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Abstract. Stable matching mechanisms are used to clear many two-sided markets. In most set-
tings, participants’ lists tend to be short (even if there are many potentially acceptable matches).
This paper studies the consequences of this fact, and focuses on two broad questions. First, when
lists are short, what is the quantity and quality of matches formed through the clearinghouse?
Second, what are the effects of introducing an aftermarket which allows agents left unmatched by
the clearinghouse to find one another?

The answers to these questions depend crucially on the extent and form of correlations in agent
preferences. I consider three canonical preference structures: fully independent (or idiosyncratic)
preferences, vertical preferences (agents agree on the attractiveness of those on the opposite side),
and aligned preferences (potential partners agree on the attractiveness of their match).

I find that when agent preferences are idiosyncratic, more matches form than when agents are
vertically differentiated. Perhaps more surprisingly, I show that the case of aligned preferences
causes the fewest matches to form. When considering quality of matches, the story reverses itself:
aligned preferences produce the most high quality matches, followed by correlated preferences,
with independent preferences producing the fewest. These facts have implications for the design
of priority structures and tie-breaking procedures in school choice settings, as they point to a
fundamental tradeoff between matching many students, and maximizing the number of students
who get one of their top choices.

Regarding the role of the aftermarket, I find that when preferences are aligned, the aftermarket
unambiguously improves the welfare of both sides. In other cases, however, the introduction of an
aftermarket has multiple competing effects, and may either raise or lower aggregate welfare. This
suggests that when designing an aftermarket, the extent and form of correlations in agent prefer-
ences are an important factor to consider.

1. Introduction

In several high-profile matching settings, centralized clearing houses have emerged as a way to
clear the market. Typically, these clearing houses solicit preferences from all agents, and recommend
a match that is stable with respect to the submitted preferences. The advantages of centralization
(and stability in particular) are numerous and well-studied: the use of clearing houses allows
agents to evaluate multiple potential partners before having to commit to a match, and when
participants truthfully submit their preferences, stable mechanisms select core (and thus Pareto
efficient) outcomes.

Most of the literature on stable matching mechanisms assumes that agents list all potential
partners whom they find acceptable. This assumption rarely holds in practice, as agents opt
instead for short lists, even in very large markets. The reasons for this are numerous, and vary
across markets. In some cases, agents do not know their own preferences, and learning them is
costly. In other settings, agents may know their preferences, but have to pay a cost for each one
they list (for an example of this, consider college admissions, where each additional application
incurs a fee).1 Occasionally, there is even an explicit cap on the number of partners that each agent

Date: March 31, 2015.
1Although the American application and admissions process is decentralized, in many other countries, there is

a centralized assignment procedure. These assignment mechanisms may charge for applying to many schools (as is
the case in Hungary; see Biró (2007)), or cap the number of schools to which each student may apply (as happens
in South Korea; see Avery et al. (2014)). Still other clearinghouses may not run stable mechanisms at all (see, for
example, the work of Balinski and Sönmez (1999) and Braun et al. (2010)).
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may list (for example, Abdulkadiroglu et al. (2009) note that students in NYC may list at most
twelve schools to which they would like to match).

Regardless of the reasons for short lists, they are a feature of most centralized clearinghouses,
and have important (and understudied) consequences.In this paper, I consider two questions which
can only be addressed by a model which explicitly captures the fact that mutually acceptable agents
may fail to list one another. First, in markets with short lists, a notable number of agents on both
sides will remain (inefficiently) unmatched:2 I ask how this number depends on the extent (and
form) of correlation in agent preferences. As I discuss in Section 5, the answers to this question have
direct consequences for the design of priorities and tie-breaking procedures for school assignment
algorithms. Second, many centralized clearinghouses feature an “aftermarket” where unmatched
agents may find and match to acceptable partners. The final portion of this paper studies the ways
in which the presence of an aftermarket shapes agent incentives and utilities, and finds that the
answer again depends crucially on the correlation structure of agent preferences.

I model the matching process as a two stage game. In the first stage, one side (the “doctors”)3

schedules a limited number of interviews with agents on the other side (“hospitals”). In the second
stage, doctors and hospitals submit ranked lists, with the constraint that hospitals may only list
doctors whom they have interviewed (and, WLOG, vice versa). Given the submitted lists, agents
are matched according to the doctor-proposing deferred acceptance algorithm.

Agents make decisions at each stage of this process. I simplify the second stage by assuming that
agents truthfully rank all potential partners whom they interviewed and found acceptable. This is
a weak assumption, as doing so is a dominant strategy for doctors, and is essentially dominant for
hospitals in large markets (see Immorlica and Mahdian (2005) and Kojima et al. (2013)). I simplify
the first stage by assuming that hospitals have no interviewing constraints (and thus accept any
requests that they receive), and that doctors possess no information that ex-ante differentiates
hospitals (and thus schedule interviews with a set of hospitals chosen uniformly at random). These
assumptions, made for technical convenience, are arguably quite strong, and imply that my model
cannot provide insight into how agents should optimally schedule interviews in equilibrium.In the
conclusion, I discuss each of these assumptions, and the ways in which the conclusions of the model
would change if they were relaxed.

The primary focus of this paper is the study of how the preference structure influences the
quantity and quality of matches formed by the clearinghouse. Factors underlying agent preferences
in the real world are numerous and varied. Doctors may have idiosyncratic geographical preferences
driven by the locations of their friends or family members. They may differ in their level of
expertise, causing correlation in preferences, in that some doctors to be highly coveted by all
hospitals. Additionally, doctor and hospital preferences may be aligned, as a doctor who specializes
in a particular field may wish to go to a hospital where his expertise is in demand.4 The bulk of this
paper assumes that doctors have fully idiosyncratic preferences, and studies the way in which the
number and quality of matches depends on the preferences of hospitals. In particular, I consider
three cases:

2For example, in 2014, the NRMP match left roughly 1,000 residency positions unfilled - almost all of these
programs matched later through a supplemental procedure (for more information, see http://www.nrmp.org/

wp-content/uploads/2014/04/Main-Match-Results-and-Data-2014.pdf). In New York City, data from Abdulka-
diroglu et al. (2009) suggests that in 2006-2007, approximately 5,500 students (7% of the total) were initially unas-
signed and forced to reapply in a second matching round.

3Although I use terminology from residency matching, the results from this paper apply to any market where a
centralized stable matching mechanism is used, and lists are short relative to the number of participants. In particular,
they provide insight into the setting of school choice, and so I will occasionally refer to the two sides of the market
as students and schools.

4In a school choice setting, student preferences may stem from factors such as the school’s location, its overall
quality (as measured by test scores or graduation rates), or its strength in a particular area (for example, it may have
a particularly good orchestral program).
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• Independent preferences: hospital preferences are entirely idiosyncratic;
• Correlated preferences: hospitals share a common ranking of doctors;
• Aligned preferences: for each pairing, the doctor and the hospital have a common assessment

of its quality. Match qualities are themselves idiosyncratic.

In Section 4, I ask which of these preference structures produces the most matchings (holding
fixed the other parameters of the market). I find that correlated hospital preferences result in fewer
matches than independent preferences, as low-quality doctors struggle to find employment. I also
prove that aligned preferences produce the fewest matches of the three - a fact which may seem
surprising, as in this case there are no inherently low quality doctors.It is worth noting that these
differences may be of “first order” importance. For example, in a balanced market where doctors
may schedule m = 16 interviews, the model predicts that 5.20% of doctors remain unmatched when
doctor and hospital preferences are aligned. By contrast, when preferences are independent, only
1.45% of doctors go unmatched when m = 16, and (only) 4.87% go unmatched even when m is
reduced to 8.

Of course, the number of matches that form is an imperfect measure of match quality, so Section
5 studies the question of the quality of matches that form. Here, the story reverses itself: correlated
hospital preferences produce more high-quality matches for doctors than do independent prefer-
ences, and aligned preferences produce the most high-quality matches (more precise statements
are available in Section 5). I explain why, at a fundamental level, hospital preferences which tend
to give many doctors high-quality matches also tend to leave more doctors unassigned (and vice
versa).

These results provide practical guidance for the design of school choice algorithms, where school
preferences are engineered, not taken as given. In such settings, schools typically assign each
student to one of several broad categories, and must use a lottery to break ties among students.
One question which has been studied in this literature is how to correlate tie-breaking across
schools. In particular, Abdulkadiroglu et al. (2009) consider two possible lottery procedures. A
single tie-breaking (STB) procedure assigns each student a single lottery number, and breaks all ties
according to this number. A multiple tie-breaking (MTB) procedure assigns students one lottery
number per school, and breaks ties for positions at a given school according to the lottery numbers
for that school. Abdulkadiroglu et al. (2009) observe that in simulations, the former procedure
assigns more students their top choices, but also leaves more students unassigned. The authors
offer no compelling explanation for this observation, and indeed Pathak (2011) comments that
“there is currently no known stronger ex ante argument for single versus multiple tiebreaking based
on the distribution of matchings.” My results provide such an argument, and predict the trend
observed in the data. I close Section 5 with a brief discussion of alternative priority structures and
tie-breaking procedures, and their anticipated consequences.

The final component of this paper, presented in Section 6, studies the effects of introducing an
aftermarket to match agents left unassigned by the clearinghouse. I assume the simplest possible
structure for such a market: each unmatched agent on the short side is matched to a random agent
on the long side. The presence of the aftermarket provides each agent with an outside option whose
value is determined by the aggregate behavior of other agents.

I show that the preference structure again crucially affects market outcomes. When preferences
are aligned, there is a unique equilibrium, and both sides benefit from the presence of the aftermar-
ket. Neither of these results necessarily holds for other preference structures. I fully characterize
the equilibria when match values are independent draws from a binary distribution. In general,
there may be multiple equilibria, whereas when the long side has correlated preferences, there is
a single equilibrium. Unlike the case of aligned preferences, when preferences are independent or
correlated, equilibrium welfare may be lower than welfare when the aftermarket is absent.
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2. Related Work

The first work to document the use of a stable centralized clearing house was that of Roth (1984),
who noted that the algorithm used to match matches medical students to residency positions was,
in fact, equivalent to the deferred acceptance algorithm described by Gale and Shapley (1962).

Pittel (1989) was among the first to study the properties of stable mechanisms in large markets
with random preferences; one conclusion of this work is that in large balanced markets with uniform
preferences, nearly all agents have multiple stable partners. This contrasts with the empirical
findings of Roth and Peranson (1999), who observe that in practice, very few agents have multiple
stable partners. One explanation for this was provided by Immorlica and Mahdian (2005), which
is to my knowledge the first paper studying a large market model with short preferences lists.
They demonstrate that when preference lists are bounded in size, the core of the market becomes
essentially unique as the market grows. More recent large market models have shown that this
result continues to hold in the presence of a small number of couples Kojima et al. (2013), and in
the case when agents have long lists, so long as the market is not perfectly balanced Ashlagi et al.
(2013).

Each of the preference structures considered in this paper have appeared repeatedly in previous
work (in far too many papers to try to list them all here). Recent papers studying these three
preference structures in the context of large random markets include the work of Boudreau and
Knoblauch (2010) (who use simulation results to conclude that even a small degree of alignment
can significantly reduce the size of the core); and that of Lee and Yariv (2014) (who ask whether
stable matchings are asymptotically utilitarian efficient). Unlike our work, these papers assume
that each agent has (and submits) complete preferences over the opposite side.

Mathematically, a number of results in this paper are closely related to the computer science
literature studying maximal and maximum matching in random graphs. In particular, the work of
Wormald (1995) spawned many papers which use differential equations to analyze large graphs (as
I do in Theorems 1 and 3 for the case of correlated preferences). One closely-related paper is that
of Mastin and Jaillet (2013), which studies the size of the maximal matching produced by greedily
assigning each arriving agent to an unmatched partner (although they consider the case of an
Erdos-Renyi random graph where each edge present with probability m/n, whereas I assume that
each doctor schedules exactly m interviews). The graph structure from this paper has been studied
in the context of cuckoo hashing by Dietzfelbinger et al. (2010), Frieze and Melsted (2012) and
Fountoulakis and Panagiotou (2012), but they study the size of maximum matchings, rather than
stable ones (in the language of this paper, they ask how many excess hospital positions are needed
in order for it to be possible to match virtually all doctors if one ignores stability constraints).

Although interviews are widely recognized to play an important role in determining match out-
comes, little formal work exists on this topic. Two papers that study interviews in matching markets
are those of Lee and Schwarz (2012) and Rastegari et al. (2013). These papers, however, focus on
questions related to the optimal coordination of interviews. This paper instead takes uncoordinated
interviewing as a given, and aims to study match outcomes in the resulting market.
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3. Model

I consider a sequence of two-sided matching markets indexed by the parameter n. In the nth

market, there are n hospitals and brnc doctors. For ease of exposition, I assume that each hospital
has a single position; the case where hospitals have multiple positions is treated in Appendix 9.1,
and most of the conclusions reached in this paper continue to apply. Note that r determines the
market imbalance: r > 1 implies that there are more doctors than there are hospital positions. For
a given market, I use D to denote the set of doctors, and H to denote the set of hospitals.

Matches are formed through a two-period process:

• First, each doctor d (simultaneously) selects a subset Hd ⊆ H of hospitals with whom they
wish to interview (hospitals accept all requests).5

• In the second stage, doctors and hospitals submit preference lists, and may only list agents
whom they interviewed. The doctor-optimal deferred acceptance algorithm is run on the
submitted preference lists.

When doctor d interviews with hospital h, both agents learn the cardinal utility that they would
receive from matching to each other. I denote doctor d’s utility for matching to h by udh and
h’s utility for matching to d by vdh. I assume that udh and vdh are positive for all d, h, that
unmatched agents get a utility of zero, and that agents truthfully report their (ordinal) preferences
to the matching mechanism (the Appendix considers the case where agents may view each other
as unacceptable).

I capture the inherent frictions of interviewing by assuming that each doctor is capacity con-
strained, and may only select at most m < n hospitals with whom they can interview; that is, for
all d, |Hd| ≤ m. Furthermore, I make the simplifying assumptions that interviews are costless, that
hospitals appear ex-ante identical to doctors, and that doctors cannot coordinate their interviews
with one another. Taken together, these assumptions apply that doctors select m hospitals with
which they interview uniformly at random, and independently from one another.

In this paper, I consider several different preference models; that is, several joint distributions for
the values udh and vdh. In all cases, I assume that the values udh are iid draws from a distribution
F ;6 that is, that doctors have idiosyncratic preferences. This paper considers three possibilities for
the joint distribution of u, v:

• Independent preferences: The values vdh are iid ∼ F (independently from u).
• Correlated preferences: Each doctor d has a quality qd, drawn iid from the

distribution F . For all d, h, we have vdh = qd.
• Aligned preferences: For all d, h, we have vdh = udh.

For fixed interviews and fixed values of udh and vdh, the clearing house selects a matching µ
of size |µ|. Let µIn = µIn(r,m) denote the (random) matching that results in the market with
parameters r,m, n and independent preferences. Similarly, define µCn and µAn to be (random)
matchings produced when (hospital) preferences are correlated and aligned, respectively. Note that
by the rural hospital theorem, the size of the stable matching µ does not depend on which stable
match is selected.

In the following sections, I fix the market imbalance (r) and the number of interviews scheduled
by each doctor (m), let the size of the market (n) grow, and study differences in match outcomes
between the cases of independent, correlated, and aligned hospital preferences. I begin by analyzing
the number of matches that form in each case, before moving on to discuss the quality of these
matches in Section 5.

5As mentioned in the introduction, this arguably a strong assumption. I discuss it in detail in the conclusion.
6The assumption that F is the same for all agents is merely a notational convenience. All results from Sections 4

and 5 carry through if we allow each agent a to have a personal distribution function Fa. In this case, the definition
of correlated and aligned preferences should read that Fh(vdh) = Fd(qd) and Fd(udh) = Fh(vdh), respectively.
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4. Results: Number of Matches

I begin with a result which allows for explicit computation of the fraction of hospitals that match
in large markets (as a function of r,m, and the preference structure). This is used to prove Theorem
2, which states that for any r,m, independent preferences produce the most matches, and aligned
preferences produce the fewest.

Theorem 1.

(1) Independent preferences:

lim
n→∞

E[
∣∣µIn∣∣]
n

= x∗,

where x∗ is the unique solution to

(1) r =
x∗

1−
(

1 + x∗

log(1−x∗)

)m .
(2) Perfectly correlated preferences:

lim
n→∞

E[
∣∣µCn ∣∣]
n

= X(r),

where X(t) is the solution to the differential equation7

(2) X ′(t) = 1−X(t)m, X(0) = 0.

(3) Aligned preferences:

lim
n→∞

E[
∣∣µAn ∣∣]
n

= 1− G̃(0),

where G̃ is the solution to the differential equation

(3) G̃′(t) = rmG̃(t)

(
1−

∫ 1

t
G̃(u)du

)m−1

, G̃(1) = 1.

I provide proofs for the cases of independent and correlated preferences in Appendix 8.1.8 Readers
seeking intuition for the results corresponding to independent and correlated preferences can find
it in Section 4.1 (similarly, intuition for Theorem 2 is provided in Section 4.2); those uninterested
in this intuition may skip that portion of the paper.

7For m ∈ {1, 2}, this differential equation has a closed-form solution: X(r) = 1 − e−r and X(r) = e2r−1
e2r+1

,

respectively. For m = 3, it is possible to compute that the solution x = X(r) satisfies

6r = log

(
1 +

3x

(1− x)2

)
+ 2
√

3 tan−1

(
2x+ 1√

3

)
− π√

3
,

and for m = 4, the value x = X(r) satisfies

4r = log

(
1 + x

1− x

)
+ 2 tan−1(x).

Similar expressions may be derived for m ≥ 5, but the value of doing so is questionable, as the differential equation
(2) is arguably far more illuminating.

8The current version of the Appendix provides derivations for the aligned preference results from Theorems 1 and
3, but does not provide a formal proof that this derivation is correct. Simulations confirm the correctness of the given
expressions for aligned preferences, and I expect to post proofs for their correctness in an online appendix by the end
of the month.

Proofs for the remaining theorems in the paper appear in complete form in the appendix; furthermore, these proofs
do not rely on the correctness of the expressions for aligned preferences. For example, the conclusion that MC ≥MA

is established using a coupling argument which demonstrates that E[
∣∣µC

n

∣∣] ≥ E[
∣∣µA

n

∣∣] for any finite n (and thus this

conclusion must continue to hold in the limit).
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Motivated by Theorem 1, define M I = M I(r,m) = limn→∞
1
nE[

∣∣µIn∣∣], and similarly for MC and

MA. While Theorem 1 makes it possible to compute, for any r and m, the values M I ,MC ,MA,
it is worthwhile to gain a structural understanding of the given expressions. For example, it is
straightforward to show that these quantities are increasing in r and m, and approach min(1, r) as
m grows (meaning that when m is large, nearly the entire short side of the market finds a match).9

Furthermore, as the following Theorem shows, it is in general possible to order the number of
matches that form under each of the three preference structures.

Theorem 2. For any r,m, M I ≥MC ≥MA, with strict inequality unless m = 1.

In assessing the importance of Theorems 1 and 2, one should note that the number of matches
that form is depends not only of the preference structure, but also on the market imbalance r, the
number of interviews scheduled by each doctor m, and on the assumption that doctors schedule
interviews with hospitals uniformly at random. One might wonder whether these factors, rather
than the preference structure, are “first order” determinants of the number of matches that form:
perhaps differences between M I , MC , and MA are negligible in comparison. This turns out not to
be the case.

First, when r = 1 and m = 8, the expressions from Theorem 1 imply that under aligned
preferences, 9.30% of agents go unmatched, whereas 4.87% go unmatched when preferences are
independent. For comparison, when preferences are anti-aligned10 fewer than 1% of all agents go
unmatched; if we abandon stability constraints altogether, it is possible to reduce this number
to 0.03%.11 This suggests that the random interviewing assumption is not a significant driver of
the number of unmatched agents; rather, this number depends crucially on the structure relating
agents’ preferences.

Furthermore, differences across preference structures are significant when compared to differences
that result from changes in r and m. For example, if m is increased to 16 and preferences are aligned,
then 5.20% of hospitals go unmatched (note that this more than go unmatched when m = 8 and
preferences are independent). If m is held at 8 and the number of doctors is increased by ten
percent (so that there are 1.1 doctors per vacant position), then under aligned preferences 5.40%
of hospitals go unmatched (again, more than the case r = 1 with independent preferences).

I also want to note that the result M I ≥MC ≥MA does not directly extend to the case where
agents have exogenous outside options and thus consider some partners unacceptable. To see why,
define the effective list length of doctor d to be the number of partners listed by d who also choose to
list d. Suppose that doctors decide to list only matches for which F (udh) ≥ 1− ε, and similarly for
hospitals. Then under aligned preferences, d’s expected effective list length is mε, whereas under
independent preferences, it is mε2; if ε is small, it follows that the former situation produces more
matches than the latter. Thus, the right informal reading of Theorem 2 is that for comparable
values of r and comparable effective list lengths (rather than number of interviews conducted),
independent preferences produce the most matches and aligned preferences produce the fewest.

4.1. Intuition for Theorem 1.
Suppose that preferences are independent. Because the outcome of the deferred acceptance

algorithm does not depend on the order in which doctors propose, we may hold out a single doctor
d and run the algorithm on the remainder of the market. The set of hospitals to which d could
match is the set of hospitals which interviewed d, and are left with a match that they find inferior

9For more careful analysis of the rate at which this convergence occurs, refer to Appendix 9.2.
10By this, I mean informally that hospital and doctor evaluations of a match are negatively correlated; formally, I

mean that F (udh) +F (vdh) = 1 for all d, h. The claim that fewer than 1% of agents go unmatched in this case comes
from simulation results. For a discussion of factors which might cause such negative correlation, refer to Boudreau
and Knoblauch (2010).

11The number 0.03% comes from a result by Frieze and Melsted (2012).
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to d.12 In a large market, learning that d’s first k choices were unavailable to d provides little to
no information about the availability of other choices. Thus, from d’s perspective, each hospital
with which he interviewed should be available to him with some probability p, and their availability
should be independent.

Once we know that the market has this structure, all remaining analysis is greatly simplified: for
example, the probability that d matches is 1− (1− p)m, and it is easily verified that the expected
number of proposals made by d is (1 − (1 − p)m)/p. All that remains is to compute the value p.
Because d sends an average of (1− (1− p)m)/p proposals, we expect a total of rn(1− (1− p)m)/p
proposals to be sent throughout the course of the algorithm. From the point of view of each
hospital, each of these proposals is sent to them roughly with probability 1/n; thus, the number
of proposals received by a given hospital should be distributed as a Poisson random variable with
mean λ = r(1 − (1 − p)m)/p. Because a hospital matches if and only if it receives at least one
proposal, the fraction of hospitals that match should equal 1 − e−λ. Since doctors match with
probability 1 − (1 − p)m and the number of doctors and hospitals that match must be equal, we
must have that

(4) r(1− (1− p)m) = 1− e−r(1−(1−p)m)/p.

I show in Appendix 8 that this consistency equation for p has a unique solution for any r,m.
Performing a change of variables, define x = r(1 − (1 − p)m) to be the fraction of hospitals who
match. After expressing p as a function of x, r,m, substituting into (4) and solving for r yields (1).

I now discuss the intuition when hospitals have perfectly correlated preferences. In this case,
the deferred acceptance algorithm is equivalent to a serial dictatorship, in which the top-ranked
doctor matches to their most preferred hospital (among those interviewed), the second-ranked
doctor matches to their most preferred hospital among those remaining, and so on. Let Zn(k) be
the number of hospitals (out of n) who match to doctors ranked kth or above. The doctor ranked
k+ 1 fails to match only if all of his interviews were with one of these hospitals, which occurs with
probability close to (Zn(k)/n)m. Thus, we have

E[Zn(k + 1)− Zn(k) |Zn(k)] ≈ (Zn(k)/n)m,

If we define Xn(t) = 1
nZn(bntc), then the above equation suggests that as n→∞ we should have

E[Xn(t)]→ X(t), where X is given by (2).
Although throughout this paper, we maintain the assumption that doctor preferences are fully

idiosyncratic, this assumption is made primarily to facilitate a comparison between the three pref-
erence structures considered. In particular, the logic behind the derivation of (2) does not in any
way rely on the correlation of preferences among doctors, implying that X(r) gives the expected
fraction of doctors who match for any model of doctor preferences.13

4.2. Intuition for Theorem 2.
I will illustrate the intuition for Theorem 2 using an example. Consider a market with three

doctors and three hospitals in which each doctor interviews with two hospitals. Suppose that
interviews are scheduled as illustrated in Figure 1, so that each hospital interviews two doctors.
By symmetry, each doctor goes unmatched with equal probability, so it is enough to consider d2.
Note that d2 goes unmatched if and only if d1 is matched to h1, and d3 to h3. In order for this to
occur, it must be the case that

(A) d1 and d3 prefer h1 and h3 (respectively) to h2, and
(B) h1 and h3 prefer d1 and d3 (respectively) to d2.

12Technically, d’s application could trigger a “rejection chain” returning to one of the hospitals with which d
interviewed, meaning that the described set of hospitals may be a strict superset of those available to d. However,
the probability of such a rejection chain vanishes at the market grows.

13This equivalence does not hold when each hospital has the capacity to match to multiple doctors, as I discuss
in Appendix 9.1. In this case, introducing correlation among doctor preferences causes still fewer matches to form.
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h3h2h1

d3d2d1

Figure 1. A possible interview graph when r = 1,m = 2, n = 3. A stable matching
may produce either two or three matches, depending on agent preferences.

When preferences are independent, the probability of each event above is 1/4, and thus the prob-
ability that d2 goes unmatched is 1

16 . When hospitals have correlated preferences, (B) occurs

whenever d2 is the lowest-ranked doctor (i.e. with probability 1
3), and the ex-ante probability that

d2 goes unmatched rises to 1
12 .

Intuitively, the difference between independent and correlated preferences can be explained by
noting that doctors can only go unmatched if all of their proposals are rejected, and this should
be more likely when some doctors are undesirable to all hospitals.14 This intuition, however, does
not help to explain the result that MC ≥MA, as under the model of aligned preferences, a doctor
who is disfavored by one hospital may nevertheless be very desirable to a second hospital. Indeed,
the ranking M I ≥MC ≥MA may seem a bit of a puzzle. After all,

• With correlated preferences, hospitals tend to get proposals from undesirable doctors (since
desirable doctors need not apply to many places).
• With aligned preferences, hospitals tend to get proposals from doctors that they find desir-

able (since doctors start with better matches).
• With independent preferences, the arrival of each proposal is independent of the hospital’s

assessment of the doctor.

Why, then, is M I not “in the middle”? The flaw in this logic is that the number of unmatched
agents depends not on the desirability of the typical applicant, but rather on the desirability of a
doctor who is applying to one of their final choices. For both correlated and aligned preferences,
such a doctor is likely to be turned down (in the first case, because they are likely a low-quality
doctor, and in the second because it is likely a low-quality match).

I now provide intuition (and a sketch of a proof) for the result MC ≥MA. Note that under both
correlated and aligned preferences, there is a unique stable matching, which can be constructed
through a simple greedy procedure.

P1 Correlated preferences: the top-ranked doctor must receive their most preferred option. Form
this match, and apply this principle to the remaining subgraph.

P2 Aligned preferences: the match of highest quality must be in any stable matching. Form this
match, and apply this principle to the remaining subgraph.

Returning to the example in Figure 1, by symmetry, each edge is equally likely to be the first one
chosen by either greedy procedure; suppose without loss of generality that we begin by matching
d1 and h1. Now, only two matches form if and only if d3 and h3 are matched. Under aligned prefer-
ences, this occurs with probability 1

3 , whereas with correlated hospital preferences (and independent

doctor preferences) the probability that this occurs is only 1
4 .

Why the difference? Note that procedure P1 selects at each step a random remaining doctor
to match, whereas procedure P2 selects each doctor in proportion to the number of yet-unmatched
hospitals with whom he has interviewed. In other words, the greedy procedure corresponding to

14Of course, high quality doctors are more likely to match than “typical” doctors in a world with independent
hospital preferences. It’s not obvious that the decreased matching probabilities for low-quality doctors dominates the
increased probabilities for high-quality doctors, though I argue that it is at least intuitive.
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aligned preferences tends to match doctors with many remaining options, forcing doctors with
few remaining options to wait (and risk that their final option gets matched). In the proof (see
Appendix 8), I formalize this idea by using the principle of deferred decisions to define two Markov
chains (one corresponding to correlated preferences and the other to aligned preferences), and then
coupling these chains to show that fewer matches form under aligned preferences.15

5. Results: Quality of Matches

Of course, if the only goal were to maximize the number of matches that form, this could trivially
be accomplished. It is also important to consider the quality of matches that form. The measure of
quality used in this paper is the quantile that each agent assigns to their match partner. In other
words, we answer questions of the form “What percent of doctors are matched to a hospital which
they would consider to be among the top y% of hospitals?” Given the answer to this question for
all y, it is straightforward to compute the expected welfare of each agent, for any given distribution
F .

More formally, given a matching µ, and s ∈ [0, 1], let Nd(s) to be the number of doctors who
receive utility at most F−1(s) under µ. Define Gd(s) = limn→∞

1
rnE[Nd(s)] to be the large-market

fraction of doctors who receive utility at most F−1(s). Similarly, let Nh(t) be the number of
hospitals that receive utility at most F−1(t) under µ, and define Gh(t) = limn→∞

1
nE[Nh(t)].

Theorem 3 provides, for each of the three preference structures, expressions for Gd and Gh.
Note that this theorem subsumes Theorem 1, as M I = GIh(0), MC = GCh (0), and MA = GAh (0).
An important result in this section is Theorem 4, which states that although more matches form
under independent preferences, more “high quality” matches form when hospital preferences are
correlated. In other words, there exists ŝ < 1 such that GId(s) > GCd (s) for s ∈ (ŝ, 1).

Theorem 3.

(1) Independent preferences:

(5) GId(s) = (1− p(1− s))m, GIh(t) = e−λ(1−t)

where λ = r(1− (1− p)m)/p and p ∈ (0, 1] is the unique solution to (4).

(2) Perfectly correlated preferences:

(6) GCd (s) =

∫ 1

0
(s+ (1− s)X(rt))mdt, GCh (t) = 1−X(r(1− t)),

where X(t) is the solution to the differential equation

X ′(t) = 1−X(t)m, X(0) = 0.

(3) Aligned preferences:

GAd (s) = 1− 1− G̃(s)

r
, GAh (t) = G̃(t).

where G̃ is the solution to the differential equation

(7) G̃′(t) = rmG̃(t)

(
1−

∫ 1

t
G̃(u)du

)m−1

, G̃(1) = 1.

15Thus, this proof holds for markets of arbitrary size (not only in the large market limit), and implies that the dis-
tribution of the number of matches that form under correlated preferences stochastically dominates the corresponding
distribution for aligned preferences.
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While Theorem 3 makes it possible to compute aggregate welfare for any given F , it can also be
used to derive structural insights, and provide guidance in the design of school choice procedures
(as school preferences are engineered, rather than given exogenously). Several cities have recently
redesigned their assignment algorithms to resemble the student-proposing deferred acceptance algo-
rithm. Generally, these procedures sort students into one of several broad classes, and use lotteries
to break ties among students within a class.

Two natural tie-breaking procedures are single tie-breaking, or STB (which assigns each student
a single lottery number, and breaks all ties according to this number), and multiple tie-breaking,
or MTB (which assigns students one lottery number per school, and breaks ties for positions at a
given school according to the lottery numbers for that school). In the context of this paper, these
procedures naturally correspond to the cases of correlated and independent school preferences, re-
spectively. Theorem 4 states that there is no stochastic dominance relation between the allocations
that result from STB and MTB. Instead, the functions GId and GCd have a unique intersection point
ŝ: STB produces more matches of quality above F−1(ŝ), and MTB produces more matches overall.

Theorem 4. If m = 1, GCd = GId . For m ≥ 2 and all r, there exists ŝ ∈ (0, 1) such that

GCd (s) > GId(s) for s ∈ [0, ŝ) and GCd (s) < GId(s) for s ∈ (ŝ, 1).

Theorem 4 considers the somewhat abstract notion of student utilities, which are hard to observe
directly. A more easily measured proxy is the number of students getting their first, second, third
choices and so on. It is straightforward to show that a discrete analog of Theorem 4 holds: for
any r and m ≥ 2, there exists k′ < m such that STB results in more students getting one of their
top k choices for k ≤ k′, and MTB results in more students getting one of their top k choices for
k > k′ (for details, see Appendix 8.2). This trend was observed empirically by Abdulkadiroglu
et al. (2009); to my knowledge, this paper is the first to provide a theoretical explanation.

Theorem 4 implies that there are tradeoffs when choosing between STB and MTB, and that the
correct choice depends on the form of the distribution F . In settings where a small fraction of
high-quality matches are of very high value, STB is likely to be preferable; MTB is better suited
to settings where the variation in match quality is small relative to the difference between being
matched and going unmatched.

In principle, there is no need to restrict attention to these two tie-breaking procedures; one
might hope for a procedure which produces match outcomes which stochastically dominates those
produced by STB and MTB. I believe that this is an unattainable goal, and that the tradeoff
between forming high quality matches (i.e. giving many students their top choices) and forming a
large number of total matches is fundamental. My reasoning is best presented through an example.
Suppose that there are two candidates, d1 and d2, for a position at hospital h. This hospital is the
first choice for d1, whereas it is the final acceptable choice for d2 (who has already been rejected
by his more preferred options). If preferences are such that h is likely to select d1, this increases
the number of doctors who receive their first choice, while causing fewer doctors to match overall;
selecting d2 has the opposite effect.

Even if stochastic dominance of STB and MTB is unattainable, for a given distribution F ,
other natural mechanisms may outperform either of these procedures. One well-studied alternative
assignment algorithm is the so-called “Boston” mechanism, which explicitly maximizes the number
of students who receive their first choice, then maximizes the number of students receiving their
second choice (given the constraints from previous assignments), and so on. If the distribution of
cardinal utilities has a heavy right tail, so that STB is in fact socially preferable to MTB, then it
seems likely that the outcome of the Boston mechanism may be socially preferable to either.16

16On the opposite extreme, if minimizing the number of unmatched students were paramount, then it might
be worthwhile to run a multiple tie-breaking procedure in which lottery numbers for each student were negatively
correlated across schools.
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Figure 2. PlottingGd for r = 1,m = 10. Note that each pair of curves cross exactly
once: single tie-breaking produces the most matches but the fewest high-quality
matches, whereas the Boston mechanism produces more high quality matches, at
the cost of fewer matches overall.

Within the model discussed in this paper, we may compute the fraction of students matched to
one of their top k choices by the Boston mechanism, as well as an equation for GBd (s) (the fraction
of students assigned by the Boston procedure to a school which they value at F−1(s) or lower).
We provide expressions for these quantities in Appendix 8.2, and plot GId, G

C
d , and GBd against

one another in Figure 2. As expected, Boston provides more top matches than either of the other
procedures, while matching fewer students overall.

One well-known flaw of the Boston mechanism is that (unlike STB and MTB deferred acceptance
procedures) it induces significant incentive for students to misreport their preferences. For example,
a student who covets a position at a highly-ranked school may choose not to list that school in
order to ensure a spot at their second choice. Within the model discussed in this paper, this is not
a concern: I assume that schools are indistinguishable, so students will not be able to predict which
schools will be most competitive, and thus might as well report truthfully. In reality, however, this
is a major concern which might prevent the implementation of the Boston mechanism.

It may, however, be possible to partially align preferences by giving students priority at schools
that they covet, so long as these schools can be predicted in advance. For example, if students tend
to prefer schools close to where they live or schools that their siblings attend, then policies which
give priorities to these students will tend to increase the number of students who get one of their
top choices (likely at the cost of some decrease in the total number of students who match).

6. After-Market

In practice, agents left unmatched by the centralized process may be able to match in some sort
of after-market. It seems intuitive that in a large market, the quality of matches available in the
aftermarket is insensitive to the behavior of any individual. If this is the case, we can think of
this market as providing an outside option of some value u to doctors and value v to hospitals.
The optimal doctor response in this case is to interview as before, and list only hospitals for which
udh ≥ u (and analogously for hospitals). Of course, the perceived quality of the after-market will
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in general depend on the “pickiness” of each side, as well as the mechanism through which the
aftermarket clears.

In this section, I suppose a very simple clearing mechanism: each unmatched agent on the short
side is matched to a random unmatched agent on the long side. We can then define an equilibrium
of the game to be a pair (u, v) such that when agents treat these values as their outside options, the
resulting aftermarket in fact generates these expected utilities. As a first step towards solving for
an equilibrium, it is necessary to study the behavior of the centralized clearinghouse when agents
list as unacceptable partners below a given threshold. I do so in Appendix 8.3: given any values
(F (u), F (v)) ∈ [0, 1]2, I provide equations for the match quality distribution functions Gh, Gd.

For any distribution F , and any of the three correlation structures studied in this paper, these
expressions make it possible to solve for equilibria of the induced game. The set of equilibria depend
on the distribution F , as candidates must decide whether to accept a low-quality match or gamble
for a better one in the aftermarket. This paper focuses primarily on questions whose answers are
insensitive to the choice of F , and I leave a full examination of the possible effects and implications
of the aftermarket to future work. I do, however, want to illustrate that the preference structure
crucially affects the set of equilibria and the welfare implications of the aftermarket.

First, I note that when preferences are aligned there is a unique (and simple) equilibrium, and
that the presence of an aftermarket necessarily increases aggregate welfare for both sides.

Theorem 5. When preferences are aligned, there is a unique equilibrium outcome of the game
with an aftermarket. In this equilibrium, doctor d and hospital h list each other if and only if
they interviewed and udh exceeds the mean match quality. Aggregate welfare for each side increases
relative to the game without an aftermarket.

To see that this is the unique equilibrium, note that every agent will choose to list an above-
average partner rather than participate in the aftermarket, and agents on the short side will prefer
the aftermarket to accepting a below-average partner. To see that the presence of the aftermarket
increases aggregate welfare, consider a case where d and h would have matched absent an aftermar-
ket, but in the presence of an aftermarket, h declines to list d and instead finds d′. Then it must
be the case that the expected match quality between h and d′ exceeds udh, and thus both sides of
the market benefit (in aggregate) from the change (although the individual doctor d may be worse
off).

When preferences are not aligned, however, the welfare effects of the aftermarket are more
ambiguous. Suppose, for example, that absent an aftermarket, d and h would match, and udh is
very high. If vdh is not particularly high, the presence of an aftermarket might cause h not to list d.
Even if h goes on to match with another doctor d′, there is no reason to believe that ud′h ≥ udh; thus,
aggregate doctor welfare may be lower in the presence of the aftermarket. Example 1 demonstrates
that the presence of an aftermarket might decrease welfare for both sides. The example makes use
of a class of distributions which I call binary : these are distributions such that udh ∈ {s, 1} (with
s < 1, and P (udh = 1) = P (vdh = 1) = γ ∈ (0, 1)). I say that hospital h is an excellent match for
doctor d if udh = 1.

Example 1. Suppose that preferences are independent, and that udh, vdh ∈ {s, 1}, with s < 1 and
P (udh = 1) = γ. If r = 1,m = 10, and γ = 1/10, then17

• Without an aftermarket, 96.5% of participants match; over 25% of doctors, and over 28%
of hospitals, receive excellent matches.
• With an aftermarket, there is a unique equilibrium in which both sides list only excellent

matches. Fewer than 10% of participants match through the clearinghouse; fewer than 19%
of participants on each side eventually receive excellent matches.

17Here and in Theorem 6, I assume that agents break ties in uniform random order, independent from one another.
This is effectively equivalent to taking F to be a continuous perturbation of the binary distribution above.
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If s < 2/3, the presence of an aftermarket lowers welfare of both sides.

Furthermore, when preferences are not aligned, there may be multiple equilibria. To see the
intuition behind this fact, suppose that there is an excess of doctors (r > 1) and preferences
are independent. Then the utility that each doctor expects to receive from the aftermarket is
proportional to the probability that they will find a match there. This probability is higher when
many agents on both sides go unmatched, and lower when most agents match. Thus, it may be
the case that there are multiple equilibria:

• If doctors are unselective (list many hospitals), then most hospitals match through the
clearing house, and the after-market is relatively unappealing.
• If doctors are selective (list relatively few hospitals), then many hospitals remain unmatched

by the clearinghouse, and the after-market is relatively appealing.

Theorem 6 fully characterizes the set of equilibria for binary independent preferences. In particular,
for any r,m, γ there exist s, s ∈ [0, 1] such that there are two equilibria if and only if s ∈ (s, s).

Theorem 6. Suppose that preferences are binary and independent. When r = 1, there is a unique
equilibrium in which agents on both sides accept only excellent matches. Otherwise, in every equi-
librium the short side of the market accepts only excellent matches. For any r,m, γ,∃ s < s such
that

• It is an equilibrium for the long side to list only excellent matches iff s ≤ s.
• It is an equilibrium for the long side to list all interview partners iff s ≥ s.

Furthermore, the thresholds s, s are decreasing in m, increasing in r when r < 1, and decreasing in
r when r > 1.

In the case where preferences are correlated, there is an additional consideration of adverse
selection: those agents left in the aftermarket are likely to be undesirable. It turns out that
when preferences are correlated and binary, there always exists a unique equilibrium.18 Aggregate
welfare for the long side in this equilibrium may be either higher or lower than welfare without an
aftermarket. I leave a treatment of more general (non-binary) distributions to future work.

7. Conclusion/Discussion

This paper examines the role of preference correlation in determining the number and quality
of matches formed by centralized clearinghouses. I focus on three canonical preference structures:
independent, correlated, and aligned preferences. The first of these assumes no correlations between
agent preferences. The second assumes strong positive correlations in the preferences of agents on a
single side of the market. The third assumes correlations in preferences across sides of the market;
that is, agents tend to agree on whether they would be a suitable match.

My first finding is that more matches form when preferences are independent than when pref-
erences on at least one side are perfectly correlated. Perhaps more surprisingly, I show that the
case of aligned preferences generates the fewest matches, and that the differences across preference
structures may be substantial. The intuition for these results is that the primary factor determining
the number of agents who go unmatched is the probability that an agent applying to one of their
final choices will be accepted. Under both correlated and aligned preferences, this probability is
relatively low (in the first case, because such an agent is likely to be of low quality, and in the latter
case, because the match is likely to be a marginal fit).

Of course, we are interested not only in the number of matches that form, but also in their
quality. In Section 5, I provide methods for computing, for each preference structure, the fraction
of agents on each side who receive partners that they rank above any given threshold. I apply
these results in the context of school assignment. In particular, I show that when compared to a

18A proof of this fact is available upon request.
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lottery with multiple tie-breaking, single tie-breaking results in more students being assigned to
one of their top few choices, but fewer students being assigned overall. I provide reasons to believe
that the tradeoff between forming more high quality matches and forming more total matches is
fundamental.

In many centralized markets, agents left unmatched by the clearinghouse have an opportunity to
match to one another (through formal or informal channels). The presence of such an aftermarket
has direct benefits to the matched agents, but also changes incentives during the primary matching
stage, as the opportunity to match later provides agents with an outside option. I demonstrate that
when agent preferences are aligned, the introduction of an aftermarket always increases welfare,
but for other preference structures the aggregate welfare consequences of an aftermarket may be
either positive or negative. Furthermore, multiple equilibria may emerge, as there exist same-side
complementarities: a given doctor can more safely be “selective” in who they list when other
doctors do the same.

The model used in this paper makes several simplifying assumptions. In the remainder of this
conclusion, I discuss two of the most salient: the assumption that hospitals accept all interviews,
and the assumption that agents appear identical ex-ante.

7.1. Alternate Interview Scheduling Procedures.
For technical convenience, the process of scheduling of interviews assumed in this paper is very

simple, and not descriptively accurate when applied to the NRMP.19 Even if agents possess no
information about one another ex-ante, hospitals may only be able to interview a limited number
of candidates, and agents on both sides may have incentives to coordinate interviews in order to
avoid the situation where some programs receive few interview requests and others receive many.

One possible revision would be to assume a two-round interview scheduling process whereby
doctors request up to m interviews, and hospitals with too many requests decline some applicants.
In one extreme of this model, doctors apply broadly, and most hospitals have a full schedule of
interviews and reject many applicants; this case should resemble the model presented above, with
the role of doctors and hospitals reversed. One could also specify more complicated interview
formation processes involving multiple rounds of choices by agents on both sides.

A more realistic and/or optimized interview scheduling process might plausibly affect the number
of matches that form in the market, and the challenges of modeling and optimizing interview
formation are quite interesting. Thus, I do not consider the expressions derived in Theorems 1 and
3 to be sacrosanct. Instead, I emphasize the fact that for a given interview procedure, different
preference structures have very different implications for the quantity and caliber of matches that
form. Furthermore, these effects may be as large or larger than the differences between different
procedures for scheduling interviews.20 None of the intuition underlying these differences relies
heavily on the details of the interview formation process, and I expect that qualitatively similar
results would emerge from other models of interview formation.

7.2. Ex-Ante Heterogeneity and Targeted Interviews.
The previous section discussed alternate interview scheduling procedures, holding fixed the as-

sumption of low information (i.e. the fact that agents appear identical ex-ante). In the model
above, even if if both sides of the market are vertically differentiated ex-post and doctors know
their own quality, they cannot tailor their strategy to reflect this information (as it is costless to

19For information on the number of interviews requested and accepted by residency programs in 2014, see http:

//www.nrmp.org/wp-content/uploads/2014/09/PD-Survey-Report-2014.pdf.
20Recall that with r = 1,m = 8, and uncoordinated interview scheduling, the model predicts that 4.87% of agents

go unmatched when preferences are independent. This number rises to 9.30% when preferences are aligned, and falls
to less than 1% when preferences are anti-aligned. By comparison, when preferences are independent, coordinating
interviews so that each hospital interviews eight candidates (without further coordinating the interview schedule in
the manner studied by Lee and Schwarz (2012)) causes a significant but more modest drop in the unemployment
rate: it falls from 4.87% to 3.20%.
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interview at the maximum allowable number of hospitals, and they do not initially observe hospital
quality). The doctors who fail to match tend to be low-ranked doctors who happen to have applied
primarily to highly ranked programs. In practice, we might expect that some signals of program
quality are available before the scheduling of interviews, and that doctors use this information to
guide their applications. One might wonder how the conclusions in this paper are affected by this
sorting behavior.

Solving for an equilibrium of the game with known qualities on both sides is a daunting challenge;
here, I merely posit plausible-sounding behavior on the part of doctors. Suppose that doctors choose
to apply only to hospitals of a caliber similar to their own, meaning that a doctor who knows himself
to be of quality q applies uniformly at random among the set of hospitals whose quality is in the
interval [q−ε, q+ε] for some ε > 0. Suppose furthermore that hospitals have sufficiently idiosyncratic
preferences (or sufficiently noisy signals of doctor quality) that their ranking of doctors who applied
to them is effectively uniformly random (recall that all applicants to a given hospital differ in
quality by at most 2ε). In this case, Theorems 3 and 4 by Arnosti et al. (2014) imply that from
the perspective of any individual agent, the market “looks” like a market with uniformly random
preferences.21 As we now know, this implies that a smaller (though still non-trivial) proportion
of agents on each side will go unmatched (relative to the case where doctors do not strategically
target their interviews). Thus, if we believe that doctors primarily schedule interviews only with
hospitals of comparable quality, the work of Arnosti et al. (2014) provides rigorous justification for
the “independent preferences” analysis in this paper.

Another extension that could be considered is one in which the number of interviews is unlimited,
but each one is costly. If preferences are idiosyncratic, an equilibrium of this model should look very
similar to the outcomes discussed in this paper. However, if hospital preferences are correlated and
doctors observe their own quality, then doctors of different qualities may choose to send different
numbers of applications. Analyzing such a model is one possible route for future work.

21Formally, each doctor perceives that hospitals they apply to will extend an offer independently with probability
p, where p is the unique solution to a consistency equation. Arnosti et al. (2014) frame their result quite differently,
as in their model, the vertical component of preferences is assumed to be time (in other words, applicants apply
to positions which were recently posted, and accept the first offer that they receive), but mathematically, the two
formulations are effectively equivalent. One difference is that in their model, applicants apply to each position
independently with equal probability (whereas this paper assumes that doctors send exactly m applications). I study
this case in Appendix 9.2.
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8. Appendix: Proofs

8.1. Proofs for Section 4.
I begin with two technical lemmas, which are very closely related to one another.

Lemma 1. For every r > 0,m ∈ N, γ ∈ (0, 1], there exists a unique x ∈ (0, 1) satisfying

(8) x = r

(
1−

(
1 +

γx

log(1− x)

)m)
,

Proof. Note that the expressions on both sides of (8) are continuous on the interval (0, 1). The left
side starts at zero, ends at one, and is increasing. The right side starts at r(1− (1− γ)m), ends at
zero, and is decreasing. Thus, they must cross at a single interior point x. �

Lemma 2. For every r > 0,m ∈ N, there exists a unique p ∈ (0, 1] satisfying

(9) r(1− (1− p)m) = 1− e−r(1−(1−p)m)/p.

Proof. Define the function x1(p) = r(1 − (1 − p)m), and define x2(p) to be the solution to p =
−x2/ log(1− x2). Note that x2 is well-defined and continuous, as −x/ log(1− x) decreases contin-
uously from one to zero on the interval [0, 1].

Rearranging (9), note that we are seeking a solution to p = −x1(p)/ log(1 − x1(p)), or equiv-
alently a value p for which x1(p) = x2(p). Such a solution exists because x1 begins below x2

(x1(0) = 0, x2(0) = 1) and ends above it (x1(1) = r, x2(1) = 0), and both functions are continuous.
Uniqueness of the solution follows because x1 is increasing and x2 is decreasing. �

Proof of Theorem 1.
This theorem is an immediate consequence of Theorem 3, as

lim
n→∞

1

n
E[
∣∣µIn∣∣] = 1−GIh(0)

lim
n→∞

1

n
E[
∣∣µCn ∣∣] = 1−GCh (0)

lim
n→∞

1

n
E[
∣∣µAn ∣∣] = 1−GAh (0).

�

Proof of Theorem 2.

Proof that M I ≥MC :

For fixed m, define X(t) by

X(0) = 0, X ′(t) = 1−X(t)m,

and define Y (r) to be the unique solution (see Lemma 1) to

r =
Y (r)

1−
(

1 + Y (r)
log(1−Y (r))

)m .
Theorem 1 states that MC = X(r) and M I = Y (r). Because X(·) is increasing, to show that
X(r) ≤ Y (r) for al r, it suffices to show that for y ∈ [0, 1),

(10) X

 y

1−
(

1 + y
log(1−y)

)m
 ≤ y.
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For y ∈ [0, 1), define u = 1 + y
log(1−y) < y. Note that the inequality in (10) is tight for y = 0.

Furthermore, I claim that whenever (10) is tight, the left side of (10) grows slower than the right
side. To show this, note that

d

dy
X

(
y

1− um

)
= X ′

(
y

1− um

)(
1

1− um
+

myum−1

(1− um)2

du

dy

)
.

=

(
1−X

(
y

1− um

)m)( 1

1− um
+

myum−1

(1− um)2

du

dy

)
= (1− ym)

(
1

1− um
+

myum−1

(1− um)2

du

dy

)
.(11)

I must show that the expression in (11) is less than one. Multiply by 1−um
1−ym and subtract one to see

that this is equivalent to

(12)
ym − um

1− ym
>
mum−1

1− um
y
du

dy
.

Note furthermore that

y
du

dy
=

y

log(1− y)

(
1 +

1

1− y
y

log(1− y)

)
= (u− 1)

(
1 +

u− 1

1− y

)
=

(1− u)(y − u)

1− y
.

Substituting into (12), we see that we must show that

ym − um

1− ym
>
mum−1

1− um
(1− u)(y − u)

1− y
.

Rearranging, we must show that

1

u(m−1)

ym − um

y − u
1− um

1− u
> m

1− ym

1− y
,

or equivalently, that
m−1∑
k=0

(y
u

)k m−1∑
k=0

uk > m

m−1∑
k=0

yk.

This is a version of Chebyshev’s inequality; to see that it holds, subtract the expression on the left
from both sides and rearrange to get that the above inequality is equivalent to∑

0≤j≤k<m
(uj − uk)

((y
u

)j
−
(y
u

)k)
< 0.

This holds because u < 1 and y/u > 1, so each term in the sum is negative.

Proof that MC > MA:

The proof leverages the fact that under both correlated and aligned preferences, there is a unique
stable matching, which can be constructed through a simple greedy procedure.

P1 Correlated preferences: the top-ranked doctor must receive their most preferred option.
Form this match, and apply this principle to the remaining subgraph.

P2 Aligned preferences: the match of highest quality must be in any stable matching. Form
this match, and apply this principle to the remaining subgraph.

Thus, the result MC ≥ MA is formally a statement about the sizes of maximal matchings in
large bipartite random graphs. MC is the expected size of the matching formed by an algorithm
which at each step selects a vertex (doctor) uniformly at random, and matches it to a random
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neighbor (interpreted as their most preferred remaining hospital). MA is the expected size of the
matching formed when instead an edge is selected uniformly at random at each stage.

To argue that the first of these produces more matches in expectation, I construct two Markov
chains, (NA, Y ) and (NC , Y ), on {N ∈ Nm : ||N ||1 ≤ brnc} × {0, . . . , n}. Intuitively, N tracks the
number of doctors with k outstanding applications to the Y unmatched hospitals, for k = 1, . . . ,m.
Both chains start in the state N = (0, . . . , 0, brnc), Y = n, indicating that initially, all brnc doctors
have scheduled m interviews with the n unmatched hospitals. I will write down transition dynamics
for these chains such that the number of matches formed corresponds to the hitting time of the
absorbing set {(N,Y ) : N = (0, . . . , 0)}. To prove the claim that E[MC ] ≥ E[MA], I provide a
coupling between NA and NC such that NC is (weakly) larger, component-wise, than NA.

The transition dynamics for the chain corresponding to perfectly correlated preferences are as
follows:

C1. Sample kC ∈ {1, . . . ,m}, with P (kC = i) = NC
i /
∑

j N
C
j .

C2. For i ∈ {1, . . . ,m}, independently sample BC
i ∼ Binom(NC

i − 1(kC=i) , i/Y ).

C3. Transition to state (ÑC , Y − 1), where

ÑC
m = NC

m −BC
m − 1(kC=m), and ÑC

i = NC
i −BC

i +BC
i+1 − 1(kC=i) for i = 1, . . . ,m− 1.

The first step corresponds to selecting a random doctor d to match; kC represents the number of
remaining applications that d had. The second step corresponds to determining the number of
doctors who also had applied to the hospital that d selects; if d′ had i outstanding applications
among the Y remaining hospitals, then the chance that d′ had scheduled an interview with the
hospital selected by d is i/Y . The final step updates the number of doctors who have interviewed
with exactly i of the still-unmatched hospitals.

The transition dynamics for the chain corresponding to aligned preferences are as follows:

A1. Sample kA ∈ {1, . . . ,m}, with P (kA = i) = iNA
i /
∑

j jN
A
j .

A2. For i ∈ {1, . . . ,m}, independently sample BA
i ∼ Binom(NA

i − 1(kA=i) , i/Y ).

A3. Transition to state (ÑA, Y − 1), where

ÑA
m = NA

m −BA
m − 1(kA=m), and ÑA

i = NA
i −BA

i +BA
i+1 − 1(kA=i) for i = 1, . . . ,m− 1.

Note that the chains differ only in the first step: the selection of k. The chain for correlated
preferences selects a doctor uniformly at random (among those with at least one interview remain-
ing), whereas the chain for aligned preferences selects each doctor in proportion to the number of
interviews that they have remaining.

Say that vector NC dominates vector NA if and only if for all k ∈ {1, . . . ,m}, we have∑
j≥kN

C
j ≥

∑
j≥kN

A
j . I claim that it is possible to couple (NC , Y ) and (NA, Y ) such that

for all fixed Y , NC dominates NA. This immediately implies that the hitting time to {(N,Y ) :
N = (0, . . . , 0)} is smaller for NA than for NC .

Because the initial states of the two chains are identical, it is enough to inductively argue that if
NC dominates NA at time t, then the chains can be coupled such that dominance continues to hold
at time t + 1. The coupling is as follows. First, correlate kC and kA such that P ({

∑
j≥kC N

C
j =∑

j≥kC N
A
j }∩ {kA < kC}) = 0. In other words, whenever the constraint that NC dominates NA is

“tight” at kC , it must be that kA ≥ kC . This is possible because if
∑

j≥kN
C
j =

∑
j≥kN

A
j , then

P (kA ≥ k) =

∑
j≥k jN

A
j∑

j jN
A
j

≥
∑

j≥kN
A
j∑

j N
A
j

=

∑
j≥kN

C
j∑

j N
A
j

≥
∑

j≥kN
C
j∑

j N
C
j

= P (kC ≥ k).
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Note that the second inequality follows because dominance implies that
∑

j N
C
j ≥

∑
j N

A
j . It

follows that under this coupling, for k ∈ {1, . . . ,m}, we have∑
j≥k

NC
j − 1(kC≥k) ≥

∑
j≥k

NA
j − 1(kA≥k).

In other words, if we let ek be the m-dimensional vector with a one in position k and zeros elsewhere,
NC − ekC dominates NA − ekA .

In the next stage of the coupling, we correlate BC and BA. For each i, let Mi = (NA
i −1(kA=i))−

(NC
i − 1(kC=i)). Then generate BC

i and BA
i as follows:

• If Mi ≥ 0, generate BC
i and let BA

i = BC
i + Binom(Mi, i/Y )

• Otherwise, generate BA
i and let BC

i = BA
i + Binom(|Mi| , i/Y )

It is clear that the marginal distributions of BC
i and BA

i are correct. Furthermore, I claim that

under this coupling, ÑC dominates ÑA (recall that these are the next state of the Markov chains,

and are defined in steps C3. and A3. above). That is, I claim that for each k,
∑

j≥k Ñ
C
j ≥

∑
j≥k Ñ

A
j .

Note that by the definition of ÑC , for every k we have that∑
j≥k

ÑC
j =

∑
j≥k

NC
j − 1(kC≥k) −BC

k ,
∑
j≥k

ÑA
j =

∑
j≥k

NA
j − 1(kA≥k) −BA

k .

Thus, we must show that for k ∈ {1, . . . ,m}, we have

(13)
∑
j≥k

NC
j − 1(kC≥k) −BC

k ≥
∑
j≥k

NA
j − 1(kA≥k) −BA

k .

First consider the case when Mk ≥ 0. In this case, we have BC
k ≤ BA

k , and thus (13) is immediate

from the fact that NC − ekC dominates NA − ekA . When Mk < 0, the coupling of BC
k and BA

k

implies that BC
k + Mk ≤ BA

k . Furthermore, the fact that NC − ekC dominates NA − ekA implies

that
∑

j>kN
C
j − 1(kC>k) + Mk ≥

∑
j>kN

A
j − 1(kA>k). Combining these inequalities shows that

(13) continues to hold. Thus, the chains can be coupled such that NC dominates NA; the claim
that E[

∣∣µCn ∣∣] ≥ E[
∣∣µAn ∣∣] follows immediately. �

8.2. Proofs for Section 5.
Given random variables X and Y with common domain D, define the total variation distance

between X and Y to be d(X,Y ) = sup
A⊆D
|P (X ∈ A)− P (Y ∈ A)|.

Given a sequence of random variables Xn, we say that Xn converges in distribution to X (written
Xn → X) if for each x such that P (X = x) = 0, it holds that P (Xn ≤ x) → P (X ≤ x). When
X = x deterministically, this is equivalent to saying that for all ε > 0, P (|Xn − x| > ε)→ 0.

Lemma 3. Suppose that preferences are independent. Given r,m, let Pn denote the total number
of applications submitted by doctors during the run of the deferred acceptance algorithm when there
are n hospitals. The value Pn is concentrated about its mean; that is, Pn/E[Pn]→ 1 as n→∞.

The proof of this Lemma follows a standard path. Consider the martingale which results from
sequentially revealing random individual edges (interviews); formally, define Mk to be the expected
value of Pn, conditioned on the realization of the first k interviews. Because with high probability, at
least n

2 e
−rm hospitals receive no interview requests, with high probability the revelation of a single

edge can only change the expected number of interviews by a constant; that is, the differences
Mk+1 −Mk are bounded by a constant depending only on r and m (and not on n). From this
point, the result follows from standard concentration results.

My proof of Theorem 3 uses the following result, which describes a large market with independent
preferences from the perspective of representative individuals on each side:
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• From the perspective of each doctor d, each proposal that d makes will be independently
accepted with probability p given by (9).
• From the perspective of each hospital h, the number of applications received during the

deferred acceptance procedure is Poisson with parameter λ = r(1− (1− p)m)/p.

Theorem 7. Suppose that preferences are independent. Given r > 0,m ∈ N, let p be defined
by (9), and define λ = r(1 − (1 − p)m)/p and RI = min(Geom(p) − 1,m). Let RIn be a random
variable representing the number of times that doctor d is rejected in the nth market, and let N I

n be
a random variable representing the number of proposals received by hospital h. Then RIn → RI and
N I
n → Pois(λ).

The proof of Theorem 3 also makes use of an analogous result for the case of correlated prefer-
ences.

Theorem 8. Given r > 0,m ∈ N, define X(t) by

X(0) = 0, X ′(t) = 1−X(t)m.

Let Zn(k) denote the random variable representing the number of hospitals that match to one of
the k doctors of the highest quality in the nth market. Then for any t ∈ (0, 1)

1

n
Zn(brtnc)→ X(rt).

Define RC to be a random variable satisfying RC ∈ {0, . . . ,m}, with

P (RC ≥ k) =

∫ 1

0
X(rt)kdt for k ∈ {0, . . . ,m}.

In the case where hospital preferences are correlated (and doctor preferences independent), let RCn
be a random variable representing the number of times that doctor d is rejected in the nth market.
Then RCn → RC .

The proofs of these theorems appear at the end of the section; for now, I proceed taking them
as given.

Proof of Theorem 3.
Consider the case of independent preferences; by symmetry and linearity of expectation, in order

to compute GId and GIh, it suffices to consider the match probabilities for a single doctor and/or
hospital.

Fix a doctor d; by Theorem 7, the distribution of the number of hospitals who would accept
d’s proposal converges to Binom(m, p), with p the unique solution to (9). Furthermore, udh is
independent from whether h would accept d’s proposal, implying that conditioned on their being k
hospitals willing to accept a proposal from d, the probability that d gets a match of quality below
F−1(s) is sk. Thus,

(14) P (udµIn(d) ≤ F−1s)→
m∑
k=0

(
m

k

)
pk(1− p)m−ksk = (1− p(1− s))m.

Similarly, Theorem 7 states that distribution of the number of applications received by a given
hospital h converges to Pois(λ), where λ = r(1 − (1 − p)m)/p. If h receives Nh proposals, then
the distribution of vµ(h)h is distributed as the maximum of Nh draws from F , so P (vµ(h)h ≤
F−1(t)|Nh) = tNh . It follows that

(15) P (vµIn(h)h ≤ F−1(t))→
∞∑
k=0

e−λλk

k!
tk = e−λ(1−t).
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When considering correlated preferences, we may again compute GId and GIh by considering the
market from the perspective of a single doctor and/or hospital.

For a given doctor d, the number of hospitals with whom d interviewed and udh ≥ F−1(s) is
distributed as Binom(m, 1 − s). In the case that there are k such hospitals, d fails to obtain a
match of quality above F−1(s) if and only if all k of these hospitals rejects d. By Theorem 8, the
probability of this event converges to P (RC ≥ k) as n grows (note that we are using the fact that
udh is independent from the availability of h to d). Thus,

P (udµCn (d) ≤ F−1(s))→
m∑
k=0

(
m

k

)
(1− s)ksm−kP (RC ≥ k)

=

∫ 1

0

m∑
k=0

(
m

k

)
(1− s)ksm−kX(rt)kdt

=

∫ 1

0
(s+ (1− s)X(rt))mdt.

As for computing GCh , it is an immediate consequence of the model that for any t ∈ [0, 1], if

Qn(t) denotes the number of doctors with F (qd) ≥ t in the nth market, then 1
rnQn(t) → 1 − t. If

we define Zn(k) to be the (random) number of hospitals that match to one of the k doctors of the
highest quality in the nth market, then by the definition of GCd and by Theorem 8, we have∣∣X(r(1− t))− (1−GCd (t))

∣∣ ≤ r lim
n→∞

d

(
1

n
Zn(brn(1− t)c), 1

n
Zn(Qn(t))

)
= 0.

When considering the case of aligned preferences, I derive the expressions for GAd and GAh below,
while omitting a formal proof.

First, note that for any finite market and any matching µ, the number of hospitals and doctors
receiving a match above any given threshold must be equal; thus, brnc −NA

d (s) = n −NA
h (s) for

all s. It follows that

(16) r(1−GAd (s)) = 1−GAh (s) ∀s ∈ [0, 1].

Furthermore, it is possible to derive GAd (s) as a function of GAh . In particular, if d and h
interviewed and F (udh) = t, then the probability that hospital h would accept an offer from d is
GAh (t). It follows that the probability that d matches to a hospital h for which F (udh) ≥ s is given
by

(17) 1−GAd (s) = 1−
(

1−
∫ 1

s
GAh (t)dt

)m
.

Combining this with (16) yields the expression

1−GAh (s) = r(1−GAd (s)) = r

(
1−

(
1−

∫ 1

s
GAh (t)dt

)m)
.

Differentiating the above with respect to s yields (7). �

Some of the following proofs make use of a version of Chebyshev’s inequality, given below.

Lemma 4. For any f : R→ R+, any A ⊆ R and any γ ≥ 1,∫
A
f(t)γdt ≥

(∫
A
f(t)dt

)γ
.

I now provide the discrete analog of Theorem 4, which considers the rank that students gave their
matches. This Theorem requires some additional notation. Given values udh, vdh and a matching
µ, define N̂ I

d (k) to be the number of doctors who fail to match to a hospital ranked among their
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top k when preferences are independent, and let ĜId(k) = limn→∞
1
rnE[N̂ I

d (k)]. Define N̂C
d (k) and

ĜCd (k) analogously.

Theorem 9 (Ranks of STB vs MTB). For m ≥ 2, and all r, the following holds: ĜCd (1) < ĜId(1).

Furthermore, there exists 1 ≤ k′ < m such that ĜCd (k) ≤ ĜId(k) for k ≤ k′ and ĜCd (k) > ĜId(k) for
k > k′.

Proof of Theorem 9.

From Theorems 7 and 8, we have that

ĜId(k) = (1− p)k , ĜCd (k) =

∫ 1

0
X(rt)kdt.

Suppose that for some k, ĜCd (k) > ĜId(k), i.e.∫ 1

0
X(rt)kdt > (1− p)k .

It follows that ∫ 1

0
X(rt)k+1dt =

∫ 1

0
X(rt)k·

k+1
k dt

≥
(∫ 1

0
X(rt)kdt

) k+1
k

> (1− p)k+1 .

It immediately follows that ĜId and ĜCd either cross once or never.
We already know from Theorem 2 that for m ≥ 2,

1−M I = ĜId(m) < 1−X(r) = ĜCd (m) = 1−MC .

That is, more doctors get one of their top m choices when hospital preferences are independent.
To complete the proof, I show that more doctors get their first choices when hospital preferences

are correlated. Seeking a contradiction, suppose that 1− p ≤
∫ 1

0 X(rt)dt. By Theorem 3, we have

1−M I = e−r(1−(1−p)m)/p, so we conclude that

− log(1−M I)/r = (1− (1− p)m)/p =

m−1∑
k=0

(1− p)k

≤
m−1∑
k=0

(∫ 1

0
X(rt)dt

)k
≤
∫ 1

0

m−1∑
k=0

X(rt)kdt

=

∫ 1

0

1−X(rt)m

1−X(rt)
dt =

∫ 1

0

X ′(rt)

1−X(rt)
dt

=
1

r

∫ r

0

X ′(u)

1−X(u)
du = − log(1−X(r))/r.

= − log(1−MC)/r.

The first inequality on the second line follows by assumption, and the second by Lemma (4). The
third line follows from the identity X ′ = 1 −Xm. Jointly, the above chain of inequalities implies

that M I ≤ MC , contradicting Theorem 2. Thus, it must be that ĜId(1) = 1 − p >
∫ 1

0 X(rt)dt =

ĜCd (1). �
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Proof of Theorem 4.
It is clear that GId(1) = GCd (1) = 1. Differentiating expressions from Theorem 3 reveals that

d

ds
GId(s) = mp(1− (1− s)p)m−1,(18)

d

ds
GCd (s) = m

∫ 1

0
(s+ (1− s)X(rt))m−1(1−X(rt))dt.(19)

Evaluating each of these at s = 1 reveals that

d

ds
GId(s)

∣∣∣∣
1

= mp = m(1− ĜId(1)) < m(1− ĜCd ) = m(1−
∫ 1

0
X(rt)dt) =

d

ds
GCd (s)

∣∣∣∣
1

,

where the inequality follows from Theorem 9. Thus, GId(s) > GCd (s) for all sufficiently large s < 1.

Furthermore, Theorem 2 states that GId(0) < GCd (0); by continuity, GId and GCd cross. Let ŝ < 1

satisfy GId(ŝ) = GCd (ŝ). To prove the Theorem, it suffices to show that d
dsG

C
d (ŝ) < d

dsG
I
d(ŝ); that is,

at any interior point where GId and GCd cross, GId is steeper.
By (5) we have that for any s,

(1− (1− s)p)m−1 −GId(s) = (1− (1− s)p)m−1 + (1− (1− s)p)m

=
1− s
m

d

ds
GId(s).(20)

Similarly, by (6) we have that for any s,∫ 1

0
(s− (1− s)X(rt))m−1dt−GCd (s)

=

∫ 1

0
(s− (1− s)X(rt))m−1dt−

∫ 1

0
(s− (1− s)X(rt))mdt

=
1− s
m

d

ds
GCd (s).(21)

Examining (20) and (21), we see that to prove that d
dsG

C
d (ŝ) < d

dsG
I
d(ŝ), it suffices to show that∫ 1

0
(ŝ− (1− ŝ)X(rt))m−1dt < (1− (1− ŝ)p)m−1.

This fact follows from Lemma 4:∫ 1

0
(ŝ− (1− ŝ)X(rt))m−1dt <

(∫ 1

0
(ŝ− (1− ŝ)X(rt))mdt

)m−1
m

= GCd (ŝ)
m−1
m = GId(ŝ)

m−1
m

= (1− (1− ŝ)p)m−1.

�

I now provide expressions giving the number of students assigned a top k choice by the Boston
algorithm. Define N̂ I

d (k) to be the number of students who fail to match to a school ranked among

their top k when using the Boston mechanism, and define ĜId(k) = limn→∞
1
rnE[N̂ I

d (k)]. Let NB
d (s)

be the random variable representing the number of students who receive utility at most F−1(s)
under the Boston mechanism, and define GBd (s) = lim

n→∞
1
rnN

B
d (s). Theorem 10 provides a method

for computing ĜBd which was used for Figure 2.
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Theorem 10. The values ĜBd (k) are given by the recursion

(22) ĜBd (0) = 1, r(1− ĜBd (k + 1)) = 1− e−r
∑k

j=0 Ĝ
B
d (j).

Furthermore, GBd (s) =
∑m

k=0

(
m
k

)
(1− s)ksm−kĜBd (k).

For the intuition behind this recursion, note that n times the left side of (22) gives the number
of students matched to one of their top k+ 1 choices, while n times the right side gives the number

of schools assigned to a student in the first k+ 1 rounds (since rn
∑k

j=0 Ĝ
B
d (j) is the total number

of applications sent by students to this point).
I omit a formal proof of Theorem 10; I am happy to provide one upon request.

Proof of Theorem 7.
My proof follows in the footsteps of Pittel (1989), Immorlica and Mahdian (2005) and Ashlagi

et al. (2013). In particular, I use the principle of deferred decisions to go from studying a deter-
ministic algorithm (doctor-proposing deferred acceptance) on random input (agent preference lists)
to studying a randomized algorithm which only makes comparisons between candidates as needed.
In particular, in the analysis that follows I will take the perspective of an outside observer who
witnesses the sequence of proposals and rejections, but not the set of interviews or agents’ cardi-
nal utilities. Thus, if hospital h has received Nh proposals and is holding a proposal from doctor
d′, then from the observer’s perspective, vd′h is distributed as the maximum of Nh independent
draws from F , and if doctor d proposes to h, then the probability that this proposal is accepted is
(Nh + 1)−1.

I also use the fact for fixed preference lists, the order of proposals does not affect the outcome of
the deferred acceptance algorithm. Fix r,m, n, fix d ∈ D, and let Hd ⊂ H be the set of m hospitals
with which d interviewed. Imagine running deferred acceptance among all agents excluding d, and
let Nh be the number of proposals received by hospital h at the conclusion of this process. The key
step in the proof is to show that in a large market, there exists a constant λ (depending on r and
m, but not n) such that the vector (Nh)h∈Hd

is well-approximated by a vector of m independent
Pois(λ) random variables.

I show this by considering a run of the deferred acceptance algorithm, and tracking the set of
doctors (other than d) who at some point apply to some hospital h ∈ Hd. The algorithm for doing
this is given below.

Algorithm 1 (Algorithm). Fix d ∈ D, and a set Hd ⊂ H such that |Hd| = m (these represent
hospitals that interviewed d).

Define D′ = D\{d} and H ′ = H\Hd (we will carefully track all interviews with hospitals in Hd)
For d′ ∈ D′, initialize Hd′ = ∅ (Hd′ represents the hospitals to which d′ has so far applied).
For h ∈ H ′, initialize Dh = ∅ and µh = ∅ (Dh represents the set of doctors who have applied to

h, and µh represents the doctor whose application is currently held by h).

Initialize D̃ = ∅ (this represents the set of doctors who have applied to some hospital in Hd).
At all times, define Dmatched =

⋃
h∈H′ µh, and Drejected = {d′ ∈ D′\Dmatched : |Hd′ | = m} (these

represent the set of currently matched doctors, and the set of doctors who have been rejected by m
hospitals).

While
(∣∣∣Dmatched ∪Drejected ∪ D̃

∣∣∣ < |D′|)
• Select d′ ∈ {D′\

(
Dmatched ∪Drejected ∪ D̃

)
} arbitrarily.

• Select h uniformly at random from H\Hd′.

• If h ∈ Hd, add d′ to D̃.
• Otherwise, add h to Hd′ and d′ to Dh. With probability 1/ |Dh|, set µh = d′.

Call the set of proposals made during a run of the above algorithm “Phase 1” of the deferred
acceptance algorithm, and call all other proposals needed to conclude the deferred acceptance
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procedure “Phase 2.” Note that at the conclusion of Phase 1, we have a set D̃ of doctors other than
d′ who applied to (at least) one hospital in Hd, a set Drejected of doctors who did not interview
with any hospital in Hd and have been rejected by every hospital with which they interviewed, and
a set Dmatched of doctors who have yet to apply to any hospital in Hd and have been tentatively
matched. Given |D̃|, let N = (Nh)h∈Hd

be distributed according to a multinomial distribution with

|D̃| draws and m equally likely outcomes. Define |D̂| to be a Poisson random variable with mean

E[|D̃|]. Given |D̂|, let N̂ = (N̂1, . . . , N̂m) be distributed according to a multinomial distribution

with |D̂| draws and m equally likely outcomes.
The remainder of the proof proceeds conversationally; I am happy to provide more formal nota-

tion upon request to any reviewer with concerns about how to rigorously fill in the steps outlined
below. I claim the following:

I N̂ is distributed as m independent Pois(E[|D̃|]/m) random variables.

II d(N, N̂) = d(|D̃|, |D̂|).
III The expected number of proposals in Phase 2 is bounded by a constant (i.e. a term that

does not depend on n).

IV The probability that, during Phase 2, no d ∈ Dmatched applies to Hd and no d′ ∈ D̃ applies
to multiple hospitals in Hd, is 1−O(1/n).

V |D̃| is approximately Poisson distributed; that is, d(|D̃|, |D̂|) is o(1).

Claim I is a straightforward calculation. Fix non-negative integers n1, . . . , nm, let n =
∑m

i=1 ni.

Define |N̂ | =
∑

h∈Hd
N̂h. Then if λ = E[|D̃|]/m = E[|D̂|]/m, we have

P (N̂1 = n1, . . . , N̂m = nm) = P (|N̂ | = n)P (N̂1 = n1, . . . , N̂m = nm| |N̂ | = n)

=
e−mλ(mλ)n

n!

n!∏m
i=1(ni!)

1

mn

=
m∏
i=1

e−λλni

ni!
,

which is the distribution of m independent Pois(λ) random variables.

To see II, couple N and N̂ as follows:

• For all n ∈ N, let P (|N | = |N̂ | = n) = min(P (|N | = n), P (|N̂ | = n)).

• Whenever |N | = |N̂ |, let N = N̂ .

I now turn my attention to Claim III. Note that the number of proposals in Phase 1 is (trivially)
at most rmn. Because each Phase 1 proposal is sent to a hospital in Hd (i.e. doctor d′ is added

to D̃) with probability somewhere between m/n and m/(n − m + 1), this implies that |D̃| is
stochastically dominated by a Poisson random variable with mean rm2 n

n−m+1 . Furthermore, if we

define Hunmatched to be the set of hospitals with µh = ∅ at the conclusion of Phase 1, it follows
that the expected size of Hunmatched is at least n(1−m/brnc)brnc; standard techniques show that
the probability that fewer than ne−rm/2 such hospitals exist is exponentially small in n.

Each doctor in D̃ sends at least one application to a hospital in Hd; thus, in any run of the
algorithm, they each trigger at most m− 1 additional rejection chains. Because D̃ is O(rm2) with
high probability, the expected number of rejection chains in Phase 2 is bounded by a constant
that does not depend on n. Furthermore, because rejection chain are generated using the principle
of deferred decisions, each new proposal in a rejection chain goes to an unmatched hospital with
probability at least the number of unmatched hospitals divided by n; with high probability this is
at least e−rm/2, and thus the expected length of each rejection chain again can be bounded by a
constant that does not depend on n. This establishes claim III.

From here, IV follows easily, as the number of proposals in Phase 2 is bounded by a constant with
high probability, and each proposal from d′ ∈ D′ is directed to a hospital in Hd with probability
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at most m/(n − m + 1). Thus, the expected number of additional proposals to Hd (beyond the

minimum of one proposal made by each doctor in D̃) from doctors in D′ is O(1/n), and therefore
the probability that any such proposal occurs is O(1/n). In other words, with high probability, no
rejection chain returns to Hd, and the number of proposals that each h ∈ Hd receives from doctors
d′ ∈ D′ is equal to Nh with high probability.

To see V, note that each time through the main loop of the algorithm, d′ is added to D̃ with
probability somewhere between m/n and m/(n − m + 1). Furthermore, by Lemma 3, Pn (the
total number of proposals across Phases 1 and 2) is concentrated about its mean. Because brnc ≤
Pn ≤ mbrnc, and because III states that the expected number of proposals in Phase 2 is bounded
by a constant, it follows that the number of proposals in Phase 1 is concentrated around E[Pn]
(formally, the ratio of these two converges in probability to one as n grows). Thus, with high
probability, Phase 1 consists of E[Pn](1 + o(1)) proposals, each of which is directed at a hospital in
Hd with probability between m/n and m/(n−m+1). Standard results stating that Binom(n, λ/n)

converges in distribution to Pois(λ) then imply that |D̃| is approximately Poisson.
All that remains is to solve for λ, the large-market average number of applications received by

each hospital. The above analysis implies that d is rejected from each hospital with probability
approaching p = E[(1+Nh)−1] = g(λ). Thus, the probability that dmatches approaches 1−(1−p)m,
and the expected number of applications sent by d approaches (1 − (1 − p)m)/p as n grows. By
symmetry among doctors, we must have that

1

rn
E[Pn]→ (1− (1− p)m)/p.

By symmetry among hospitals we must have that

λ = lim
n→∞

1

n
E[Pn] = r(1− (1− p)m)/p.

Putting it all together, we see that p and λ must solve

p = g(λ), λ = r(1− (1− p)m)/p,

which is equivalent to (9). �

Proof of Theorem 8.
Note that when hospital preferences are correlated, there is a unique stable match. We can

construct it through a doctor serial dictatorship: order the doctors according to qd, and have them
sequentially pick their favorite remaining hospital (among those with whom they interviewed).

Given n and m, define the random sequences Zn, Bn as follows:
Zn(0) = 0, and for k = 1, 2, . . ., let

Bn(k) =

{
0 w.p.

(
Zn(k−1)

m

)
/
(
n
m

)
1 otherwise

, Zn(k) =
k∑
j=1

Bn(j).

Furthermore, let Bn(k) be conditionally independent of {Bn(j)}k−1
j=1 , given Zn(k − 1).22 Think of

Bn(k) as the indicator that the kth-ranked doctor matches; then Zn(k) is a count of the number
of hospitals that are filled after doctor k has selected. Given Zn(k − 1), the kth-ranked doctor
fails to match if and only if all of their interviews were with hospitals who have already matched.
Because interview scheduling is independent from doctor preferences, this occurs with probability(
Zn(k−1)

m

)
/
(
n
m

)
. Thus, we have that

∣∣µCn ∣∣ D= Zn(brnc). I will show that for all r > 0,

(23)
1

n
E[Zn(brnc)]→ X(r).

22Unless specifically stated otherwise, when defining a random variable I intend that this variable is independent
of other random variables defined on the same probability space.
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The first step is to replace the unwieldy combinatorial term above with the simpler (Zn(k −
1)/n)m. To justify this, note that

(24)

(
z −m+ 1

n

)m
+

≤
(
z

m

)
/

(
n

m

)
≤
( z
n

)m
.

Define Zn, Bn by Zn(0) = 0, and for k = 1, 2, . . ., let

Bn(k) =

{
0 w.p.

(
Zn(k−1)−m+1

n

)m
+

1 otherwise
, Zn(k) =

k∑
j=1

Bn(j).

Similarly, define Zn, Bn by Zn(0) = 0, and for k = 1, 2, . . ., let

Bn(k) =

{
0 w.p.

(
Zn(k−1)

n

)m
1 otherwise

, Zn(k) =
k∑
j=1

Bn(j).

We can think of Zkn as representing the transition dynamics when doctors are “forgetful” and may
accidentally schedule multiple interviews with the same hospital.

Note that we may couple Zn and Zn such that for k ≥ m, Bn(k) = Bn(k−m+ 1). This implies
that

(25) Zn(k)
D
= m− 1 + Zn(k − (m− 1)) ≤ m− 1 + Zn(k)

Further, (24) implies that we can couple Zn and Zn with Zn such that Zn(k) = Zn(k) implies
Bn(k+ 1) ≤ Bn(k+ 1), and Zn(k) = Zn(k) implies Bn(k+ 1) ≤ Bn(k+ 1). It follows that we may
couple Zn and Zn such that for all n and k ≥ m,

Zn(k) ≤ Zn(k) ≤ m− 1 + Zn(k).

Thus, in order to show (23), it suffices to show that 1
nE[Zn(brnc)]→ X(r).

For k ∈ {1, . . . , n}, define Yn(k) to be a geometric random variable with mean
(

1−
(
k−1
n

)m)−1
.

Define Nn(k) =
∑k

j=1 Yn(j). Then Nn(k) represents the number of (forgetful) doctors that are
needed in order for k of n hospitals to fill positions. Note that we can couple Zn and Nn in the
natural way, in which case we have that for all k, z ∈ N,

(26) Zn(k) < z ⇔ k < Nn(z).

Note that for s ∈ [0, 1), as n→∞, we have

1

n
E[Nn(bsnc)] =

1

n

bsnc∑
k=1

(
1−

(
k − 1

n

)m)−1

→
∫ s

0

1

1− tm
dt

∆
= M(s).(27)

1

n
Var[Nn(bsnc)] =

1

n

bsnc∑
k=1

(
k − 1

n

)m(
1−

(
k − 1

n

)m)−2

→
∫ s

0

tm

(1− tm)2
dt

∆
= V (s).(28)

From (27) and (28), it follows that for any s ∈ (0, 1), ε > 0, as n→∞ we have

(29) P

(
1

n
Nn(bsnc) ∈ (M(s)− ε,M(s) + ε)

)
→ 1.

Additionally, we claim that M(X(r)) = r. To see this, note that M(X(0)) = M(0) = 0, and

d

dr
M(X(r)) =

d

dr

∫ X(r)

0

1

1− tm
dt =

X ′(r)

1−X(r)m
= 1.
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Applying (26), we see that for any r, ε > 0,

P (bn(X(r)− ε)c < Zn(brnc) < bn(X(r) + ε)c) =

P (Nn(bn(X(r)− ε)c)) < brnc < Nn(bn(X(r) + ε)c))→ 1,

with the final claim following from applying (29) twice. This is the definition of what it means for
1
nE[Zn(brnc)] to converge to X(r) in distribution.

Now consider a given doctor d. If d ranks jth among doctors, then the probability that d is

rejected by his first k hospitals is E[
(Zn(j−1)

k

)
]/
(
n
k

)
; It follows that the ex-ante probability that d is

rejected by his first k hospitals is

P (RCn ≥ k) =
1

brnc

brnc∑
j=1

E

[(
Zn(j − 1)

k

)]
/

(
n

k

)
.

By (24), it follows that

1

brnc

brnc∑
j=1

E

[(
Zn(j − 1)−m+ 1

n

)k]
≤ P (RCn ≥ k) ≤ 1

brnc

brnc∑
j=1

E

[(
Zn(j − 1)

n

)k]
.

By (23), as n→∞, we have that

1

brnc

brnc∑
j=1

E

[(
Zn(j − 1)

n

)k]
→
∫ 1

0
X(rt)kdt,

proving the claim that RCn → RC . �

8.3. Proofs from Section 6. I begin by providing expressions for the functions Gh, Gd that result
when doctors have an outside option u satisfying F (u) = α, and hospitals have an outside option v
satisfying F (v) = β. While studying this is interesting in its own right, this also forms an essential
component of the analysis for computing an equilibrium when there is an aftermarket. Note that
I define Gd(s) to be the probability of getting a match worse than F−1(s) (or no match at all)
from the clearinghouse, assuming that d lists all interview partners (i.e. Gd does not explicitly
incorporate d′s own outside option).

I provide the following expressions:

(1) Independent preferences: Let x ∈ (0, 1) be the unique solution (see Lemma 1) to

x = r

(
1−

(
1 +

(1− α)(1− β)x

log(1− x)

)m)
,

and define p by r(1− (1− (1− α)p)m) = x, and λ = r(1− (1− (1− α)p)m)/p. Then

(30) GId(s) = (1− (1− s)p)m, GIh(t) = e−λ(1−t),

(2) Correlated preferences: Define X(t) by the differential equation

X ′(t) = 1− (α+ (1− α)X(t))m, X(0) = 0.

Then we have that

(31) GCd (s) = 1−
∫ 1−β

0
(s+(1−s)X(rt))mdt, GCh (t) =

{
1−X(r(1− t)) : t ≥ β
(1−X(r(1− β)))e−rm(β−t) : t < β

.

(3) Aligned preferences: Define G̃ to be the solution to

G̃′(t) = rmG̃(t)

(
1−

∫ 1

t
G̃(u)du

)m−1

, G̃(1) = 1.
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Then all matches formed satisfy F−1(udh) ≥ max(α, β); for s, t ≥ max(α, β), we have

(32) GAd (s) = 1− 1− G̃(s)

r
, GAh (t) = G̃(t).

For the intrepid reviewer who has reached this stage of the appendix, I note that the proof of
Theorem 6, while complete and accurate, is not fully formal: it uses somewhat imprecise English
words rather than a formal definition of equilibrium. I trust that this will cause no confusion,
however I do provide a formal equilibrium definition below.

Proof of Theorem 6. When r = 1, all agents who go unmatched in the clearinghouse will be matched
in the aftermarket, so agents have a dominant strategy of listing only those partners whom they
prefer to a random match.

For the remainder of the proof, let x1 be the fraction of hospitals who match when both sides list
only excellent matches, and let x2be the fraction of hospitals who match when hospitals list only
excellent matches, but doctors list each hospital with whom they interviewed. I make the following
observation: 23:

Observation 1. a) For any r,m, γ, 0 < x1 < x2 < 1.
b) For fixed r, γ, the values x1 and x2 are increasing in m.
c) For fixed m, γ, the values x1 and x2 are increasing in r.

When r > 1, all hospitals who go unmatched in the clearinghouse will be matched in the
aftermarket, so hospitals have a dominant strategy of listing only doctors whom they prefer to a
random match. Suppose that doctors anticipate that a fraction x of hospitals will match through
the clearinghouse. This implies that a fraction 1−x

r−x of unmatched doctors will find a match in the
aftermarket. It follows that when deciding whether to list a marginal match, doctors compare the
value of this match, s, to the value of the aftermarket, 1−x

r−x (γ + (1− γ)s). After rearrangement,
we see that doctors prefer to list only excellent matches if and only if

(33) s <

(
1 +

1

γ
· r − 1

1− x

)−1

.

If we define s to be the value of the right side of (33) when x = x1 and s to be its value when
x = x2, it follows from Observation 1 that:

(1) 0 < s < s < 1;
(2) It is an equilibrium for doctors to list only excellent matches if and only if s ≤ s;
(3) It is an equilibrium for doctors to list all interview parteners if and only if s ≥ s;
(4) For fixed r, γ, as m increases, so do x1, x2, and thus s and s are decreasing in m;
(5) For fixed m, γ, as r increases, so do r−1

1−x1 , r−1
1−x2 , and thus s, s are decreasing in r.

The case where r < 1 is exactly analogous, with the roles reversed. �

Formal Equilibrium Definition
Here, I formally define the equilibrium concept intended above. In English, an equilibrium is a
pair of values u, v such that when doctors list only hospitals with udh > u and hospitals list only
doctors for which vdh > v, the “value of the aftermarket” to the two sides is precisely u, v. When
preferences are independent or aligned, the “value of the aftermarket” is simply the probability of
matching times the expected value from a random match.

For any α, β, define M I(α, β) to be 1−GIh(β), where GId is computed according to (30); similarly,

define MA(α, β) to be 1 − GAh (β), where GAh is given by (32). Note that M I (respectively, MA)
represents the fraction of hospitals who match when preferences are independent (respectively,

23These facts follow almost trivially from the model, but for completeness, note that I provides a procedure for
computing x1 and x2 above.
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aligned) and doctors reject an α fraction of all hospitals, while hospitals reject a β fraction of all
doctors.

Given that the fraction of hospitals who match through the clearinghouse is M , the fraction of
doctors, among those participating in the aftermarket, who go on to match is 1 if r ≤ 1, and is
1−M
r−M if r > 1. Analogously, the fraction of hospitals in the aftermarket who go on to find a match

is 1 if r ≥ 1, and is r−M
1−M if r < 1. Let û = E[udh] be the expected utility of a random match. Then

the “value of the aftermarket” for given cutoff strategies u, v is given by

V I(u, v) =

(
min

(
1−M I(F (u), F (v))

r −M I(F (u), F (v))
, 1

)
û,min

(
r −M I(F (u), F (v))

1−M I(F (u), F (v))
, 1

)
û

)
.

V A(u, v) =

(
min

(
1−MA(F (u), F (v))

r −MA(F (u), F (v))
, 1

)
û,min

(
r −MA(F (u), F (v))

1−MA(F (u), F (v))
, 1

)
û

)
.

Finally, define the pair (u, v) to be an equilibrium of the game with independent preferences if
(u, v) = V I(u, v), and to be an equilibrium of the game with aligned preferences if (u, v) = V A(u, v).
Note that this equilibrium notion inherently assumes a large market: for small n, a hospital who
expects value v from the aftermarket may have an incentive to truncate their list to include only
partners of value v+ ε. Furthermore, for small n, agents might account for the possibility that the
aftermarket matches them to a partner whom they interviewed and declined to list.

9. Appendix: Extensions

9.1. Many-to-One Matching. Although the model and analysis in the body of the paper assumes
a one-to-one matching market, in many real-world settings (including residency matching and school
assignment), agents one side of the market have the capacity to match to multiple agents on the
opposite side. In this appendix, I provide expressions for the number of matches that form in the
general case where there are n hospitals, each with capacity C ≥ 1, and brnCc doctors seeking a
single match partner.
9.1.1. Both Sides Have Independent Preferences. In the independent case, the consistency equations
defining the probability p with which each offer is accepted and the expected number of offers
received by a program λ are:

λp = rC(1− (1− p)m) = E[min(Pois(λ), C)].

9.1.2. Hospitals Have Correlated Preferences. Suppose that when doctor d picks, a fraction X of
hospitals are filled. Then the expected number of applications sent by doctor d in a large market is
1−Xm

1−X . Meanwhile, because each application is essentially sent uniformly at random, after a total
of λn applications have been sent, the number of schools that have filled all positions is given by
X = P (Pois(λ) ≥ C). This gives us the following differential equation:

Λ′(t) =
1−X(t)m

1−X(t)
, X(t) = 1−

C−1∑
k=0

e−Λ(t)Λ(t)k

k!
,Λ(0) = 0.

Then Λ(rC) gives the average number of applications received by each hospital, and the total
number of doctors who match is given by nE[min(Λ(rC), C)].

9.1.3. Comparing M I ,MC ,MA. The intuition for the result M I ≥ MC remains intact: the pri-
mary factor determining the number of matches that form is the likelihood that doctors applying
to hospitals towards the bottom of their list will be accepted. This probability is higher under
independent preferences than under correlated preferences, as in the latter case doctors who apply
to many hospitals have been adversely selected. I do not currently have a formal proof establishing
this fact.
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By contrast, the coupling argument used to prove that MC ≥ MA carries through virtually
unmodified; it is still the case that the greedy algorithm corresponding to aligned preferences is
likely to match those doctors with many remaining options. However, note that unlike the case
where C = 1, correlation in doctor preferences affects the number of matches that form. In
particular, when doctor preferences are correlated, highly-ranked doctors tend to all pick highly-
ranked hospitals, causing these hospitals to fill early and decreasing the total number of doctors
who match.

While the coupling argument establishes that fewer doctors match when preferences are aligned
than when doctor preferences are idiosyncratic and hospital preferences are perfectly correlated, it
says no such thing about the case where both doctors and hospitals have correlated preferences.
Indeed, simulations demonstrate that these two cases are generally incomparable: for some values
of r,m,C, more matches form under aligned preferences, and for other parameter values, more
matches form when both sides have perfectly correlated preferences.

9.2. Varying Number of Applications. What if, rather than each doctor having a hard capacity
constraint, doctors apply to each hospital independently with probability m/n (so that they average
number of hospitals with which a doctor interviews is m)? Note that in this case, it is without loss
of generality to assume r ≥ 1.

These results, which study the size of maximal matchings selected by three different procedures
in bipartite Erdös-Renyi random graphs, are of independent interest (outside of the context of
centralized matching considered in this paper). In addition, the closed-form expressions in the case
of correlated and aligned preferences make it simple to compute the scaling behavior of the number
of unmatched agents on the short side as m grows.

Theorem 11.

(1) Independent preferences:

lim
n→∞

1

n
Sn(r,m,GI) = x∗,

where x∗ is the unique solution to

(34) m =
1

x
log(1− x) log(1− x/r).

(2) Perfectly correlated preferences:

(35) lim
n→∞

1

n
Sn(r,m,GC) = 1− 1

m
log(1 + (em − 1)e−mr).

(3) Aligned preferences:

For r > 1, lim
n→∞

1

n
Sn(r,m,GA) =

erm − em

erm − em/r
(36)

For r = 1, lim
n→∞

1

n
Sn(r,m,GA) =

m

m+ 1
(37)

The derivations in the case of independent and correlated preferences are similar to those for
Theorem 1. For independent preferences, it remains the case that each hospital is available with
probability p. The consistency equation for p becomes

1− e−
1
p
r(1−e−mp)

= r(1− e−mp),

which can be transformed via the change of variables x = r(1− e−mp) into (34). For a proof that
there is a unique solution for all r,m, see Arnosti et al. (2014).
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For correlated preferences, a doctor who selects at a time when a fraction X of hospitals have
been filled matches with probability 1− e−m(1−X). It follows that the relevant differential equation
is

X ′(t) = 1− e−m(1−X(t)), X(0) = 0,

which has the closed-form solution given in (35). Computing Gd, Gh for both independent and
correlated preferences also becomes straightforward. The expression in (35) was previously derived
by Mastin and Jaillet (2013).

To the best of my knowledge, the expressions in (36) and (37) are novel. They come from
considering all possible rn2 edges, and ordering them according to the value udh. Let X track
the fraction of hospitals who have matched so far. When considering an edge, it is added to the
matching if and only if the corresponding interview occurred (probability m/n), the hospital has
yet to match (probability ≈ 1−X), and the doctor has yet to match (probability ≈ 1−X/r). The
interview structure implies independence of these events, implying that the fraction of hospitals
who eventually match should be X(r), where X is given by the differential equation

X ′(t) = m(1−X(t))(1−X(t)/r), X(0) = 0,

which has the closed-form solution given in (36) and (37).
The above expressions provide over-estimates for the number of agents that remain unmatched

in the case that each doctor schedules exactly m interviews, however for moderate to large values
of m, these over-estimates should remain fairly tight.

Of course, as m grows, the fraction of hospitals who remain unmatched converges to zero. It is,
however, illustrative to consider the rate at which the convergence occurs. When r = 1, we have
that

1− SI = e−
√
mSI ∼ e−

√
m

1− SC = log(2− e−m)/m ∼ log(2)

m

1− SA =
1

m+ 1
.

If r > 1, we have that

1− SI ∼ e−m/ log(r/(r−1))

1− SC ∼ 1

m
e−m(r−1)

1− SA ∼ r − 1

r
e−m(r−1).

Note that in this case all of the above expressions decrease exponentially in m, but the coefficient
in the exponent for independent preferences is greater than for aligned or correlated preferences.
For example, for r = 1.1, 1/ log(r/(r − 1)) ≈ 0.417, whereas r − 1 = 0.1.

10. Appendix: An Example

Example 2. There are three doctors and three hospitals, and m = 2. Up to isomorphism, there
are three possible application graphs, depicted below:
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Intuition for independent better than perfectly correlated: look at case one, and suppose that
doctors are ranked, with d3 ranked last. Then d3 goes unmatched only if h1 is not selected by either
of the top doctors; this occurs with probability 1/3 when doctors have identical rankings, but with
probability 1/4 when doctors rank hospitals independently. Moving to the case where both sides have
independent preferences, we observe the same effect, as the chance that both h2 and h3 decide that
d3 is their least preferred option drops from 1/3 to 1/4.

Intuition for the fact that aligned is the worst: look at case two. Note that the only hospital at
risk of going unmatched is h1; this hospital goes unmatched if and only if d1 and h2 match. Both
d1 and h2 have outside options, and thus must both prefer each other to these options. This is most
likely when preferences are aligned.

Interesting to note that in case two, “both sides perfectly correlated” is actually better than “udh
independent, vdh perfectly correlated.” This is because if h2 is not picked by the top-ranked doctor,
under perfectly correlated preferences, h2 is less likely to be selected by d1.

Let us consider the first case, in which each hospital receives two applications. This case occurs
with probability 2/9.

• Suppose that hospital preferences over doctors are identical, as are doctor preferences over
hospitals. WLOG, let d1 be the most preferred doctor and d3 the least preferred. The only
doctor that might go unmatched is d3; this occurs if and only if h1 is the least preferred
hospital, which occurs with probability 1/3.
• Suppose that hospital preferences over doctors are identical, but doctor preferences over

hospitals are independent. WLOG, let d1 be the most preferred doctor and d3 the least
preferred. The only doctor that might go unmatched is d3; this occurs if and only if d1

prefers h2 to h1 and d2 prefers h3 to h1, which occurs with probability 1/4.
• The case where hospital preferences over doctors are independent, but doctor preferences

are perfectly correlated is identical to the previous case, by symmetry.
• Suppose that both sides have independent preferences. In this case, d3 goes unmatched if

and only if: h2 prefers d1 to d3, h3 prefers d2 to d3, d1 prefers h2 to h1, and d2 prefers h3

to h1. This occurs with probability 1/16; by symmetry, the probability that only two matches
form is 3/16.
• If preferences are aligned, then WLOG the link with the highest value is d1h1. After match-

ing these two, only d2 can go unmatched; this occurs if and only if d3h3 is the highest of
the three remaining links, which occurs with probability 1/3.

Now let us turn to the second case, in which h1 receives one application, and h2 receives three.
This case occurs with probability 2/3. Note that in this case, the only hospital at risk of going
unmatched is h1.

• Suppose that hospital preferences over doctors are identical, as are doctor preferences over
hospitals. Then h1 goes unmatched if and only if one of the following holds:
(1) d1 is ranked first, and prefers h2 to h1 (occurs with probability 1/6), or
(2) d2 is ranked second, and h3 is ranked first, followed by h2 (occurs with probability 1/18).
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Alternatively, we can say that h1 goes unmatched if and only if one of the following holds:
(1) h2 is ranked first, and prefers d1 to d2 and d3 (occurs with probability 1/9), or
(2) h3 is ranked first, h2 is ranked second, and d1 is ranked first or second (occurs with

probability 1/9).
• Suppose that hospital preferences over doctors are identical, but doctor preferences over

hospitals are independent. Then h1 goes unmatched if and only if one of the following
holds:
(1) d1 is ranked first, and prefers h2 to h1 (occurs with probability 1/6), or
(2) d1 is ranked second, prefers h2 to h1, and the top-ranked doctor prefers h3 to h2 (occurs

with probability 1/12).
• Suppose that hospital preferences over doctors are independent, but doctor preferences over

hospitals are identical. Then h1 goes unmatched if and only if one of the following holds:
(1) h2 is ranked first, and prefers d1 to d2 and d3 (occurs with probability 1/9), or
(2) h3 is ranked first, h2 is ranked second, and h2 prefers d1 to the doctor not selected by

h3 (occurs with probability 1/12).
• Suppose that doctors and hospitals hold independent preferences. Then h1 goes unmatched

if and only if d1 prefers h2 to h1 (probability 1/2), and one of the following holds:
(1) h2 prefers d1 to d2 and d3 (probability 1/3), or
(2) h2 ranks d1 second, the doctor that h2 ranks first prefers h3, and h3 prefers this doctor

to the other doctor that they interviewed (probability 1/12).
• Suppose that preferences are aligned. Then h1 goes unmatched if and only if one of the

following holds:
(1) d1h2 is the top link (occurs with probability 1/6), or
(2) One of d2h3 or d3h3 is the top link, and d1h2 is the top link of the three remaining

(occurs with probability 1/9).

The third case, in which one hospital receives no applications, occurs with probability 1/9 and is
trivial to analyze: for all preference structures, exactly two matches form.

Probability of a Vacancy

Doctors Send 2 Apps Hospital Preferences
Uniformly at Random

Independent Identical
Doctor Independent 7/24 1/3

Preferences Identical 8/27 1/3

Doctors Send 2 Apps Hospital Preferences
Hospitals Receive 2 Apps

Independent Identical
Doctor Independent 3/16 1/4

Preferences Identical 1/4 1/3


