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B. Online Appendix: Proof of Theorem 1 for a Single Lottery

B.1. Markov Chain Description.

We begin with a Markov Chain description of the Deferred Acceptance algorithm with a single

lottery. Our description uses the implementation of Deferred Acceptance described by McVitie and

Wilson (1971). This implementation starts by placing students in a linear order, and proceeds in ⇢n

“rounds.” At the beginning of round t, student st proposes to her first choice school. If this school

has a vacancy, then the student is accepted and the round ends. Otherwise, the school rejects one

student, who goes on to propose to the next school on her list. This process continues until either

a vacancy is filled or a student is rejected from the last school on her list. At that point, round t

ends with an assignment that is stable in the submarket consisting of only students {s1, s2, . . . , st}.
We follow in the footsteps of Pittel (1992) and Immorlica and Mahdian (2005) by deploying what

they call the principle of deferred decisions. This means that we generate student preferences on

demand, waiting to reveal the next school on a student’s list until that student is about to propose.

In the case where priorities are determined by a single lottery, we simplify our analysis by placing

students in decreasing order of priority. This implies that in each round t, only student st can be

rejected: she will never trigger the rejection of students processed before her.

We now give a formal description of our Markov Chain for Deferred Acceptance with a single

lottery. We let S be the set of students, and H be the set of high schools. The state of our Markov

chain is X = (L, I,M), where

• L 2 (N [ {;})S tracks the length of student lists:

Ls 2 N is the number of schools listed by s, and Ls = ; if this has not been determined.

• I ✓ {(s, h) : s 2 S, h 2 H} tracks the schools that each student has proposed to:

(s, h) 2 I if s has proposed to h. We define

Is = {h : (s, h) 2 I}, Ih = {s : (s, h) 2 I}.

• M ✓ I tracks the set of tentative assignments:

(s, h) 2M if s is tentatively matched to h. We define

Ms = {h : (s, h) 2M}, Mh = {s : (s, h) 2M}.

The evolution of this chain is as follows.

Algorithm 1 (DA with a Single Lottery).

I = M = ;, Ls = ; for all s.

for t 2 {1, 2, . . . , |S|} do

s = st, Ls ⇠ L.
while |Is|  Ls&&Ms = ; do

Sample h uniformly from H\Is and set I  I [ (s, h).

if |Ih|  Ch then s fills a vacancy: M M [ (s, h).

end while

end for
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For the case where schools di↵er in their popularity, only a single modification to the above

algorithm is needed. Let ph be the popularity of h. For any non-empty subset H ✓ H, define the

probability distribution P (H) over H by

Ph(H) =
ph1(h 2 H)P

h02H ph0
.

Then the only change required is that each time that a new proposal is made, the identity of school

h is sampled from P (H\Is), rather than the uniform distribution on H\Is.

B.2. The Di↵erential Equation Method. The state space for the Markov chain above is very

large, as it includes the application history for each student. To address this, we use the “di↵erential

equation” method developed by Wormald (1999).

At a high level, the idea underlying this technique is that a lower-dimensional state space “nearly

su�ces” to describe the evolution of the Markov chain. More specifically, we will show that there

exists a reduced state Y (t) = Y (X(t)) 2 Rd (where the dimension d does not depend on n) and a

function f : Rd ! Rd such that for any state X(t),

E[Y (t+ 1)� Y (t)|X(t)] ⇡ f(Y (t)/n),

with error that vanishes as n grows.

We use the following special case of Theorem 5.1 from Wormald (1999).

Theorem 4. For n 2 N, let Xn = {Xn(t)}t�1 be a discrete time Markov chain in the space X n
.

Suppose that there exist d 2 N, continuous functions Y
n : X n ! Rd

and f : Rd ! Rd
, and a

bounded set Y ⇢ Rd
such that:

(i) (Initial Condition) There exists y
0 2 Y such that Y

n(Xn(0))/n = y
0
for all n.

(ii) (Boundedness) There exists � > 0 such that

max
n,t2N

||Y n(Xn(t+ 1))� Y
n(Xn(t))||1  �.(60)

(iii) (Lipschitz hypothesis) There exists L > 0 such that for all y, ỹ 2 Y,

(61) ||f(y)� f(ỹ)||1  L ||y � ỹ||1 .

(iv) (Trend hypothesis) There exists � > 0 such that if Y
n(Xn(t))/n 2 Y, then

(62) ||E[Y n(Xn(t+ 1))� Y
n(Xn(t))|Xn(t)]� f(Y n(Xn(t))/n)||1  �/n.

Then the following are true:

(a) (Unique solution) There is a unique function ŷ : R+ ! Rd
satisfying

(63) ŷ(0) = y0, ŷ
0
i(s) = fi(ŷ(s)).

(b) (Convergence) Define � = inf{s � 0 : ŷ(s) /2 Y}. For any s < � and ✏ > 0, as n!1,

(64) P(||Y n(Xn(bnsc))/n� ŷ(s)||1 > ✏)! 0.
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The proof of this result is given by Wormald (1999). We briefly outline how each of the conditions

above is used in the proof. In what follows, we drop the superscript n to reduce clutter, and use

the shorthand Y (t) in place of Y n(Xn(t)).

The most fundamental condition is (iv), which states that the expected change in Y is well-

approximated by the function f . Due to random fluctuation, the realized value of Y (t+ 1)� Y (t)

could be far from its expectation. However, over a large number of steps, this randomness should

cancel out; we might hope that

Y (t+ w)� Y (t) ⇡
w�1X

k=0

f(Y (t+ k)/n) ⇡ wf(Y (t)/n),

provided that two conditions hold:

1. Y (t+ 1)� Y (t) is unlikely to be large. This implies that

• Y (t+w)� Y (t) =
P

w�1
k=0 Y (t+ k+1)� Y (t+ k) is not dominated by any large jumps

• Y (t+ k)/n ⇡ Y (t)/n, so long as k is small relative to n.

2. f is su�ciently smooth, so that f(Y (t+ k)/n) ⇡ f(Y (t)/n).

These are exactly the conditions (ii) and (iii). The proof of Theorem 4 follows this reasoning,

with w = n
↵ for some ↵ 2 (0, 1), so that the conditions above hold. These allow for the application

of a well-known Cherno↵-style large deviation bounds, which establish that the sum of these many

small terms is unlikely to be far from its expected value. In other words, Y (t)/n ⇡ ŷ(t/n), where

ŷ(·) is the solution to the di↵erential equation (63).

The notation in Theorem 4 is somewhat di↵erent from that of Theorem 5.1 in Wormald (1999).

This is partly because our setting does not require the full power of that theorem: our initial state

y0 is identical for all n, our bounded condition (ii) holds deterministically (the � that appears in his

paper is equal to zero), and our � does not depend on n. Furthermore, we strengthen his condition

(iv) by explicitly assuming that his �1 term is O(1/n). Finally, whereas his conclusion (b) is made

messy by specifying a rate of convergence, our weaker but simpler-to-parse conclusion (b) su�ces

for our purposes.

B.3. Defining Summary Statistics and Verifying Bounded, Lipschitz, Trend Conditions.

Throughout, we drop the dependence of Y and X on n. We begin by defining our summary

statistics Y . Define

J = {j 2 N : 0  j < C}(65)

Z = {(k, l) 2 N2 : 1  k  l  `},(66)

and recall that ` represents the maximum length of student lists.

Given state X = {L, I,M), for j 2 J and (k, l) 2 Z define

Yj(X) = |{h : |Ih| = j}|(67)

Ykl(X) = |{s : Ls = l, |Is| = k,Ms 6= ;}| .(68)

In English, Yj is the number of schools who have received exactly j proposals, while Ykl is the

number of students who list l schools and are matched to their k
th choice. The variables Ykl are
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the measures of student welfare addressed in Theorem 1. Meanwhile, the variables Yj are useful

for tracking the number of schools with availability, which determines how likely it is that future

students will be able to match to their top choices.

Because there are only n schools, (67) implies

1

n

X

j2J
Yj(t) 

1

n
|H| = 1.

Meanwhile, each school can accept at most C students, so (68) implies

1

n

X

(k,l)2Z

Ykl(t) 
1

n
|{s : Ms 6= ;}|  C.

Therefore, we define

Y = {y 2 RJ
+ ⇥ RZ

+ :
X

j2J
yj  1,

X

(k,l)2Z

ykl  C.}

For y 2 Y, j 2 J , and (k, l) 2 Z, define

V (y) =
X

j<C

yj ,(69)

fj(y) = (yj�1 � yj)µ(V (y)),(70)

fkl(y) = L(l)V (y)(1� V (y))k�1
.(71)

When j = 0 in (70), we define the value y�1 = 0 for convenience.

In what follows, we use Yj(t) and Ykl(t) as shorthand for Yj(X(t)) and Ykl(X(t)).

It is clear that the initial condition (i) is met, with y0 equal to the zero vector. The following

Lemmas establish that conditions (ii), (iii), (iv) (stated in equations (60), (61), (62)) also hold.

Lemma 13 (Bounded). Under Algorithm 1, if Yj and Ykl are defined by (67) and (68), then (60)

holds with � = 1.

Proof. Examining Algorithm 1, note that the values {Yj}j2J and {Ykl}(k,l)2Z change only when

a proposal is sent to a school that had previously received j < C proposals and is accepted. In

this case, Yj+1 increases by one, Yj decreases by one, exactly one Ykl increases by one, and round

t ends. It follows that ||Y (t+ 1)� Y (t)||1  1, so (60) holds with � = 1. ⇤

Lemma 14 (Lipschitz). If the functions fj and fkl are defined by (70) and (71) then (61) holds

with L = max(C,C`
2
/2 + 2`).

Proof. We first note that

(72) |V (y)� V (ỹ)| 
C�1X

j=0

|yj � ỹj |  C ||y � ỹ||1 .

Because the function h(p) = p(1� p)k�1 is Lipschitz with constant 1, it follows from (71) that

|fkl(y)� fkl(ỹ)|  L(l) |V (y)� V (ỹ)|  C ||y � ỹ||1 .
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Meanwhile,

fj(y)� fj(ỹ) = (yj�1 � yj)(µ(V (y))� µ(V (ỹ))) + (yj�1 � ỹj�1 + ỹj � yj)µ(V (ỹ)),

and therefore

|fj(y)� fj(ỹ)|  |yj�1 � yj | |µ(V (y))� µ(V (ỹ))|+ (|yj�1 � ỹj�1|+ |ỹj � yj |)µ(V (ỹ))

 |yj�1 � yj | |V (y)� V (ỹ)| `2/2 + (|yj�1 � ỹj�1|+ |ỹj � yj |)`

 C`
2
/2 ||y � ỹ||1 + 2` ||y � ỹ||1 ,

where the second line follows from Lemma 4, and the third from (72) and the fact |yj�1 � yj |  1.

⇤

Define

g(v, k) =

✓
n� v

k

◆
/

✓
n

k

◆
.

This gives the chance that none of the first k schools on a student’s list have vacancies, given that

a total of v out of n schools have vacancies.

Lemma 15 (Trend). Under Algorithm 1 with a single lottery, if {Yj}0j<C and {Ykl}1kl` are

defined as in (67) and (68), then

E[Ykl(t+ 1)� Ykl(t)|X(t)] = L(l)
✓
g
�
V (Y (t)), k � 1

�
� g
�
V (Y (t)), k

�◆
.(73)

E[Yj(t+ 1)� Yj(t)|X(t)] = (Yj�1(t)� Yj(t))
`�1X

k=0

L(>k)

n� k
g(V (Y (t)), k).(74)

Furthermore, if the functions fj and fkl are defined by (70) and (71), then (62) holds with � = `
3
.

Proof. Note that Ykl increases by one if and only if student st lists exactly l schools (which occurs

with probability L(l)) and matches to her kth choice (which occurs with probability g(V (Y (t)), k�
1)� g(V (Y (t)), k)). This directly implies (73).

Meanwhile, Yj increases by one if student st matches to a school with j� 1 other proposals, and

decreases by one if student st matches to a school with j other proposals. The probability that

student st is rejected from her first k schools and lists a school with j < C other proposals as her

(k + 1)st choice is L(>k)g(V (Y (t)), k) Yj

n�k
. Summing across k yields (74).

To prove that (62) holds, we note that g(v, k) ⇡
�
1� v

n

�
k
. More precisely, for 1  k  `,

✓
(n� v � `+ 1)+

n

◆
k

 g(v, k) 
✓
n� v

n

◆
k

.

It follows that

0 
⇣
1� v

n

⌘
k

� g(v, k) 
⇣
1� v

n

⌘
k

�
✓
(n� v � `+ 1)+

n

◆
k

 k

✓
n� v

n
� (n� v � `+ 1)+

n

◆

 `
2

n
,(75)
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where the second line uses the fact that for a, b 2 [0, 1] with a � b, ak � b
k  k(a � b). In the

remainder of the proof, we use Y in place of Y (t) to reduce notational clutter. From (75) and the

definition of fkl in (71), we have

|E[Ykl(t+ 1)� Ykl(t)|X(t)]� fkl(Y (t)/n)|

= L(l)
���g(V (Y ), k � 1)� (1� V (Y/n))k�1 + (1� V (Y/n))k � g(V (Y ), k)

���

 L(l)`2/n

 `
2
/n.

Furthermore, (74) implies that

|E[Yj(t+ 1)� Yj(t)|X(t)]� fj(Y (t)/n)| =

�����

✓
Yj�1

n
� Yj

n

◆ `�1X

k=0

L(>k)

✓
n

n� k
g(V (Y ), k)� (1� V (Y/n))k

◆�����


����
Yj�1

n
� Yj

n

����
`�1X

k=0

L(>k)

����
n

n� k
g(V (Y ), k)� (1� V (Y/n))k

���� .


`�1X

k=0

L(>k)`2/n

 `
3
/n.

This establishes (62). Note that the third line follow from (75): if the rightmost term in absolute

values is negative, then it is at most `2/n by (75), while if it is positive, then (75) implies that it

is at most k

n�k
g(V (y), k), which is at most 2`/n  `

2
/n (for all n � 2`). ⇤

B.4. Solving The Di↵erential Equation.

Lemmas 13, 14 and 15 establish that conditions (60), (61) and (62) of Theorem 4 are met.

Therefore, (64) implies that for any ✏ > 0 and 1  k  l  `,

P
 �����

1

n

kX

k0=1

Yk0l(⇢n)�
kX

k0=1

ŷk0l(⇢)

����� > ✏

!
! 0.

Note that

G
n(k, l) =

kX

k0=1

Yk0l(⇢n).

Therefore, to complete the proof of Theorem 1 in the case of a single lottery, all that remains is to

show that for any 1  k  l  `,

(76)
kX

k0=1

ŷk0l(⇢) = ⇢L(l)FS(k).

This is established by the following Lemma.
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Lemma 16. When fj and fkl are defined by (70) and (71), the solution ŷ to (63) is given by

ŷj(s) = pj(⇤S(1� s/⇢)),(77)

ŷkl(s) = ⇢L(l)
Z 1

1�s/⇢

V(⇤S(t))(1� V(⇤S(t)))
k�1

dt,(78)

where pj is defined in (15), ⇤S in (6), and V in (8). Furthermore, (76) holds for any 1  k  l  `.

Proof. These clearly satisfy the initial condition: ŷ0(0) = 1, and ŷkl(0) = 0 for k, l 2 Z. Further-

more,

ŷ
0
j(s) = p

0
j(⇤S(1� s/⇢))⇤0

S(1� s/⇢)(�1/⇢)

= p
0
j(⇤S(1� s/⇢))µ(V(⇤S(1� s/⇢)))

= (ŷj�1(s)� ŷj(s))µ(V(⇤S(1� s/⇢)))

= (ŷj�1(s)� ŷj(s))µ(V (ŷ(s))).

= fj(ŷ(s)).

The first equality follows from di↵erentiating (77), the second from applying (6), the third from

the fact that p0
j
(�) = pj�1(�)� pj(�) and (77), the fourth from the fact that

(79) V(⇤S(1� s/⇢))) =
X

j<C

pj(⇤S(1� s/⇢)) = V (ŷ(s)),

and the last from (70). Meanwhile, di↵erentiating (78) and applying (79) and (71) yields

ŷ
0
kl
(s) = L(l)V(⇤S(1� s/⇢))(1� V(⇤S(1� s/⇢)))k�1

= L(l)V (ŷ(s))(1� V (ŷ(s)))k�1

= fkl(ŷ(s)).

This establishes that ŷ solves (63).

Meanwhile (76) follows from (78) and (7):

kX

k0=1

ŷk0l(⇢) = ⇢L(l)
Z 1

0

kX

k0=1

V(⇤S(t))(1� V(⇤S(t)))
k
0�1

dt

= ⇢L(l)
Z 1

0
1� (1� V(⇤S(t)))

k
dt

= ⇢L(l)FS(k).

⇤

C. Proof of Theorem 1 for Independent Lotteries

C.1. Markov Chain Description and Summary Statistics. As was the case for a single

lottery, our Markov Chain for independent lotteries uses the sequential proposal order of McVitie

and Wilson (1971), along with the principle of deferred decisions. The state of our chain is still

given by X = (L, I,M), where L tracks student list lengths, I tracks the set of proposals, and

M tracks the current tentative assignment. For a single lottery, we invited students to propose in
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decreasing order of priority. For independent lotteries, the ordering of students is arbitrary, and

we wait to reveal how a school ranks students that have proposed to it until that school is forced

to reject some student.

Algorithm 2 (DA with Independent Loteries).

I = M = ;, Ls = ; for all s.

for t 2 {1, 2, . . . , |S|} do

s = st, Ls ⇠ L.
while |Is|  Ls&&Ms = ; do

Sample h uniformly from H\Is and set I  I [ (s, h).

if |Ih|  Ch then s fills a vacancy: M M [ (s, h).

else with probability Ch/|Ih|, s triggers a rejection:

Select s
0
uniformly at random from Mh

M M [ (s, h)\(s0, h)
s s

0

end if

end while

end for

The only di↵erence between Algorithm 2 and Algorithm 1 for a single lottery is the “else” clause

above, which accounts for the fact that the proposing student can trigger the rejection of another

student. This introduces significant additional complexity to the proof. Under single lotteries,

when a student proposed to a school that had already received at least C proposals, that student

was rejected. As a result, it su�ced to track the number of schools that had received j proposals

for each j < C. By contrast, with independent lotteries, we need to also track this number for

j � C. Furthermore, the probability that a new proposal triggers the rejection of a student who

was tentatively matched to that school depends on the number of students who have previously

proposed to that school: the higher this number, the less likely that a new proposal will be accepted.

For this reason, our summary statistics must track not only the number of students who list l schools

and are tentatively assigned to their k
th choice, but also the number of proposals received by the

schools to which these students are matched.

More precisely, given state X = {L, I,M), we define the following summary statistics:

Sjkl(X) = {s : Ms 6= ;, |IMs | = j, |Is| = k, Ls = l}.(80)

Yjkl(X) = |Sjkl(X)|.(81)

In English, Sjkl is the set of students who are tentatively matched to a school which has received

interest from a total of j students, and rank that school kth among l listed schools. Meanwhile,

Yjkl is the number of such students.

C.2. The Di↵erential Equation Method. The complexities discussed above necessitate mod-

ifications to Theorem 4. Because we now need to track the number of schools with j proposals

for j > C, the dimension d of our summary statistics must grow with n (rather than remaining
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bounded, as was the case for a single lottery). Wormald (1999) notes that the proof can accom-

modate this modification. A second challenge is that the di↵erence Y (t + 1) � Y (t) is no longer

bounded by an absolute constant. With a single lottery, the number of proposals in round t is

at most the length of the list of student st, which is at most ` by assumption. By contrast, with

independent lotteries, a student can trigger a rejection chain that is longer than the length of

any single student’s list. Fortunately, Theorem 5.1 of Wormald (1999) allows for the bound on

Y (t+1)�Y (t) to hold with high probability, rather than with probability one. This is su�cient for

our purposes: because the probability that the next proposal is sent to a school with a vacancy is

lower-bounded by a constant, the total number of proposals in a round is stochastically dominated

by a geometric random variable, whose tail probabilities decay exponentially. One final change is

that it is most convenient to use the L1-norm rather than the L1-norm. The L1-norm is also used

by Wormald (1995), and Wormald (1999) notes that it gives an equivalent result. Combining these

changes, we use an adaptation of Theorem 5.1 from Wormald (1999) in which the dimension of

the summary statistics varies with n, and which replaces conditions (ii), (iii), (iv) from Theorem 4

with the following:

(ii’) (Boundedness) There exists �n and �n such that if Y
n(Xn(t))/n 2 Y, then

P(||Y n(Xn(t+ 1))� Y
n(Xn(t))||1 > �n) < �n.(82)

Furthermore, there exists dn 2 N such that Y
n

jkl
(Xn(t)) = 0 if j > dn, and as n ! 1,

�n · n�1/4 ! 0 and n · dn · �n ! 0.

(iii’) (Lipschitz hypothesis) There exists L > 0 such that for all y, ỹ 2 Y,

(83) ||f(y)� f(ỹ)||1  L ||y � ỹ||1 .

(iv’) (Trend hypothesis) There exists � > 0 such that if Y
n(Xn(t))/n 2 Y,

(84) ||E[Y n(Xn(t+ 1))� Y
n(Xn(t))|Xn(t)]� f(Y n(Xn(t))/n)||1  �/n.

We briefly comment on the latter part of the boundedness condition (ii’). Wormald’s result

establishes that the probability of a large deviation is at most O(ndn�n + n�n/�ne
�n�

3
n/�

3
n), where

�n is o(1) but can go to zero arbitrarily slowly. For this reason, we require that ndn�n ! 0.

Meanwhile, if �nn�1/4 ! 0, then the latter error term is at most n5/4
/�n · e�n

1/4
�
3
n , which tends to

zero so long as �n decays su�ciently slowly.

C.3. Analysis of a single proposal. Although our eventual goal is to determine the expected

change in our summary statistics Y due to the addition of a single student (or in other words, the

expected change during a single pass through the ‘for’ loop of Algorithm 2), we start by studying

the expected change in Y from a single proposal (in other words, a single pass through the ‘while’

loop of Algorithm 2). In this subsection, we fix the round t, and use X
i to denote the state after

the i
th proposal of the round – that is, after the i

th time through the while loop of Algorithm 2.

By construction of Algorithm 2, at each state X = (L, I,M), there is at most one student who

is not tentatively assigned and has not proposed to all schools on her list. That is, there is at most

one s = s(X) for whom Ms = ; and |Is| < Ls. This student will propose to the next school on
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her list. We now give exact expressions for the expected change in Y from this proposal. Given a

state X = (L, I,M) such that s(X) 6= ;, we define

S̃jkl(X) = Sjkl\{s0 : Ms0 2 Is(X)}(85)

Ỹjkl(X) = |S̃jkl(X)|,(86)

ñ(X) = |H\Is(X)| = n� |Is(X)|,(87)

Y = {y 2 RN⇥Z
+ : ||y||1  C, v(y) > V(⇢`)}.(88)

The values Ỹ and ñ are analogs of Y and n which reflect the fact that the next school to re-

ceive a proposal from s is sampled from H\Is, rather than the full set of schools H. Note that
P

j2N,(k,l)2Z Yjkl is equal to the total number of students who are tentatively assigned, which can

never exceed Cn, so ||Y (X)/n||1 is always at most C. Similarly,
P

j2N,(k,l)2Z Ỹjkl is equal to the

total number of students who are tentatively assigned to a school that s has yet to propose to,

which cannot exceed Cñ, so ||Ỹ (X)/ñ||1  C. The condition v(y) > V(⇢`) is needed to establish

the Lipschitz condition (iii’), and will be discussed in more detail later.

In order to track the evolution of Y , it is important to keep track of the rank that the proposing

student s(X) assigns to the next school on his or her list. We define

(89) Z̃(X) = (|Is(X)|+ 1, Ls(X)) 2 Z,

which tracks both the rank of the school that s is about to propose to, and the total number of

schools listed by s. That is, Z̃(X) = (k, l) if s(X) is about to propose to the k
th of l listed schools.

We also define Z̃(X) = ; if s(X) = ; (that is, if the round has just ended).

Our next lemma gives the exact expected change in Y from a single proposal, expressed as a

function of Ỹ , ñ, and Z̃. To state it, we first define some notation. For (k, l) 2 Z, and Z 2 Z [{;},
let 1kl(Z) be the indicator that Z = (k, l), and let 1Z(Z) be the indicator that Z 2 Z (equivalently,

that Z 6= ;). In what follows, we use Y
i, Ỹ i, ñi and Z̃

i as shorthand for Y (Xi), Ỹ (Xi), ñ(Xi) and

Z̃(Xi), respectively.

Lemma 17 (Expected change from a single proposal). Given any y 2 Y, for any j 2 N and

(k, l) 2 Z, define

�jkl(y) =

✓
1� 1(j > C)

j

◆
y(j�1)kl � yjkl.(90)

Pj(y) =
1

min(j, C)

X

1kl`

yjkl, P0(y) = 1�
X

j�1

Pj(y).(91)

v(y) =
C�1X

j=0

Pj(y)(92)

Aj(y) = Pj�1(y)min (1, C/j) .(93)

a(y) =
X

j�1

Aj(y).(94)

Dkl(y) =
X

j�C

yjkl

j + 1
.(95)
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Then

E[Y i+1
jkl
� Y

i

jkl
| Xi] = 1Z(Z̃

i)�jkl(Ỹ
i
/ñ

i) + 1kl(Z̃
i)Aj(Ỹ

i
/ñ

i),(96)

E[1kl(Z̃i+1) | Xi] = 1Z(Z̃
i)D(k�1)l(Ỹ

i
/ñ

i) + 1(k�1)l(Z̃
i)(1� a(Ỹ i

/ñ
i)),(97)

E[1;(Z̃i+1) | Xi] = v(Ỹ i
/ñ) +Dkl(Ỹ

i
/ñ) +

`X

l=1

1ll(Z̃
i)(1� a(Ỹ i

/ñ)).(98)

Proof. In this proof, we drop all superscript i’s to reduce clutter (so for example we write Yjkl

instead of Y i

jkl
). As we will see below, y, P,A,D have the following interpretations:

• yjkl represents the expected number of students in Sjkl(X) who are tentatively matched to

the next school that student s proposes to.

• Pj(y) represents the probability that the next proposal goes to a school that has received j

other proposals,

• Aj(y) represents the probability that the next proposal is the jth sent to that school, and is

accepted (and therefore a(y) represents the probability that the next proposal is accepted).

• Dkl(y) represents the probability that the next proposal causes the displacement of another

student from her kth choice of l listed schools.

In particular, if s = s(X) is the next student to propose, then

1. Each school h 2 H\Is has a 1/|H\Is| = 1/ñ chance of receiving the next proposal.

2. The chance that the next proposal is the j
th proposal received by the school is P(h 2

Hj�1) = Pj�1(Ỹ /ñ).

3. The j
th proposal at a school has a min(C, j)/j chance of being accepted.

4. Each student previously matched to a school receiving a j
th proposal is rejected with prob-

ability 1(j > C)/j

We start by proving (96). Recall that Yjkl is a sum of indicators across students. We analyze

the expected change in Yjkl by partitioning students into three groups:

(I) Students matched to schools in Is (that is, schools where the next student to propose has

already been rejected).

(II) Students matched to schools in H\Is (that is, schools where the next student to propose

has not yet proposed).

(III) Students that are currently unmatched.

For the first group, the next proposal cannot be sent to their school, so their contribution to Yjkl

cannot change.

Fix a student s
0 in the second group. This student’s contribution to Yjkl changes only if the

school to which she is assigned receives the next proposal. Because the next proposal is sent to a

uniformly random school in H\Is, the probability of this event is 1/ñ. On this event,

• If s0 2 S̃jkl, then s
0 previously contributed to Yjkl, and no longer does (because the school

has now received j + 1 proposals).

• If s
0 2 S̃(j�1)kl, then s

0 previously did not contribute to Yjkl, but now does unless the

proposal causes s0 to be rejected. If j  C, new proposals will fill a vacancy, and not cause

any rejections. If j > C, then the proposing student is accepted if their priority is among
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the top C of the j proposals that the school has received. Because priorities are iid uniform

across student-school pairs, the probability of this is C/j, and in this case, each student

that was previously matched to the school has an identical 1/C chance of being rejected.

Thus, the chance that s0 is not rejected is (1� 1(j > C)/j).

• If s0 2 S̃j0kl for j0 62 {j�1, j}, then s
0 does not contribute to Yjkl before or after the proposal.

Putting these facts together, the overall expected change in Yjkl due to the second group of students

is �Ỹjkl/ñ+ (1� 1(j > C)/j)Ỹ(j�1)kl/ñ = �jkl(Ỹ /ñ).

Finally, no unmatched student contributes to Yjkl before the proposal, and only the current

proposer s can contribute to Yjkl after the proposal. Furthermore, s can contribute to Yjkl only

if s is proposing to her k
th choice of l listed schools – that is, if Z̃ = (k, l). In addition, s must

propose to a school that has received j � 1 other proposals, and be accepted. The probability of

the first event is Pj�1(Ỹ /ñ), as 1
min(C,j�1)

P
(k,l)2Z Ỹ(j�1)kl gives the number of schools with j � 1

proposals that s has not proposed to, and each such school has a 1/ñ chance of receiving the next

proposal from s. Furthermore, if s becomes the j
th student to propose to a school, s is accepted if

among the top min(C, j) proposing students, which occurs with probability min(C, j)/j. Putting

it all together, the probability that the proposing student s contributes to Yjkl after the proposal

is 1kl(Z̃i)Aj(Ỹ i
/ñ

i).

We now turn to (97). In order for there to be an (i+ 1)st proposal, the i
th proposal must either

be rejected or trigger the rejection of another student. In either case, Z̃i+1 = (k, l) if and only

if the student making the (i + 1)st proposal was just rejected from her (k � 1)st choice of l listed

schools. As argued above, the probability that the ith proposal is rejected is 1�a(Ỹ /ñ). Meanwhile,

the probability that this proposal triggers the rejection of a student from her (k � 1)st choice of l

schools is D(k�1)l(Ỹ /ñ), because each student contributing to Ỹj(k�1)l is rejected with probability

1/ñ⇥ 1/(j + 1), as explained above. ⇤

Lemma 18 (Lipschitz properties for the expected change from a proposal). For any y, ỹ 2 Y,

||�(y)��(ỹ)||1  2 ||y � ỹ||1 .(99)

|a(y)� a(ỹ)|  ||A(y)�A(ỹ)||1  ||P (y)� P (ỹ)||1 .(100)
X

(k,l)2Z

|Dkl(y)�Dkl(ỹ)| 
1

C
||y � ỹ||1 .(101)

Proof. Note that

|�jkl(y)��jkl(ỹ)| =
��(y(j�1)kl � ỹ(j�1)kl)(1� 1(j > C)/j) + yjkl � ỹjkl

��


��y(j�1)kl � ỹ(j�1)kl

��+ |yjkl � ỹjkl| .

Summing across j, k, l yields (99).
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Meanwhile, (100) holds because

|a(y)� a(ỹ)| =

������

X

j�1

Aj(y)�Aj(ỹ)

������


X

j�1

|Aj(y)�Aj(ỹ)|

=
X

j�1

|Pj�1(y)� Pj�1(ỹ)|min(C, j)/j


X

j�1

|Pj�1(y)� Pj�1(ỹ)| .

Finally, (101) follows from summing the following across k, l:

|Dkl(y)�Dkl(ỹ)| =

������

X

j�C

yjkl � ỹjkl

j + 1

������


X

j�C

|yjkl � ỹjkl|
j + 1


X

j�C

|yjkl � ỹjkl|
C

.

⇤

Lemma 19 (Bounding the di↵erence between sampling with and without replacement). For any

X that can arise in the execution of Algorithm 2, the following hold:

���
���Y/n� Ỹ /ñ

���
���
1
 2C(`� 1)

n
.(102)

���
���P (Y/n)� P (Ỹ /ñ)

���
���
1
 2(`� 1)

n
.(103)

���
����(Y/n)��(Ỹ /ñ)

���
���
1
 4C(`� 1)

n
.(104)

���
���A(Y/n)�A(Ỹ /ñ)

���
���
1
 2(`� 1)

n
.(105)

���
���D(Y/n)�D(Ỹ /ñ)

���
���
1
 2(`� 1)

n
.(106)

Proof. Let s = s(X) be the student that is about to propose, and note that

Yjkl

n
�

Ỹjkl

ñ
=

Yjkl � Ỹjkl

n
� (n� ñ)

n

Ỹjkl

ñ

=
1

n
|Sjkl \ {s0 : Ms0 2 Is}|�

|Is|
n

|Sjkl\{s0 : Ms0 2 Is}|
|H\Is|

.(107)
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Furthermore,
X

k,l

|Sjkl \ {s0 : Ms0 2 Is}| = |{s0 : Ms0 2 Hj \ Is}| = |Hj \ Is|min(C, j).(108)

X

k,l

|Sjkl\{s0 : Ms0 2 Is}| = |{s0 : Ms0 2 Hj\Is}| = |Hj\Is|min(C, j).(109)

Combining (107), (108), and (109) yields (102):

X

j,k,l

�����
Yjkl

n
�

Ỹjkl

ñ

����� 
1

n

X

j

✓
|Hj \ Is|min(C, j) + |Is|

|Hj\Is|min(C, j)

|H\Is|

◆
.

 2C|Is|
n

 2C(`� 1)

n
.

Furthermore, (103) follows from (91), (107), (108), and (109):

Pj(Y/n)� Pj(Ỹ /ñ) =
1

min(C, j)

X

(k,l)2Z

 
Yjkl

n
�

Ỹjkl

ñ

!

 1

n

X

j

✓
|Hj \ Is|+ |Is|

|Hj\Is|
|H\Is|

◆
.

=
2|Is|
n
 2(`� 1)

n
.

Finally, (104) (105), (106) follow from (102), (103), and Lemma 18. ⇤

Lemma 20 (Bounding the change from a single step). The following hold with probability one:

���
���Y i+1

jkl
/n� Y

i

jkl
/n

���
���
1
 2C/n.(110)

����P (Y i+1
/n)� P (Y i

/n)
����
1
 2/n.(111)

�����(Y i+1
/n)��(Y i

/n)
����
1
 4C/n.(112)

����A(Y i+1
/n)�A(Y i

/n)
����
1
 2/n.(113)

����D(Y i+1
/n)�D(Y i

/n)
����
1
 2/n.(114)

Proof. Note that if the next proposal is sent to a school h 2 Hj�1, then the values {Y(j�1)kl}k,l all
weakly decrease, the values {Yjkl}k,l all weakly increase, and Yj0kl is constant for j

0 62 {j � 1, j}.
Only students that were previously matched to h stop contributing to

P
k,l

Y(j�1)kl, and only those

matched to h are new contributors to
P

k,l
Yjkl, so

X

(k,l)2Z

���Y i+1
(j�1)kl � Y

i

(j�1)kl

��� = min(C, j � 1)  C,

X

(k,l)2Z

���Y i+1
jkl
� Y

i

jkl

��� = min(C, j)  C.

These jointly imply (110). Furthermore, combining these inequalities with (91) implies (111).

Finally, combining (110) and (111) with Lemma 18 immediately yields (112), (113), and (114). ⇤
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C.4. Analysis of A Full Round. We now study the expected change in the variables Yjkl over a

full round (pass through the ‘for’ loop) of Algorithm 2. Although our preceding analysis of a single

proposal will be helpful, several challenges remain. First, the number of proposals in the round is

unknown. Second, (97) reveals that the expected change in Yjkl from a proposal depends on the

value 1(k�1)l(Z̃). In other words, we must understand not only the total number of proposals, but

also how often a student proposes to her kth of l listed schools (for each k and l). A third challenge

is that the probability of each proposal being accepted evolves over the course of the round.

We address these challenges by introducing a Markov chain Z on Z [{;}. This chain is intended

to approximate the evolution of the true variable Z̃. Compared to Z̃, transition dynamics for

Z are simplified in two ways. First, transition probabilities for Z are based only the summary

statistics Y : while the evolution of Z̃ accounts for the fact that students sample schools without

replacement, Z implicitly assumes that students sample schools with replacement. Second, the

transition probabilities for Z are fixed throughout a round: although the evolution of Z̃ accounts

for the fact that competition rises as more proposals are made, Z implicitly assumes that the

changes during a single round of proposals are small enough to ignore.

We use the simplified chain Z to define a function f which approximates the expected change in

the variables Y over the course of a round.

C.4.1. Defining the chain Z and the function f . Given any y 2 Y, we define a Markov Chain Zy

on Z [ {;}. It starts in state Z
0
y = (1, l), where l ⇠ L. The state ; is absorbing: it represents a

student filling a vacant position or being rejected from the last school on her list, thereby ending

the round. We let Zi
y denote the state of this chain after i transitions. From state Z

i
y 6= ;, move to

; with probability

(115) E[1;(Zi+1
y ) | Zi

y] = v(y) +
`X

l=1

Dll(y) +
`X

l=1

1ll(Z
i

y)(1� a(y)),

and move to state (k, l) with probability

(116) E[1kl(Zi+1
y ) | Zi

y] = 1Z(Z
i

y)D(k�1)l(y) + 1(k�1)l(Z
i

y)(1� a(y)).

We now define the functions f which will approximate the change in Y . For y 2 Y, j 2 N and

(k, l) 2 Z, define

fjkl(y) = Q(y)�jkl(y) + qkl(y)Aj(y),(117)

where

Q(y) =
µ(a(y))

1�
P

1kl`

P
k�1
k0=1Dk0l(y)(1� a(y))k�k0�1

.(118)

qkl(y) =

(
L(l) : k = 1.

L(l)(1� a(y))k�1 +Q(y)
P

k�1
k0=1Dk0`(y)(1� a(y))k�k

0�1 : k � 2.
(119)
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These functions are opaque, but the following lemma establishes a close relationship between fjkl

and the Markov chain Zy. It uses the fact that for any q 2 [0, 1],

(120)
X

1kl`

L(l)(1� q)k�1 =
X

1l`

L(l)1� (1� q)l

q
= µ(q).

To preview our next step, note the close relationship between the expression in Lemma 21 and

the expected change in Y given by (96) in Lemma 17.

Lemma 21 (Connection to Markov Chain). For any y 2 Y and any (k, l) 2 Z,

fjkl(y) = E
" 1X

i=0

1Z(Z
i

y)�jkl(y) + 1kl(Z
i

y)Aj(y)

#
.

Proof of Lemma 21. Define

q̂kl(y) = E[
1X

i=0

1kl(Z
i

y)].(121)

Q̂(y) = E[
1X

i=0

1Z(Z
i

y)].(122)

To complete the proof, it su�ces to show that qkl(y) = q̂kl(y) and Q(y) = Q̂(y). Note that

E[11l(Z0)] = L(l) and
P1

i=1 11l(Z
i) = 0, so q̂1l(y) = L(l) = q1l(y). Furthermore, for k � 2,

q̂kl(y) = E
" 1X

i=1

1kl(Z
i)

#

= E
" 1X

i=0

E[1kl(Zi+1) | Zi]

#

= E
" 1X

i=0

1Z(Z
i)D(k�1)l(y) + 1(k�1)l(Z

i)(1� a(y))

#

= Q̂(y)D(k�1)l(y) + q̂(k�1)l(y)(1� a(y)).

The first equality follows because 1kl(Z0) = 0 for k � 2, the second from changing indices and the

law of iterated expectation, the third from (116), and the final equality by definition of q̂kl and Q̂.

Recursively expanding this expression yields

(123) q̂kl(y) = L(l)(1� a(y))k�1 + Q̂(y)
k�1X

k0=1

Dk0`(y)(1� a(y))k�k
0�1

.

This matches (119), so long as we show that Q̂(y) = Q(y). Summing (123) across k and l and

applying (120) yields

Q̂(y) =
X

1kl`

q̂kl(y) = µ(a(y)) + Q̂(y)
X

1kl`

k�1X

k0=1

Dk0l(y)(1� a(y))k�k
0�1

.

Solving for Q̂(y) establishes that Q̂(y) = Q(y). ⇤



LOTTERY DESIGN FOR SCHOOL CHOICE 55

Before establishing that the modified bounded, lipschitz, and trend conditions (ii’), (iii’) and

(iv’) hold for this choice of f , we provide one helpful lemma, which establishes several bounds on

the duration of each round.

Lemma 22. Fix t  |S|, and let T̃ denote the number of proposals (passes through the ‘while’ loop)

in the t
th

round of Algorithm 2. For i 2 N, let X
i
be state of the Markov chain after min(i, T̃ )

proposals, and define Y
i = Y (Xi) as in (81). Then

P(T̃ > i | X0) = E[1Z(Z̃i) | X0]  (1� v(Y 0
/n))i.(124)

E[max(T̃ � i, 0) | Xi] = E[
1X

i0=i

1Z(Z̃
i
0
) | Xi]  1/v(Y 0

/n).(125)

E[max(T̃ � i, 0)2 | Xi] = E

2

4
 1X

i0=i

1Z(Z̃
i
0
)

!2 ����X
i

3

5  2/v(Y 0
/n)2.(126)

Furthermore, if y 2 Y and Zy is defined as in (115) and (116), then for any i 2 N,

E[1Z(Zi

y)]  (1� v(y))i.(127)

E[
1X

i0=i

1Z(Z
i
0
y ) | Zi

y]  1/v(y).(128)

Proof. We claim that for all i,

(129) P(Z̃i+1 = ;|Xi) � v(Z̃i
/ñ) � v(Y 0

/n).

This follows from (98), along with the observation that for j < C and all i such that Z̃i 6= ;,

(130) Ỹ
i

jkl
= Y

i

jkl
= Y

0
jkl

.

The first equality follows because Isi does not include any schools that have received fewer than C

applications (otherwise, si would currently be tentatively accepted, and would not be proposing).

The second equality in (130) holds because none of the proposals in the current round have gone

to a school with a vacancy (otherwise, the round would be over and we would have Z̃
i = ;).

Because ñ
i  n, it follows from (130) that for j < C, Ỹ i

jkl
/ñ

i � Y
0
jkl

/n, and therefore by (91)

Pj(Ỹ i
/ñ

i) � Pj(Y 0
/n). This implies the second inequality in (129).

It follows immediately from (129) that the probability that Z̃
i 6= ; is at most (1 � v(Y 0

/n))i.

In other words, (124) holds. Similarly, it follows that from any point, the expected number of

remaining steps is at most 1/v(Y 0
/n), so (125) holds. Finally, (126) follows from upper-bounding

the left side by the square of a geometric random variable with success probability v(Y 0
/n).

Meanwhile, note that (115) implies that at each step, Zy transitions to ; with probability at

least v(y). From this, (127) and (128) follow by arguments analogous to those outlined above. ⇤

C.4.2. Verifying the modified conditions (ii’), (iii’), (iv’). We note that the initial condition (i) of

Theorem 4 holds with y
0 a vector of all zeros. We next establish that the modified conditions (ii’),

(iii’), (iv’) hold.
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Lemma 23 (Bounded Condition). Let X be the Markov chain arising from Algorithm 2, with X(t)

denoting the state after t times through the ‘for’ loop. Let Y be defined as in (88), and let Y and f be

defined as in (81) and (117), respectively. If dn = ⇢n, �n = 2C log2(n), and �n = (1�V(⇢`))log2(n),
then condition (ii’) holds.

Proof. By Lemma 20, in order for Y
1 � Y

0 to be larger than �n, the round must go more than

log2(n) steps. By (124) in Lemma 22, the probability of this is at most (1 � v(Y 0
/n))log

2(n). By

the definition of Y in (88), if Y 0
/n 2 Y, then this probability is at most (1� V(⇢`))log2(n) = �n.

Because no school can receive more than ⇢n proposals, it is clear that Y
n

jkl
(t) = 0 for j > dn.

Furthermore, it is clear that as n!1, �nn�1/4 ! 0 and n ·dn ·�n = ⇢n
2+log(1�V(⇢`)) log(n) ! 0. ⇤

Lemma 24 (Lipschitz Condition). Let X be the Markov chain arising from Algorithm 2, with X(t)

denoting the state after t times through the ‘for’ loop. Let Y be defined as in (88), and let Y and

f be defined as in (81) and (117), respectively. Condition (iii’) holds with L = 3/V(⇢`) + 4(2C +

1)/V(⇢`)2.

Proof. Let y, ỹ 2 Y. The high-level idea of the proof is to use Lemma 21, which shows that f(y)

and f(ỹ) can be expressed as a sum over the steps before the Markov Chains Zy and Zỹ reach the

state ;. Lemma 22 bounds the expected number of these steps, and the contribution from each

step is bounded below.

By Lemma 21, we have

||f(y)� f(ỹ)||1 =
X

j,k,l

�����E
" 1X

i=0

1Z(Z
i

y)�jkl(y) + 1kl(Z
i

y)Aj(y)� 1Z(Z
i

ỹ)�jkl(ỹ)� 1kl(Z
i

ỹ)Aj(ỹ)

#�����


1X

i=0

X

j,k,l

��E
⇥
1Z(Z

i

y)�jkl(y) + 1kl(Z
i

y)Aj(y)� 1Z(Z
i

ỹ)�jkl(ỹ)� 1kl(Z
i

ỹ)Aj(ỹ)
⇤��


1X

i=0

X

j,k,l

��E
⇥
1Z(Z

i

y)�jkl(y) + 1kl(Z
i

y)Aj(y)� 1Z(Z
i

y)�jkl(ỹ)� 1kl(Z
i

y)Aj(ỹ)
⇤��(131)

+
��E
⇥
1Z(Z

i

y)�jkl(ỹ) + 1kl(Z
i

y)Aj(ỹ)� 1Z(Z
i

ỹ)�jkl(ỹ)� 1kl(Z
i

ỹ)Aj(ỹ)
⇤�� ,(132)

where the final line follows from adding and subtracting E[1Z(Zi
y)�jkl(ỹ) + 1kl(Zi

y)Aj(ỹ)] and

applying the triangle inequality. We will bound the terms in (131) and (132). We claim that
X

j,k,l

��E
⇥
1Z(Z

i

y)�jkl(y) + 1kl(Z
i

y)Aj(y) �1Z(Zi

y)�jkl(ỹ)� 1kl(Z
i

y)Aj(ỹ)
⇤��

 E[1Z(Zi

y)] (||�(y)��(ỹ)||1 + ||A(y)�A(ỹ)||1)

 E[1Z(Zi

y)]⇥ 3 ||y � ỹ||1 .

The first inequality uses the triangle inequality, and the second uses Lemma 18, which states that

||�(y)��(ỹ)||1  2 ||y � ỹ||1 and ||A(y)�A(ỹ)||1  ||P (y)� P (ỹ)||1  ||y � ỹ||1. Therefore, the
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term in (131) can be upper-bounded as follows:

1X

i=0

X

j,k,l

��E
⇥
1Z(Z

i

y)�jkl(y) + 1kl(Z
i

y)Aj(y)� 1Z(Z
i

y)�jkl(ỹ) �1kl(Zi

y)Aj(ỹ)
⇤��

 3 ||y � ỹ||1
1X

i=0

E[1Z(Zi

y)]

 3 ||y � ỹ||1 /V(⇢`),(133)

where we have used (128) in Lemma 22 and the fact that v(y) > V(⇢`) by definition of Y in (88).

Turning to (132), we claim that
X

j,k,l

��E
⇥
1Z(Z

i

y)�jkl(ỹ) + 1kl(Z
i

y)Aj(ỹ)� 1Z(Z
i

ỹ)�jkl(ỹ)� 1kl(Z
i

ỹ)Aj(ỹ)
⇤��


��E[1Z(Zi

y)� 1Z(Z
i

ỹ)]
�� ||�(ỹ)||1 +

X

k,l

��E[1kl(Zi

y)� 1kl(Z
i

ỹ)]
�� ||A(ỹ)||1 .(134)

 (||�(ỹ)||1 + ||A(ỹ)||1)
X

k,l

��E[1kl(Zi

y)� 1kl(Z
i

ỹ)]
��(135)

 (2C + 1)
X

k,l

��E[1kl(Zi

y)� 1kl(Z
i

ỹ)]
�� .(136)

Note that (134) follows from the triangle inequality, (135) from the fact that

(137)
��E[1Z(Zi

y)� 1Z(Z
i

ỹ)]
�� =

������
E

2

4
X

k,l

�
1kl(Z

i

y)� 1kl(Z
i

ỹ)
�
3

5

������

X

k,l

��E[1kl(Zi

y)� 1kl(Z
i

ỹ)]
�� ,

and (136) because ||A(ỹ)||1  1 from the definition of A in (93), and ||�(ỹ)||1  2 ||ỹ||1  2C from

the definition of � in (90) and the definition of Y in (88).

To upper bound the quantity in (137), we couple Zy and Zỹ by maximizing, for each (k, l) 2 Z,

the probability that both chains move simultaneously to state (k, l):

(138) E[1kl(Zi+1
y )1kl(Z

i+1
ỹ

) | Zi

y, Z
i

ỹ] = min
⇣
E[1kl(Zi+1

y ) | Zi

y],E[1kl(Zi+1
ỹ

) | Zi

ỹ]
⌘
.

Our argument proceeds as follows. At each step, the fact that y, ỹ 2 Y and the definition of Y in

(88) and the transition probabilities in (115) and (116) ensure that the chance that both chains

end in the next step can be lower-bounded by V(⇢`):

(139) P(Zi+1
y = Z

i+1
ỹ

= ;|Zi

y, Z
i

ỹ) � V(⇢`).

Meanwhile, whenever Z
i
y = Z

i

ỹ
, the probability that the two chains diverge in the next step is

upper-bounded as follows:

P(Zi+1
y 6= Z

i+1
ỹ

|Zi

y, Z
i

ỹ) 
X

(k,l)2Z

���E[1kl(Zi+1
y ) | Zi

y]� E[1kl(Zi+1
ỹ

) | Zi

ỹ]
���

 ||D(y)�D(ỹ)||1 + |a(y)� a(ỹ)|

 2 ||y � ỹ||1 .(140)
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The second inequality above follows from the transition probabilities of the chains given in (116)

and the assumption Z
i
y = Z

i

ỹ
, while the third follows from the Lipschitz properties of D and a

established by Lemma 18.

Combining (139) and (140) implies that the probability that the chains Zy and Zỹ ever diverge

is at most 2 ||y � ỹ||1 /V(⇢`):

(141) P(
1X

i=0

X

k,l2Z

��1kl(Zi

y)� 1kl(Z
i

ỹ)
�� > 0)  2 ||y � ỹ||1 /V(⇢`).

When the chains do diverge, we can upper-bound the expected total time that they spend in

di↵erent states by the time until both have reached state ;:

(142) E

2

4
1X

i=i0

X

k,l2Z

��1kl(Zi

y)� 1kl(Z
i

ỹ)
��
����Z

i
0
y , Z

i
0
ỹ

3

5  E
" 1X

i=i0

1Z(Z
i

y) + 1Z(Z
i

ỹ)

����Z
i
0
y , Z

i
0
ỹ

#
 2/V(⇢`),

where the final inequality again uses (128) in Lemma 22 and the fact that y, ỹ 2 Y. Combining

(141) and (142) yields that

(143) E

2

4
1X

i=0

X

k,l2Z

��1kl(Zi

y)� 1kl(Z
i

ỹ)
��

3

5  4 ||y � ỹ||1 /V(⇢`)
2
.

Noting that

1X

i=0

X

k,l2Z

��E[1kl(Zi

y)� 1kl(Z
i

ỹ)]
��  E

2

4
1X

i=0

X

k,l2Z

��1kl(Zi

y)� 1kl(Z
i

ỹ)
��

3

5 ,

equations (136) and (143) imply that the expression in (132) is upper-bounded as follows:

1X

i=0

X

j,k,l

��E
⇥
1Z(Z

i

y)�jkl(ỹ) + 1kl(Z
i

y)Aj(ỹ)� 1Z(Z
i

ỹ)�jkl(ỹ) �1kl(Zi

ỹ)Aj(ỹ)
⇤��

 (2C + 1)⇥ 4 ||y � ỹ||1 /V(⇢`)
2
.(144)

Substituting (133) and (144) into (131) and (132) completes the proof. ⇤

Lemma 25 (Trend Condition). Let X be the Markov chain arising from Algorithm 2, with X(t)

denoting the state after t times through the ‘for’ loop. Let Y be defined as in (88), and let Y and f

be defined as in (81) and (117), respectively. Then condition (iv’) holds with � = 5`(4C+2)/V(⇢`)3.

Proof. Throughout, we fix t and let Y i denote the value of Y after i passes through the ‘while’ loop

in Algorithm 2, with Y
0 = Y (t) and Y

1 = Y (t+ 1). By definition of Y in (88), if Y 0
/n 2 Y, then

v(Y 0
/n) > V(⇢`). Therefore, it su�ces to show that

(145)
����E[Y 1 � Y

0]� f(Y 0
/n)
����
1
 1

n

5`(4C + 2)

v(Y 0/n)3
.
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Note that

E[Y 1
jkl
� Y

0
jkl

] = E
" 1X

i=0

Y
i+1
jkl
� Y

i

jkl

#

= E
" 1X

i=0

E[Y i+1
jkl
� Y

i

jkl
| Xi]

#

= E
" 1X

i=0

1Z(Z̃
i)�jkl(Ỹ

i
/ñ

i) + 1kl(Z̃
i)Aj(Ỹ

i
/ñ

i)

#
.(146)

In what follows we use �̃i
,�i

, Ã
i and A

i as shorthand for �(Ỹ i
/ñ

i),�(Y i
/n), A(Ỹ i

/ñ
i) and

A(Y i
/n), respectively. Applying (146) and Lemma 21, we have

E[Y 1
jkl
� Y

0
jkl

]� fjkl(Y
0
/n) = E

" 1X

i=0

⇣
1Z(Z̃

i)�̃i

jkl
+ 1kl(Z̃

i)Ãi

j

⌘
�

1X

i=0

�
1Z(Z

i)�0
jkl

+ 1kl(Z
i)A0

j

�
#

= E
" 1X

i=0

1Z(Z̃
i)(�̃i

jkl
��i

jkl
) + 1kl(Z̃

i)(Ãi

j �A
i

j)

#
(147)

+ E
" 1X

i=0

1Z(Z̃
i)(�i

jkl
��0

jkl
) + 1kl(Z̃

i)(Ai

j �A
0
j )

#
(148)

+ E
" 1X

i=0

(1Z(Z̃
i)� 1Z(Z

i))�0
jkl

+ (1kl(Z̃
i)� 1kl(Z

i))A0
j

#
.(149)

In what follows, let T̃ =
P1

i=0 1Z(Z̃
i).

By Lemma 19 equations (104) and (105) we have
���
����̃i ��i

���
���
1
 4C(`� 1)/n and

���
���Ãi �A

i

���
���
1


2(`� 1)/n, so

E
" 1X

i=0

1Z(Z̃
i)
���
����̃i ��i

���
���
1
+ 1kl(Z̃i)

���
���Ãi �A

i

���
���
1

#
 1

n
(4C + 2)(`� 1)E[T̃ ]

 1

n

(4C + 2)(`� 1)

v(Y 0/n)

 1

n

(4C + 2)(`� 1)

v(Y 0/n)3
,(150)

where the second inequality follows from (125) in Lemma 22.
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From Lemma 20 equations (112) and (113) we have
�����i ��0

����
1
 4Ci/n and

����Ai �A
0
����
1


2i/n, and therefore

E
" 1X

i=0

1Z(Z̃
i)
�����i ��0

����
1
+ 1kl(Z̃

i)
����Ai �A

0
����
1

#
 E

2

4
T̃�1X

i=0

(2C + 1)(2i/n)

3

5

 1

n
(2C + 1)E[T̃ 2]

 1

n

4C + 2

v(Y 0/n)2

 1

n

4C + 2

v(Y 0/n)3
,(151)

where the penultimate inequality follows from (126) in Lemma 22.

Turning to (149),
����E
" 1X

i=0

(1Z(Z̃
i) � 1Z(Z

i))
�����0

����
1
+ (1kl(Z̃

i)� 1kl(Z
i))
����A0

����
1

�����

 (2C + 1)max

 �����E
" 1X

i=0

1Z(Z̃
i)� 1Z(Z

i)

#����� ,

�����E
" 1X

i=0

1kl(Z̃
i)� 1kl(Z

i)

#�����

!

 1

n

4`(4C + 2)

v(Y 0/n)3
,(152)

where the first inequality follows from the facts that
�����0

����
1
=
�����(Y 0

/n)
����
1
 2

����Y 0
/n
����
1
 2C

(the first inequality follows from (99)) and
����A0

����
1
 1, and the second from Lemma 26 below.

Substituting the bounds from (150), (151), and (152) into (147), (148), and (149) establishes (145),

completing the proof. ⇤

Lemma 26 (Coupling Z and Z̃.). For any S ✓ Z,

�����E
" 1X

i=0

1S(Z̃
i)� 1S(Z

i

Y 0/n
)

#����� 
1

n
· 8`

v(Y 0/n)3
.

Proof of Lemma 26. Throughout, we write Z in place of ZY 0/n. The idea of this proof is the same

as that of Lemma 24: we will couple Z̃ and Z to maximize the chance that they end up in the same

state in step: for each (k, l) 2 Z we have

(153) E[1kl(Z̃i+1)1kl(Z
i+1) | Xi

, Z
i] = min

⇣
E[1kl(Z̃i+1) | Xi],E[1kl(Zi+1) | Zi]

⌘
.

Let T ⇤ be the first time that the chains diverge. That is,

(154) T
⇤ = min{i : Z̃i 6= Z

i},

with T
⇤ = ; if Z̃i = Z

i for all i. We will show that T ⇤ = ; with probability 1�O(1/n). Intuitively,

this is because the expected number of proposals is at most 1/v(Y 0
/n) by Lemma 22, and at each

proposal the probability of the two chains diverging is O(1/n). Furthermore, when the chains do

diverge, this divergence lasts for only O(1) steps.
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Being more precise, note that

1X

i=0

1S(Z̃
i)� 1S(Z̃

i) =
1X

i=1

1(T ⇤ = i)

 1X

i0=i

1S(Z̃
i
0
)�

1X

i0=i

1S(Z
i
0
)

!
,

and therefore

E
"�����

1X

i=1

1S(Z̃
i)� 1S(Z

i)

�����

#


1X

i=1

P(T ⇤ = i)E
"�����

1X

i0=i

1S(Z̃
i
0
)�

1X

i0=i

1S(Z
i
0
)

����� | T
⇤ = i

#
.(155)


1X

i=1

P(T ⇤ = i)E
" 1X

i0=i

1S(Z̃
i
0
) +

1X

i0=i

1S(Z
i
0
) | T ⇤ = i

#
(156)

 2

v(Y 0/n)

1X

i=1

P(T ⇤ = i),(157)

with the final inequality following from (125) and (128) of Lemma 22.

All that remains is to bound the probability that the chains diverge, given by
P1

i=1 P(T ⇤ = i).

We start by noting that if Z̃i = Z
i = Z 2 Z, then

P(Z̃i+1 6= Z
i+1 | Xi

, Z
i) 

X

(k,l)2Z

���E[1kl(Z̃i+1) | Xi]� E[1kl(Zi+1) | Zi]
���


X

(k,l)2Z

���D(Ỹ i
/ñ

i)�D(k�1)l(Y
0
/n) + 1(k�1)l(Z)(a(Y 0

/n)� a(Ỹ i
/ñ

i))
���


���
���D(Ỹ i

/ñ
i)�D(Y 0

/n)
���
���
1
+
���
���P (Y 0

/n)� P (Ỹ i
/ñ

i)
���
���
1

 4(i+ `� 1)

n
.(158)

The second line follows from (97) from Lemma 17 and (116), the third uses (100) from Lemma 18,

and the final line follows from the triangle inequality and Lemmas 19 and 20.

We use this to conclude that

P(T ⇤ = i+ 1)  P(Z̃i = Z
i 6= ;)P(Z̃i+1 6= Ẑ

i+1|Z̃i = Z
i 6= ;)

 (1� v(Y 0
/n))i · 4(i+ `� 1)

n
,(159)

where the second line follows from (124) in Lemma 22 and (158). By (159), we have

X

i�1

P(T ⇤ = i) 
X

i�1

(1� v(Y 0
/n))i�1 4(i� 1 + `� 1)

n

=
4

n

✓
`� 1

v(Y 0/n)
+

1� v(Y 0
/n)

v(Y 0/n)2

◆

 4

n

✓
`� 1

v(Y 0/n)
+

1

v(Y 0/n)2

◆
.

 4

n

`

v(Y 0/n)2
.(160)

Combining (157) and (160) completes the proof. ⇤
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C.5. Solving The Di↵erential Equation.

Section C.4 shows that when X is the Markov chain arising from Algorithm 2 and Y and f are

defined as in (81) and (117), the bounded, lipchitz, and trend conditions (ii’), (iii’), and (iv’) are

satisfied. It follows that if ŷ is the solution to

(161) ŷ(0) = y0, ŷ
0
jkl

(s) = fjkl(ŷ(s)).

then for any ✏ > 0, as n!1,

P
⇣����Y n

jkl
(⇢n)/n� ŷ(⇢)

����
1
> ✏

⌘
! 0.

By definition of Gn and the definition of Y n

jkl
in (81), we have

G
n(k, l) =

kX

k0=1

X

j�1

Y
n

jk0l(⇢n).

Therefore, to prove Theorem 1 in the case of independent lotteries, we must show that

(162)
kX

k0=1

X

j�1

ŷjk0l(⇢) = ⇢L(l)FI(k).

This is established by the following Lemma.

Lemma 27 (Solving the Di↵erential Equation). Fix C, ` 2 N and L such that L(>`) = 0. For any

⇢ � 0, define �(⇢) to be the unique solution � to

(163) � = ⇢ · µ(A(�)).

If f is given by (117) and ŷ is defined as the solution to (161) with initial condition y
0
jkl

= 0 for

j � 1 and 1  k  l  `, then

ŷjkl(⇢) = ⇢L(l)(1�A(�(⇢)))k�1
pj�1(�(⇢))min(1, C/j),(164)

Furthermore, for any 1  k  l  `, (162) holds.

Proof. To keep notation uncluttered, throughout, we omit the dependence of ŷ and � on ⇢.

We first prove that if ŷ is defined by (164), then (162) holds. By definition of pj in (15) and A
in (2),

X

j�1

pj�1(�)min(C/j, 1) = A(�),

and therefore X

j�1

ŷjk0l = ⇢L(l)(1�A(�))k
0�1A(�).

Summing this for k0 from 1 to k immediately establishes (162).

We now show that if ŷ is defined by (164), then it does indeed satisfy (161). Clearly, when ⇢ = 0,

(164) implies that ŷjkl(0) = 0, so the initial condition of (161) holds.

We now show the di↵erential component of (161). Di↵erentiating (15) reveals that for j � 1,

p
0
j�1(�) = pj�2(�)� pj�1(�).
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(When j = 1, we take p�1(�) = 0 by convention.) Therefore, di↵erentiating (164) yields

ŷ
0
jkl

= ⇢L(l) (pj�2(�)� pj�1(�))min(C/j, 1)(1�A(�))k�1
�
0(165)

� ⇢L(l)pj�1(�)min(C/j, 1)(k � 1)(1�A(�))k�2A0(�)�0(166)

+ L(l)pj�1(�)min(C/j, 1)(1�A(�))k�1(167)

We first consider the term in (165), and note that

⇢L(l) (pj�2(�)� pj�1(�))min(C/j, 1)(1�A(�))k�1 =
min(C/j, 1)

min(C/(j � 1), 1)
ŷ(j�1)kl � ŷjkl

=

✓
1� 1(j > C)

j

◆
ŷ(j�1)kl � ŷjkl

= �jkl(ŷ),(168)

where the second line follows from considering each of the cases j  C and j > C.

Next, we claim that

pj�1(�)min(C/j, 1) = Aj(ŷ)(169)

A(�) = a(ŷ).(170)

�⇢L(l)(k � 1)(1�A(�))k�2A0(�) =
k�1X

k0=1

Dk0`(ŷ)(1� a(ŷ))k�k
0�1

.(171)

�
0(⇢) = Q(ŷ).(172)

Substituting these expressions into (166) and (167) yields

�⇢L(l)pj�1(�)min(C/j, 1)(k � 1)(1�A(�))k�2A0(�)�0(⇢) = Aj(ŷ)Q(ŷ)
k�1X

k0=1

Dk0`(ŷ)(1� a(ŷ))k�k
0�1

(173)

L(l)pj�1(�)min(C/j, 1)(1�A(�))k�1 = L(l)Aj(ŷ)(1� a(ŷ))k�1(174)

Substituting (168), (173), (174) into the expression for ŷ0
jkl

in (165), (166) and (167) reveals that

ŷ
0
jkl

= Q(ŷ)�jkl(ŷ) + qkl(ŷ)Aj(ŷ) = fjkl(ŷ).

All that remains is to prove (169), (170), (171) and (172). For j � 1, we claim that

Pj(ŷ) =
1

min(C, j)

X

1kl`

ŷjkl

= ⇢µ(A(�))pj�1(�)/j

= ⇢µ(A(�))pj(�)/�

= pj(�).(175)

The first equality restates (91), the second follows from (164) and (120), the third from (15) (which

implies pj�1(�)/j = pj(�)/�), and the fourth from (163). It follows that (175) also holds for j = 0.

Note that (93) and (175) jointly imply (169).
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Turning to (170) yields

a(ŷ) =
X

0j<C

Pj(ŷ) +
X

j�C

Pj(ŷ)
C

j + 1
.

=
X

j�0

Pj(ŷ)
min(C, j + 1)

j + 1

=
X

j�0

pj(�)
min(C, j + 1)

j + 1

= A(�).(176)

The first line follows from combining (91), (95) and (94), the second is elementary, the third follows

from (175), the fourth from (15), and the final line from (2).

Turning to (171), we have

k�1X

k0=1

Dk0l(ŷ)(1� a(ŷ))k
0�1 = ⇢L(l)(k � 1)(1�A(�))k�2

X

j�C

pj�1(�)
C

j(j + 1)

= ⇢L(l)(k � 1)(1�A(�))k�2
X

j�C

pj(�)

�

C

j + 1

= ⇢L(l)(k � 1)(1�A(�))k�2A(�)� V(�)
�

= �⇢L(l)(k � 1)(1�A(�))k�2A0(�).

The first line uses the definition of ŷ in (164) as well as (176), the second uses (15), the third uses

(1) and (2), and the final uses Lemma 3.

Finally, we turn to (172). By (119), (176) and (171) we have

Q(ŷ) =
µ(A(�))

1 + ⇢A0(�)
P

1kl`
L(l)(k � 1)(1�A(�))k�1

=
µ(A(�))

1� ⇢A0(�)µ0(A(�))

= �
0(⇢).(177)

The second line uses the fact that for q 2 [0, 1],

µ
0(q) =

d

dq

`X

k=1

L(� k)(1� q)k�1

= �
`X

k=1

L(� k)(k � 1)(1� q)k�2

= �
X

1kl`

L(l)(k � 1)(1� q)k�2
,

while (177) follows from di↵erentiating (163) and solving the resulting equation for �0:

�
0 = µ(A(�)) + ⇢µ

0(A(�))A0(�)�0
.

⇤
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