Lemma 3 states that the change in acceptance rate due to additional students expressing interest is

equal to the number of additional rejections divided by the total amount of interest �.

Lemma 4. For any L, µ(·) is decreasing and convex, with

µ(q) 
1X

k=0

L(>k) = E
l⇠L

[l](20)

µ
0(q) 

1X

k=0

kL(>k) =
1

2
E
l⇠L

[l2 � l].(21)

Furthermore, q · µ(q) is increasing in q, and at most 1.

Proof. The fact that µ(q) is less than the average list length µ(0) =
P1

k=0 L(> k) follows by

inspection of (3). Di↵erentiate (3) to see that

(22) µ
0(q) = �

1X

k=0

kL(>k)(1� q)k,

from which it follows that µ is decreasing and convex. Furthermore, (22) implies (21).

Monotonicity of q · µ(q) holds because

q · µ(q) =
1X

k=0

(1� q)kL(>k)�
1X

k=0

(1� q)k+1L(>k)

=
1X

k=0

(1� q)kL(>k)�
1X

k=1

(1� q)kL(>k � 1)

= 1�
1X

k=1

L(k)(1� q)k,

which is clearly increasing in q. The claim that q · µ(q)  1 follows by taking q = 1. ⇤

Remark 4. The intuition for Lemma 4 is as follows. Consider a student for whom each application

is accepted with probability q. The quantity µ(q) represents the expected number of schools to which

this student will propose. This quantity increases as the acceptance probability decreases, and is

bounded by the average list length. The quantity q µ(q) represents the probability that this student

matches, which is clearly less than one, and increases with q.

Lemma 5. For R 2 {I, C} the following equalities hold:

E(�R) = ⇢ E
k⇠L

[FR(k)].(23)

�R = ⇢

1X

k=0

L(>k)(1� FR(k)).(24)
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Proof. We first prove (23) for R = I. By definition of A in (9) we have

E(�I) = �IA(�I)

= ⇢A(�I)µ(A(�I))

= ⇢(1� E
`⇠L

[(1�A(�I))
`])

= ⇢ E
`⇠L

[FI(`)].

The second equality follows from (4). The third follows from the definition of µ in (3) and the

observation that

(25) qµ(q) = q E
`⇠L

[
`�1X

k=0

(1� q)k] = E
`⇠L

[1� (1� q)`].

The fourth equality follows from the definitions of FI in (5) and (12).

Next, we prove (23) for R = S. By definition of FS in (7) and (12), we have

E
`⇠L

[FS(`)] =

Z 1

0
E

`⇠L
[1� (1� V(⇤S(t)))

`]dt

=

Z 1

0
V(⇤S(t))µ(V(⇤S(t)))dt.

=
1

⇢

Z ⇤S(0)

0
V(�)d�

= E(⇤S(0))/⇢.

The second equality follows from (25), the third from the substitution � = ⇤S(t) and (6), which

states that d�S
dt

= �⇢µ(V(⇤S(t))), and the final equality from Lemma 2.

We now prove (24) for R = I. This follows immediately from the definitions of �I in (4), µ in

(3), and FI in (5):

�I = ⇢µ(A(�I))

= ⇢

1X

k=0

L(>k)(1�A(�I))
k

= ⇢

1X

k=0

L(>k)(1� FI(k)).

Finally, we prove (24) for R = S. By the definition of FS in (7),

⇢

1X
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1X
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Z 1
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(1� V(⇤S(t)))

k
dt
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Z 1
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µ(V(⇤S(t)))dt
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d� = ⇤S(0).
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The final line follows from substituting � = ⇤S(t), and noting that d�

dt
= �⇢µ(V(⇤S(t))) by (6).

Note also that �S = ⇤S(0) by definition. ⇤

Remark 5. Recall that E(�R) is interpreted as the average school enrollment. This must equal

the ratio of students to schools ⇢ times the fraction of students who are assigned, E`⇠L[FR(`)].

Meanwhile, the quantity L(> k)(1 � FR(k)) gives the fraction of students who propose to at least

k + 1 schools (they list more than k schools and do not get into any of their first k choices).

Therefore, by Lemma 1, the right side of (24) is the average number of schools at which a student

expresses interest, times the ratio of students to schools, which must equal schools’ average number

of interested students �R.

A.2. Proof of Theorem 2. The proof of Theorem 2 follows from Lemmas 6 and 7. Lemma 6 says

that FI and FS have at most one crossing point, implying that either there is one crossing point

or one dominates the other. Lemma 7 states that it is not possible for FI to dominate FS , or vice

versa.

Lemma 6. If FI(k) > FS(k), then FI(k0) > FS(k0) for all k
0
> k.

Proof. Recall that

FI(k) = 1� (1�A(�I))
k
, FS(k) = 1�

Z 1

0
(1� V(⇤S(t)))

k
dt.

It follows that for k0 � k,

1� FI(k
0) = (1� FI(k))

k
0
/k

< (1� FS(k))
k
0
/k

=

✓Z 1

0
(1� V(⇤S(t)))

k
dt

◆k
0
/k


Z 1

0
(1� V(⇤S(t)))

k
0
dt

= 1� FS(k
0),

where the first inequality follows because FI(k) > FS(k), and the second by Jensen’s inequality. ⇤

Lemma 7. Let L = {k 2 N : L(k) > 0} be the support of the list length distribution. There exists

k 2 L such that FI(k) > FS(k) if and only if there exists k
0 2 L such that FI(k0) < FS(k0).

Proof. Seeking a contradiction, suppose that one of the procedures dominates the other. That is,

for R, R̃ 2 {I, S},

(26) FR(k) � F
R̃
(k) for all k 2 L, with strict inequality for some k.

Note that (12) and (26) jointly imply that E`⇠L[FR(`)] > E`⇠L[FR̃
(`)]. But (24) and (26) imply

that �R < �
R̃
, and therefore that E(�R) < E(�

R̃
). By (23), this implies E`⇠L[FR(`)] < E`⇠L[FR̃

(`)],

which is a contradiction. Thus, (26) cannot hold. ⇤

A.3. Proofs from Section 4.2: Theorem 3, Proposition 1, and Proposition 2.
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Remark 6. This remark provides interpretation for the quantities used in the proof of Theorem

3. The quantity �
0
R

can be interpreted as the expected amount of additional interest triggered by

the addition of a new student to the market under priority rule R. Note that this may be higher

than the number of schools at which this student expresses interest, because the student may cause

others to be rejected. Because schools on each student’s list are sampled iid, there is a one-to-one

correspondence between the total interest �R and enrollment E(�R). Thus, the strategy is to show

that whenever the two methods have matched the same number of students so far, then the number

of new proposals (or equivalently, the number of new matches) triggered by the addition of one

student is higher under one procedure than the other.

Proof of Theorem 3. Because E(·) is monotonic, it su�ces to compare �I to �S = ⇤S(0). We do

this by fixing L and D, and considering the values �R as functions of ⇢.

Because �I(0) = �S(0) = 0 and both �I and �S are continuous and di↵erentiable functions

of ⇢, to show that �I(⇢) � �S(⇢) for all ⇢ � 0, it su�ces to show that if ⇢I , ⇢S 2 R+ satisfy

�I(⇢I) = �S(⇢S), then �
0
I
(⇢I) > �

0
S
(⇢S). Similarly, to show that �I(⇢)  �S(⇢) for all ⇢ � 0, it

su�ces to show that

�I(⇢I) = �S(⇢S) ) �
0
I(⇢I) < �

0
S(⇢S).

We now compute �
0
I
and �

0
S
. Di↵erentiating (4) with respect to ⇢ (and dropping the implicit

dependence of �I and �
0
I
on ⇢), we get

(27) �
0
I = µ(A(�I)) + ⇢µ

0(A(�I))A0(�I)�
0
I .

From Lemma 3 and (4), it follows that that

⇢ · A0(�I) = ⇢
V(�I)�A(�I)

�I

=
V(�I)�A(�I)

µ(A(�I))
.

Substituting this expression into (27) and solving for �
0
I
, we see that the derivative of �I with

respect to ⇢ is

(28) �
0
I =

µ(A(�I))

1� (V(�I)�A(�I))
µ0(A(�I))
µ(A(�I))

.

Meanwhile, we claim that

(29) �
0
S = �1

⇢
⇤0
S(0) = µ(V(�S)).

This can be seen by noting that if we view ⇤S as a function of t and ⇢, then for ⇢ > ⇢, �S(⇢) =

⇤S(0, ⇢) = ⇤S(1 � ⇢/⇢, ⇢) (both quantities represent the total interest expressed by the first ⇢

students). Di↵erentiating this equation with respect to ⇢ yields (29).
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It follows from (28) and (29) that if �I(⇢I) = �S(⇢S) = �, then (letting V = V(�),A = A(�))

�
0
S(⇢S) < �

0
I(⇢I) , µ(V) < µ(A)

1� (V �A)µ
0(A)
µ(A)

, µ(V)� µ(A) < (V �A)µ0(A)
µ(V)
µ(A)

, µ(V)� µ(A)

µ(V)µ(A)
< (A� V)f 0(A).

, f(A)� f(V)
A� V < f

0(A),

where we have used the fact that f 0(q) = �µ
0(q)/µ(q)2. Because V < A by Lemma 3, this holds if

f is convex; if f is concave, the inequality reverses.

⇤

Proof of Proposition 1. Di↵erentiating the function f we obtain

f
00(q) =

2µ0(q)2 � µ(q)µ00(q)

µ(q)3
.

Thus, to determine convexity or concavity of f , it su�ces to study the sign of 2µ0(q)2 � µ(q)µ00(q).

Straightforward algebra reveals that

(30) f
00(q)µ(q)3 = 2µ0(q)2 � µ(q)µ00(q) =

1X

k=0

qk(1� q)k,

where

qk�2 =
1

2

kX

i=0

(4i(k � i)� i(i� 1)� (k � i)(k � i� 1)) (1� L(i))(1� L(k � i)).

For k 2 N, recall that L(>k) is the probability of listing more than k schools. For i  k, define

r
k

i = 4i(k � i)� i(i� 1)� (k � i)(k � i� 1),

s
k

i = L(>i)L(>k � i),

so that

qk�2 =
1

2

kX

i=0

r
k

i s
k

i .

Noting that rk
i
= r

k

k�i
and s

k

i
= s

k

k�i
, we can express qk�2 as follows:

(31) qk�2 =

bk/2cX

i=0

r̃
k

i s
k

i ,

where we define r̃
k

i
= r

k

i
if i < k/2 and r̃

k

i
= r

k

i
/2 if i = k/2.

We will show that

i) The r̃
k

i
“cross zero” once and sum to zero.

ii) If L has a weakly increasing hazard rate, then s
k

i
is increasing on {0, 1, . . . , bk/2c}.

If L has a weakly decreasing hazard rate, then s
k

i
is decreasing on {0, 1, . . . , bk/2c}.
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From i), ii) and (119), Lemma 8 implies that if L has a weakly increasing hazard rate, then each

qk is non-negative; if L has a weakly increasing hazard rate, then each qk is non-positive. By (30)

the proposition immediately follows.

All that remains is to establish i) and ii). Note that

(32) r
k

i = 6i(k � i)� k(k � 1),

which is a quadratic in i. It is negative at i = 0 and obtains its maximal value at k/2. It follows

that the sequence {rk
i
}bk/2c
i=1 is initially negative and later non-negative, so the same is true of r̃k

i
.

Furthermore, the definition of r̃k
i
implies that

bk/2cX

i=0

r̃
k

i =
kX

i=0

r
k

i = 0,

where the final equality follows from (32) by applying standard formulas for
P

k

i=0 i and
P

k

i=0 i
2
.

Point ii) follows because for i � 1,

(33) s
k

i�1  s
k

i , L(>k � i+ 1)

L(>k � i)
 L(>i)

L(>i� 1)
, 1� L(>i)

L(>i� 1)
 1� L(>k � i+ 1)

L(>k � i)
.

If i  bk/2c, then i < k � i+ 1, so if L has an increasing hazard rate, then all inequalities in (33)

hold, and if L has a decreasing hazard rate, then all inequalities reverse.

⇤

Lemma 8. Let {ri}ki=0 be a sequence of real numbers with mean zero that “crosses zero” once.

That is,
P

k

i=0 ri = 0 and for some j < k, it holds that ri < 0 for i  j and ri � 0 for j < i  k.

Let {si}ki=0 be a sequence of non-negative numbers. If si is weakly increasing, then
P

k

i=0 risi � 0,

and if si is weakly decreasing, then
P

k

i=0 risi  0.

Proof. If si is weakly increasing, then

kX

i=0

risi =
jX

i=0

risi +
kX

i=j+1

risi �
jX

i=0

risj +
kX

i=j+1

risj = sj

kX

i=1

ri = 0,

where the inequality follows because the first sum (consisting of negative terms) has been made “less

negative” and the second sum (consisting of non-negative terms) has been made “more positive.”

Analogous logic holds when si is weakly decreasing. ⇤

Proof of Proposition 2. With a single lottery, we use Lemma (2) and (6) to note that

(34)
d

dt
E(⇤S(t)) = V(⇤S(t))⇤

0
S(t) = �⇢V(⇤S(t))µ(V(⇤S(t))).

When the number of schools listed follows a Poisson distribution with mean `,

(35) qµ(q) = 1� e
�q`

.

When schools are equally popular and have a single seat,

(36) V(�) = e
�� = 1� E(�).
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Substituting (35) and (36) into (34) yields

d

dt
E(⇤S(t)) = �⇢(1� e

�`(1�E(⇤S(t)))),

which (with initial condition E(⇤S(1)) = 0) has solution

E(⇤S(t)) = 1� 1

`
log(1 + (e` � 1)e�⇢`(1�t)).

The claimed expressions for the single lottery follows from FS(L) = E(⇤S(0))/⇢ (see Lemma 5).

With independent lotteries,

⇢FI(L) = E(�I) = 1� e
��I ,

where the second equality uses (36). We can solve this for �I to get

�I = � log(1� ⇢FI(L)),

from which it follows that

(37) A(�I) =
⇢FI(L)

� log(1� ⇢FI(L))
Furthermore, (4) implies that

�I = ⇢µ(A(�I)) = ⇢
E(`A(�I))

A(�I)
,

where the second equality uses (35) and (36). Multiplying each side by A(�I)/⇢ and applying

Lemma 5 we get

FI(L) = E(`A(�I)) = 1� e
�`A(�I),

from which it follows that

A(�I) = �1

`
log(1� FI(L)).

Combining this with (37) yields

1

`
log(1� FI(L)) =

⇢FI(L)
log(1� ⇢FI(L))

,

which converges to ⇢/ log(1� ⇢) as FI(L) ! 1. ⇤

A.4. Proof of Proposition 3. We first show that if the mass of students exceeds the total mass of

seats, then under either lottery procedure the total amount of interest grows linearly in the length

of student lists.

Lemma 9. Suppose that all students list ` schools (L(`) = 1), and ⇢ >
P

⌧2T D⌧C⌧ . Then

(38) min(�I ,�S) � `(⇢�
X

⌧2T
D⌧C⌧ ).

Proof. We start by noting that when all lists have length `,

(39) µ(q) =
1X

k=0

L(>k)(1� q)k =
`�1X

k=0

(1� q)k � `(1� q)`.
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It follows from (4) that

(40) �I = ⇢µ(A(�I)) � `⇢(1�A(�I))
` = `⇢(1� FI(L)) = `(⇢� E(�I)).

The inequality follows from (39), the subsequent equality from the definition of FI in (5) and (12),

and the final equality from Lemma 5. Similarly (6) implies that

�S = ⇤S(0) =

Z 1

0
⇢µ(V(⇤S(t)))dt.

� `⇢

Z 1

0
(1� V(⇤S(t)))

`
dt

= `⇢(1� FS(L)) = `(⇢� E(⇤S(0))).(41)

The inequality uses (39), and the final line uses the definition of FS in (7) and (12) and Lemma 5.

The result follows Lemma 2, which states that E(·) is upper-bounded by
P

⌧2T D⌧C⌧ . ⇤

Remark 7. The bound in Lemma 9 has a natural interpretation: capacity constraints imply that

the ratio of unassigned students to schools must be at least ⇢ �
P

⌧2T D⌧C⌧ , and each unassigned

student proposes to all ` schools on her list.

We next provide a tight lower bound on the fraction of assigned students who receive their first

choice when using each procedure.

Lemma 10. Fix T ,D. Under a single lottery, the fraction of assigned students who receive their

first choice is at least

inf
⇢,L

FS(1)

E
`⇠L

[FS(`)]
=

R1
0 V(�)2d�R1
0 V(�)d�

,

whereas under independent lotteries,

inf
⇢,L

FI(1)

E
`⇠L

[FI(`)]
= 0.

Proof of Lemma 10. We begin with the statement about independent lotteries. The fraction of

students who receive their top choice is FI(1) = A(�I), and by Lemma 5 the fraction who are

matched is FI(L) = 1
⇢
E(�I). By (9), it follows that

FI(1)

FI(L)
=

⇢ · A(�I)

E(�I)
=

⇢

�I

.

Lemma 9 implies that for ⇢ >
P

⌧
D⌧C⌧ , this ratio can be made arbitrarily small by letting L(`) = 1

for some su�ciently large `.

We now turn to the statement for the single lottery, using the shorthand �S = ⇤S(0). By Lemma

5, the fraction of students who are assigned is

FS(L) =
1

⇢
E(�S) =

1

⇢

Z
�S

0
V(�)d�,

where the second equality uses Lemma 2. The fraction of students who receive their top choice is

FS(1) =

Z 1

0
V(⇤S(t))dt =

1

⇢

Z
�S

0

V(�)
µ(V(�))d� � 1

⇢

Z
�S

0
V(�)2d�,
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where we use the fact that 1/µ(V(�)) � V(�) by Lemma 4. It follows that

(42)
FS(1)

FS(L)
�
R
�S

0 V(�)2d�
R
�S

0 V(�)d�
�
R1
0 V(�)2d�R1
0 V(�)d�

.

The final inequality follows because

d

d�S

log

 R
�S

0 V(�)2d�
R
�S

0 V(�)d�

!
=

V(�S)2R
�S

0 V(�)2d�
� V(�S)R

�S

0 V(�)d�
< 0,

with the inequality following from the fact that V(·) is decreasing.
We now show that the inequalities in (42) can be made tight. For ` 2 N, take L(k) = 1(k � `),

meaning that all students list exactly ` schools. Then

FS(1)�
1

⇢

Z
�S

0
V(�)2d� =

1

⇢

Z
�S

0
V(�) (1/µ(V(�))� V(�)) d�

 1

⇢`

Z
�S

0
V(�)d�

 1

⇢`

X

⌧2T
D⌧C⌧ .(43)

The second inequality follows by Lemma 2, and the first because when L(k) = 1(k � `), we have

that for q 2 (0, 1],
1/µ(q)� q =

q(1� q)`

1� (1� q)`
,

which is positive, decreasing in q, and approaches 1/` as q ! 0. Note that (43) implies that the first

inequality in (42) becomes tight as ` ! 1. Furthermore, Lemma 9 states that if ⇢ >
P

⌧2T D⌧C⌧ ,

then �S ! 1 as ` ! 1, implying that the second inequality in (42) becomes tight. ⇤
Remark 8. The lower bound for a single lottery given in Lemma 10 can be explained as follows. The

worst case occurs when students outnumber seats, and all students submit long lists. In this case, all

schools will receive a lot of interest, and all seats will fill. Recalling that V(�) = E 0(�) (see Lemma

2), the denominator can be re-expressed as E(1) =
P

⌧
D⌧C⌧ . That is, it represents the total

number of matches. Meanwhile, for students with priority t, a fraction V(⇤(t)) of their proposals

are accepted. Therefore, they propose to an average of 1/V(⇤(t)) schools for each acceptance,

implying that only a fraction V(⇤(t)) of their proposals go to their first choice. It follows that

among these students, the fraction of all proposals that both go to a first choice school and are

accepted is V(⇤(t))2. Adding this up across students reveals that the number of first-choices is

lower-bounded by the numerator.

In light of Lemma 10, given a school type space T and a distribution D on T , define

(44) LB(T ,D) =

R1
0 V(�)2d�R1
0 V(�)d�

.

Note that the dependence on T and D is implicit, through the function V(·).
Our next step in the proof of Proposition 3 is Lemma 11, which establishes that when schools

have identical capacities, the distribution D that minimizes the bound in (44) places all of its mass

on the extreme points of T . That is, the worst-case distribution of popularity is to have two types

of schools: one popular, and the other unpopular.
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Lemma 11. Fix T such that C⌧ = C 2 N for all ⌧ 2 T , and define

(45) p = min
⌧2T

p⌧ , p = max
⌧2T

p⌧ .

Let D⇤(T ) be the distribution that places probability � on (p, C) and probability 1 � � on (p, C),

where �p+ (1� �)p = 1. Then LB(T ,D⇤(T )) = infD LB(T ,D).

Proof. In this proof, it will be helpful to make the dependence of V and E on D explicit. Thus, we

write V(�,D) and E(�,D) in place of V(�) and E(�). Because T is fixed, we write D⇤ for D⇤(T ).

By Lemma 2, for any D we have
Z 1

0
V(�,D)d� = lim

�!1
E(�,D) =

X

⌧2T
D⌧C⌧ .

When C⌧ = C for all ⌧ , it follows that this expression is C, so minimizing the lower bound in (44)

is equivalent to minimizing the numerator
R1
0 V(�,D)2d�.

We show that if D places positive mass q > 0 on a school type ⌧
0 2 T with p⌧ 0 = p 2 (p, p), then

moving this mass to the extreme points p and p decreases LB. Formally, let D̃ be the modification

of D in which the probability of ⌧ 0 under D̃ is reduced to zero, and the probability of (p, C) and

(p, C) are increased by q� and q(1� �), respectively. The definition of � ensures that D̃ remains a

probability distribution and that average popularity
P

⌧
D̃⌧p⌧ = 1. We will show that

(46)

Z 1

0
V(�, D̃)2d� 

Z 1

0
V(�,D)2d�.

Note that for any D, V(�,D) is one at � = 0 and decreases to zero as � ! 1. Our first step is to

show that the random variable X that has CDF 1� V(·,D) second order stochastically dominates

that the random variable X̃ with CDF 1� V(·, D̃). That is, for any � 2 R+,

(47)

Z
�

0
V(x,D)� V(x, D̃)dx = E(�,D)� E(�, D̃) � 0,

where the equality above uses Lemma 2. By (17) we have E(�,D) = E⌧⇠D["(p⌧�, C)]. Lemma 2

implies that " is concave in its first argument, from which it follows that if we let ⌧ ⇠ D and ⌧̃ ⇠ D̃,

then E[p⌧ ] = E[p⌧̃ ] and by Jensen’s inequality (47) holds.

Having established second order stochastic dominance, (46) follows from a chain of inequalities:
Z 1

0
V(�, D̃)2d� = �

Z 1

0
E(�, D̃)V 0(�, D̃)d�

 �
Z 1

0
E(�, D̃)V 0(�,D)d�

=

Z 1

0
V(�,D)V(�, D̃)d�

= �
Z 1

0
E(�,D)V 0(�, D̃)d�

 �
Z 1

0
E(�,D)V 0(�,D)d�

=

Z 1

0
V(�,D)2d�.
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The notation V 0(�,D) denotes the derivative of V with respect to �. All equalities above follow

from integration by parts, using the fact that E 0(�) = V(�) (Lemma 2), E(0) = 0, and V(1) = 0.

The inequalities follow from second-order stochastic dominance, which implies that for any concave

increasing function u,

�
Z 1

0
u(�)V 0(�, D̃)d� = E[u(X̃)]  E[u(X)] = �

Z 1

0
u(�)V 0(�,D)d�.

In the first inequality, we use u(·) = E(·, D̃), and in the second we use u(·) = E(·,D). Both functions

are concave and increasing by Lemma 2. ⇤

Having determined the worst-case distribution D for a given T , we now determine the worst-case

type space T satisfying the constraints that all schools have equal capacity and no school is more

than r times as popular as any other. Given r � 1 and C 2 N, define

(48) T (r, C) = {T : C⌧ = C for all ⌧ 2 T , and p  1  p  rp}.

(49) LBT (r, C) = inf
T 2T (r,C)

LB(T ,D⇤(T )).

The following Lemma completes the proof of Proposition 3. It shows that the worst case can be

achieved by a T for which some schools have popularity
p
r and others have popularity 1/

p
r.

Lemma 12. Fix r � 1 and C 2 N, and define T ⇤ = {(
p
r, C), (1/

p
r, C)} 2 T (r, C). Then

(50) LBT (r, C) = LB(T ⇤
,D⇤(T ⇤)),

from which it follows that

(51) LBT (r, 1) =

p
r

1 + r
, lim

C!1
LBT (r, C) =

2

1 +
p
r
.

Proof. For any T 2 T (r, C) it follows from Lemma 2 and (8) that

LB(T ,D⇤(T )) =
1

C

Z 1

0
V(�)2d� =

1

C

Z �
�p⌫(p�, C) + (1� �)p⌫(p�, C)

�2
d�.

Expanding this expression yields

1

C

✓
�
2
p
2
Z

⌫(p�, C)2d�+ 2�(1� �)pp

Z
⌫(p�, C)⌫(p�, C)d�+ (1� �)2p2

Z
⌫(p�, C)2d�

◆
.

Applying the u-substitution � = Cx/p to the first two integrals and � = Cx/p to the third, we get

(52) LB(T ,D⇤(T )) =
�
�
2
p+ (1� �)2p

� Z 1

0
⌫(Cx,C)2dx+2�(1��)p

Z 1

0
⌫(Cx,C)⌫(Cxp/p, C)dx.

To find LBT (r, C) we must choose p and p to minimize this expression. The argument used in

Lemma 11 implies that LB(T ,D⇤(T )) is decreasing in p for fixed p, so the worst case T 2 T (r, C)

satisfies p = rp. Combining this with the equation �p+ (1� �)p = 1 that defines � in Lemma 11

and solving for p, we get

(53) p =
r

�r + 1� �
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We find LBT (r, C) by minimizing over p, or equivalently over �. We adopt the latter formulation.

Define

�1(�, r) = �
2
p+ (1� �)2p/r =

�
2
r + (1� �)2

�r + 1� �
,(54)

�2(�, r) = 2�(1� �)p/r =
2�(1� �)

�r + 1� �
,(55)

h(�, r, C) = �1(�, r)

Z 1

0
⌫(Cx,C)2dx+ �2(�, r)

Z 1

0
⌫(Cx,C)⌫(Cx/r, C)dx.(56)

Then by (52),

(57) LBT (r, C) = min
�2[0,1]

h(�, r, C)

We fix r and C, and drop dependence of �1, �2, h on these parameters. Because h is di↵erentiable,

its minimum is either at � 2 {0, 1} or a solution to h
0(�) = 0. The value at the end points is

h(0) = h(1) =

Z 1

0
⌫(Cx,C)2dx.

We now seek solutions to h
0(�) = 0. To simplify the calculations, we note that (54) and (55) imply

(58) �2(�) =
2

1 + r
(1� �1(�)).

From this and (56), it follows that

(59) h
0(�) = �

0
1(�)

✓Z 1

0
⌫(Cx,C)2dx� 2

1 + r

Z 1

0
⌫(Cx,C)⌫(Cx/r, C)dx

◆

If the term in parentheses is nonzero, this implies that h0(�) = 0 if and only if �01(�) = 0, which by

(58) occurs if and only if �02(�) = 0 (if the term in parentheses is zero, then h is constant). But

�
0
2(�) = �2

(r � 1)�2 + 2� � 1

((r � 1)� + 1)2
,

from which it follows that the only solution to �
0
2(�) = 0 on [0, 1] is � = 1

1+
p
r
, which corresponds

to p =
p
r. One can verify that indeed this is a minimum, not a maximum (that is, h( 1

1+
p
r
) is less

than h(0) = h(1)). This establishes (50). From this and (52), it follows that

LBT (r, C) =
2

(1 +
p
r)2

Z 1

0

p
r · ⌫(Cx,C)2 + ⌫(Cx,C)⌫(Cx/r, C)dx.

For C = 1, ⌫(Cx,C) = e
�x, and the expression above evaluates to

p
r/(1 + r).

As C grows, ⌫(Cx,C) converges pointwise to g(x) = 1(x < 1). Because ⌫(Cx,C) is pointwise

less than e
1�x, by the dominated convergence theorem we have

lim
C!1

LBT (r, C) =
2

(1 +
p
r)2

Z 1

0

p
r · g(x)2 + g(x)g(x/r)dx =

2

1 +
p
r
,

where the final equality follows because for r � 1, g(x)2 = g(x) = g(x)g(x/r) and therefore the

integral above is equal to 1 +
p
r. ⇤
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